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Abstract  

The remarkable diversity of genes within the pool of prokaryotic genomes belonging to 

the same species or pan-genome is difficult to reconcile with the widely accepted 

paradigm which asserts that periodic selection within bacterial populations would 

regularly purge genomic diversity by clonal replacement. Recent evidence from 

metagenomics indicates that even within a single sample a large diversity of genomes 

can be present for a single species. We have found that much of the differential gene 

content affects regions that are potential phage recognition targets. We therefore 

propose the operation of Constant-Diversity dynamics in which the diversity of 

prokaryotic populations is preserved by phage predation. We provide supporting 

evidence for this model from metagenomics, mathematical analysis and computer 

simulations. Periodic selection and phage predation dynamics are not mutually 

exclusive; we compare their predictions to indicate under which ecological 

circumstances each dynamics could predominate. 
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Explaining patterns of diversity in microbial populations has been one of the great 

conundrums of Microbiology. Historically, the approaches used for studying bacterial 

population genetics have been derived from eukaryotic models. They were based on 

distinguishing alleles and quantifying their presence in populations, as well as their 

degree of linkage, to infer mutation rates and recombination (see for example 1). 

However, with the advent of genomics, it has become apparent that the genomic 

diversity in prokaryotes derives much more from having different sets of genes than by 

allelic differences at the same loci 2-4. This is in contrast to eukaryotic organisms that 

preserve remarkably well the gene content within the same species and even across 

large phylogenetic distances 5. The concept of the pan-genome has been coined to 

describe the increasing diversity of the gene pool that can be ascribed to one bacterial 

species as the number of sequenced strains increases 6.Typically, the comparison of 

any couple of strains might reveal about 10-35% of the genome content (typically in the 

range of 500-1000 genes) that is present in only one of the strains but not in the other 7 

even though the comparison of the core-genome regions may indicate that they are 

highly related lineages belonging to a single species. The implications of these findings 

are still permeating into the scientific community but their importance for our way of 

thinking about prokaryotic microdiversity and evolution is paramount. Is it relevant 

important for the ecology and environmental adaptation of the different lineages or just 

the result of junk DNA accumulation that has yet to be pruned by regular sweeps of 

natural selection? What are the evolutionary forces that preserve this degree of 

diversity within highly related populations? 

The accepted models of bacterial population genetics sustain that in asexual microbial 

populations a low phenotypic diversity is expected because of purges involving fitter 

mutants, called periodic selection events 8. This idea originated from classical 

laboratory experiments of mutational equilibrium in which populations are periodically 

replaced by new types 9, 10; it was later reinforced by epidemiological studies of 

pathogenic isolates in which a rise and fall of clonal lineages do occur 11, 12.This 

process would purge diversity from the population, at least among the cells competing 

for the same resources. The same kind of dynamics has also been claimed to be 

behind the genetic coherence of natural prokaryotic taxonomic units or “ecotypes” 13, 14. 

Ecotypes are defined as “populations that are genetically cohesive and ecologically 

distinct”. Cohesion is mostly ascribed to “periodic selection events that recurrently 

purge each ecotype of its genetic diversity” 15, 16. Divergence can become permanent 

when a mutation (or recombination) event places an organism into a new ecological 

niche and founds a new ecotype 13. Periodic selection will therefore keep the 
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populations within ecotypes relatively homogeneous and divergent from other 

ecotypes. In the Stable Ecotype Model an ecotype is recurrently purged of its diversity 

by these selection events, whereas divergence among ecotypes is not 16 becoming 

thus “the fundamental units of ecology and evolution”.  

Presently, the existence of natural diversity units of bacteria or ecotypes is widely 

accepted. However the origin of such units by regular periodic selection events seems 

difficult to reconcile with the wide gene content variability found among different strains 

of bacteria with otherwise high sequence conservation among shared genes (i.e. the 

pan-genome). We know that prokaryotes can easily acquire foreign DNA, and phages 

and plasmids can be easily transferred and even inserted into the main chromosome. 

In fact, some (or most) periodic selection events could be due to the acquisition of 

novel genes rather than mutation. However, the neutral accumulation of a large 

number of genes within a clone before a clonal sweep purges it seems unlikely, and 

that phenomenon might have alternative explanations.  

We propose that the main factor, which has been largely overlooked in many previous 

models, is the role played by a crucial ecological factor: the presence of 

bacteriophages. In nature, prokaryotic cells have to deal with a strong predation 

pressure mainly viral in origin and therefore their fitness is measured not only by 

adaptation to the physical niche but also by adaptation to the biotic environment 17. 

Protozoan grazing might also contribute 18 but it is less pervasive than viral attack 19. 

In almost all ecosystems that have been investigated, there are ~10 phages for every 

microbial cell, making them the most abundant biological entities on the planet 20. By 

killing microbes, phage greatly influence global biogeochemical cycles and because 

phage are species-specific they have been predicted to help maintain microbial species 

diversity 21, 22. In fact, phages could play a fundamental role as guarantors of the 

microdiversity required to exploit ecological resources efficiently. We propose a new 

type of dynamics to explain bacterial microdiversity which incorporates phage 

predation. We begin by systematically describing the content of variable genomic 

regions among closely related bacterial strains with the aim of identifying the force that 

drives microdiversity. We then introduce a Constant-Diversity (C-D) dynamics to 

explain the generation and maintenance of microbial diversity in natural ecosystems. 

We compare its predictions from those of the Periodