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Abstract 
The Sequence Ontology is an OBO Foundry ontology 
that provides categories of sequences and sequence 
features that are applied to the annotation of 
genomes. To facilitate interoperability with other 
domain ontologies and to provide a foundation for 
automated inference, we provide here an axiom 
system for the Sequence and Junction categories in 
first- and second-order predicate logics.  

Introduction 
Biological sequences play a major role in genetics 
and bioinformatics research. They are important in 
the description of DNA, RNA and proteins. To 
describe sequences and their features semantically, 
the Sequence Ontology (SO)2 was developed. 

The SO distinguishes between sequence features, 
qualities of sequences, operations on sequences and 
sequence variants. A sequence feature is an extended 
or non-extended biological sequence. Extended 
sequence features are regions such as genes, 
intergenic regions or sequences of polypeptides. 
Non-extended sequences are called junctions – the 
boundaries between two extended sequences. 
Operations on sequences include insertions and 
deletions. Qualities of sequences include whether or 
not a sequence encodes a protein, whether a sequence 
acts enzymatically when transcribed, or whether the 
sequence is conserved. Although some formal 
definitions are available for the SO categories, most 
categories are defined using English. 

Formal ontologies are intended to specify a 
conceptualization of a domain5, and therefore provide 
the foundation for data and information integration 
and exchange. Definitions alone are insufficient to 
achieve this goal. Axioms are required to provide 
meaning for primitive, undefined categories. To 
formalize the basic categories used in the SO, several 
ontological questions about sequences must be 
answered, among them: What kind of entity is a 
biological sequence and how does it relate to 
categories in a top-level ontology? What are the 
properties of biological sequences? What relations 
are applicable to sequences? How do sequences 
relate to other kinds of entities, in particular to 
molecules, organisms or processes (of selection, 
mutation)? 

Here we provide an axiom system for the SO's top-
level categories. We use first- and second-order 
logics for this purpose. The axiom system is intended 
to serve as a foundation for the SO, and as a means to 
achieve interoperability between the SO and other 
domain ontologies through the provision of an 
explicit formalization of the basic categories and 
relations used in the context of sequences. For the 
construction of the axiom system, we employed the 
axiomatic method8. 

Method 
We consider a formal ontology to be a specification 
of a conceptualization, i.e., a particular view on the 
world5. A formal ontology uses a vocabulary whose 
terms denote concepts and relations which refer to 
things in reality. 

One method that is used to specify the meaning of a 
term is an explicit definition. An explicit definition 
for a relation or category P  provides a sentence φ  in 
which P  does not occur, such that every occurrence 
of P  can be replaced with φ . 

When explaining the meanings of a set of terms 
through explicit definitions, other terms must be used 
to define the terms in the set, and in turn the meaning 
of these terms must be specified (without creating a 
circular definition). Therefore, specifying the 
meanings of terms solely through explicit definitions 
will either lead to an infinite regress or leave several 
terms unspecified. In the latter case, the meaning of 
all terms for which a definition is provided depends 
on the meaning of the terms without definition, 
therefore leaving the meaning of all terms in the 
ontology unspecified. 

We call the terms that are not explicitly defined 
primitive terms. The meaning of all terms in the 
ontology depends on the meaning of these primitive 
terms: because non-primitive terms are introduced 
through explicit definitions, every sentence involving 
a non-primitive term can be replaced with a sentence 
containing only primitive terms. 

The problem remains how the meaning of the 
primitive terms can be described formally. We may 
construct complex sentences containing only 
primitve terms. These sentences can be understood as 
descriptions of formal interrelations between the 
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primitive terms. Some of these sentences are chosen 
as axioms: they are accepted as being true within the 
domain under consideration. Such axioms provide 
restrictions on the interpretation of the primitive 
terms, and therefore on the terms defined using these 
primitive terms. For a formal theory, and therefore 
for a formal ontology, the axioms are the central 
component, because only they can give meaning to 
terms used in the theory. 

Results 
The theory of biological symbols and sequences that 
we propose here is intended to be compatible with 
the Sequence Ontology (SO)2. The SO uses two basic 
categories in the characterization of sequences, 
Sequence and Junction. Both can have attributes, i.e., 
properties. For example, a sequence may be a gene or 
a base, a junction an insertion site, and a sequence 
attribute enzymatic. 

Sequences are linear entities and can come in two 
facets. Sequences can either have a start and an end 
point (such as an mRNA sequence), or form circles 
(such as the sequence of mitochondrial DNA). There 
are sequence atoms, which we call Primitive 
biological symbols. Primitive biological symbols 
have no proper sequence parts. 

We introduce an important distinction that is 
currently neglected in the SO. The SO contains as its 
only basic category a sequence region, and employs 
an extensional mereological system on it. However, 
we will show that it is important to distinguish 
between a sequence and the tokens of a sequence. To 
illustrate the difference between a sequence and its 
token, consider all constituents (parts) of the 
sequences ACAC  and CAAC . The first sequence has 
as parts the sequences ACAC , ACA , CAC , AC , 
CA , A  and C . The sequence CAAC  has as parts 
sequences CAAC , CAA , AAC , CA , AA , AC , A  
and C . It is remarkable that, although both 
sequences apparently have the same length, use the 
same primitive symbols (only A  and C ), and every 
primitive symbol occurs exactly twice in each 
sequence, ACAC  has seven sequences as part, while 
CAAC  has eight. This is due to the fact that there is 
only one sequence AC , which occurs in ACAC  
twice. On the other hand, each token of ACAC  and of 
CAAC  will have ten parts.  

The theory we propose here assumes that Sequence, 
Molecule, Junction and Abstract sequence are 
primitive categories. In particular, they are not 
defined, but characterized axiomatically. Sequence 
and Junction refer to representations of sequences 
such as those found in biological databases. 

Sequences have tokens which belong to the Molecule 
category. Molecules are material entities which are 
located in space and time. Instances of Sequence 
represent abstract, information bearing entities which 
are instances of Abstract sequence. 

We make no commitment to a particular top-level 
ontology. The ontology of sequences presented here 
can stand on its own, and axioms are presented for all 
relations used in the theory. However, the foundation 
in a top-level ontology can benefit the 
interoperability between the presented ontology and 
other domain-specific ontologies, because the top-
level ontology can provide a common interface for 
multiple domain ontologies. 

The theory is based on these primitives: the 
categories Seq of biological sequences, Jun of 
junctions, Mol of molecules, ASeq of abstract 
sequences, and the relations sPO (sequence-part-of), 
PO (part-of), aPO (abstract-part-of), binds, :: 
(token-of), Rep (representation), between, end and 
conn. 

The first part consists of axioms that restrict the 
arguments of some of the relations§. Additionally, an 
axiom requiring all sequences to have only molecules 
as tokens is introduced. 

            )()(),( ySeqxSeqyxsPO ∧→  (1) 

             )()(),( yMolxMolyxPO ∧→  (2) 

                ))(::()( yMolxyyxSeq →∀→  (3) 

Based on the relation sPO, we first define sPPO 
(proper sequence part) and the category of primitive 
biological symbols (PBS) as well as the soverlap and 
sdisjoint relations:  

          yxyxsPOyxsPPO =),(),( /∧↔  (4) 

               )),(()()( xysPPOyxSeqxPBS ¬∃∧↔  (5) 

      )),(),((),( yzsPOxzsPOzyxsoverlap ∧∃↔  (6) 

      ),(),( yxsoverlapyxsdisjoint ¬↔  (7) 

The relation sPO is a parthood relation that holds for 
sequences when one sequence contains the other as a 
sequence part. It satisfies reflexivity, transitivity and 
antisymmetry, and therefore forms a partial order.  

                ),(),(),( zxsPOzysPOyxsPO →∧  (8) 

                  ),()( xxsPOxSeq →  (9) 

               yxxysPOyxsPO =),(),( →∧                   (10) 
______________________________________________________________ 

§The remaining relations take defined categories as arguments and 
are introduced later. 
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The relation sPO also satisfies the strong 
supplementation principle, leading to an extensional 
mereology for sequences6:  

      )),(),((),( yzsdisjointxzsPOzyxsPO ∧∃→¬  (11) 

Sequences consist entirely of atoms with respect to 
the relation sPO. The following two axioms require 
that all sequences have atoms as part, and that they 
are constituted of only atoms:  

             )),()(()( xysPOyPBSyxSeq ∧∃→  (12) 

))),()(
),((),(()(

yusPOuPBS
xusPPOuxysPPOyxSeq

→
∧∀∧¬∃→

 (13) 

Next, we restrict the arguments for the between and 
end relation, and introduce the relation in through an 
explicit definition.  

)()()()(),,,( 2121 sSeqpPBSpPBSjJunsppjbetween ∧∧∧→

 (14) 

        )()()(),,( sSeqpPBSjJunspjend ∧∧→  (15) 

               )()(),( 2121 jJunjJunjjconn ∧→  (16) 

 )),,(()),,,((,),( 2121 spjendpsppjbetweenppsjin ∃∨∃↔

 (17) 
                         )()( xJunxSeq ¬→  (18) 

                         )()( xSeqxJun ¬→  (19) 

The following set of axioms pertains to the conn 
relation of connectedness between junctions. It is 
used to represent the order of the sequence through 
an order of junctions.  

                    ),(),( 1221 jjconnjjconn →  (20) 

                       2121 =),( jjjjconn /→  (21) 

),(),(),(),( 21212211 jjconnsssoverlapsjinsjin ¬→¬∧∧

 (22) 
               ),(),(),( 2121 sjinsjinjjconn →∧  (23) 

The axioms presented here are mostly first-order 
axioms and do not suffice to require connectedness 
of sequences. Instead, a second-order axiom is 
required to express the fact that sequences must be 
connected:  

))))()(())(),()((,
))()(()(()),()(((

xQxPxvQvuconnuQvu
xPxQxaaQQsxinxPxPs

→∀→→∧∀
∧→∀∧∃∀∧↔∀∀∀

 (24) 

The remaining axioms pertain to molecules, relate 
sequences to their tokens or the abstract sequences 
they represent. They can be found in9 and in the 
machine implementation we provide with this paper. 

A question that is not answered with these axioms is 
how sequences and junctions relate to categories 
commonly found in the top-level ontology. We 
believe these axioms to be compatible with most 
major top-level ontologies, in particular BFO4, 
DOLCE11 and GFO7. However, the foundation in 
these ontologies varies substantially. 

In BFO, sequences and their junctions should be 
considered subcategories of Generically dependent 
continuant. A category A  is generically dependent 
on the category B  if for every instance of A , some 
instance of B  must exist. In the framework of the 
BFO, sequences are generically dependent on their 
tokens. The difficulty that arises with such a view is 
that not every sequence is the sequence of a 
molecule. Therefore, the tokens must not be 
restricted to molecules which have the structure 
specified by the sequence, but must include textual 
and other digital representations as tokens of 
sequences. Junctions, on the other hand, always 
belong to a sequence and cannot exist without a 
sequence. Therefore, junctions should be considered 
as specifically dependent continuants which are 
dependent on sequences. 

In DOLCE, the category Abstract is a sub-category 
of Particular. The main characteristic of abstract 
entities is that they do not have spatial nor temporal 
qualities, and they are not qualities themselves3. 
Sequences as well as junctions have this property, 
and the axioms we provide can be founded in the 
DOLCE ontology through an addition axioms:  

              )(:)()( xabstractdolcexJunxSeq →∨  (25) 

Integration of our theory in GFO is similar to the 
scenario described in the DOLCE. Alternatively, 
GFO provides the category Symbol structure, to 
which both sequences and junctions can be assigned. 
Symbol structures are higher-order categories in the 
GFO, and the token-of relation ( :: ) falls together 
with the instantiation relation. 

Implementation 
We implemented the axiom system using the SPASS 
first-order theorem prover12. The implementation can 
be found on our project webpage10. Due to the 
restriction of SPASS to first-order logic, we could 
not implement the axiom requiring connectedness of 
sequences. This axioms necessitates the use of 
monadic second-order logics. Furthermore, a 
condition that sequences must be finite could not be 
implemented due to the restrictions of first order 
logic. 
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We employed the SPASS theorem prover on our 
axioms and attempted to prove the proposition 

φφ ¬∧ . If this logical contradiction can be derived 
from the axioms we provide, our axioms would be 
inconsistent. On the other hand, if our axioms are 
consistent, we expect SPASS to never terminate, 
because, in the general case, an automated 
consistency proof for first-order theories is 
impossible1. 

The SPASS theorem prover could not find a proof 
for the contradictory statement φφ ¬∧  in three 
weeks time. However, this is merely an indication for 
consistency. A formal proof of the consistency, e.g., 
through the construction of a model, is subject to 
future work. 

Conclusion 
We provide an axioms system for sequences, 
junctions and molecules in predicate logics. Most of 
the axioms are available in first-order logic, although 
some require the use of second-order logic. The 
axiom system is intended to serve as a foundation of 
the Sequence Ontology's top-level categories 
Sequence and Junction. As a corollary from the 
axiom system, we introduced a class of sequence 
tokens, which we called Molecule. We find that in 
order to understand the category Sequence, it is 
necessary to consider the tokens of a sequence. 

The axiom system we provide is not based on a 
particular top-level ontology, but is compatible with 
multiple top-level ontologies. We discuss how to 
include the theory of sequences in the BFO, DOLCE 
and GFO top-level ontologies. Depending on the top-
level ontology used, sequences and junctions are 
considered different kinds of entities: generically 
dependent continuants in BFO, abstract individuals in 
DOLCE and higher-order categories in GFO. 

This axiom system for sequences is – to the best of 
our knowledge – the first extensive axiom system for 
basic categories of an OBO Foundry ontology. With 
increasing demands for semantic interoperability and 
information flow between OBO Foundry ontologies, 
the importance of developing axiom systems likely 
will increase, because only axioms can provide a 
formal specification of a category's meaning, and 
therefore provide the foundation for automated 
inferences, information flow and integration. The 
new axioms are implemented for the SPASS theorem 
prover and can be downloaded from our website10. 
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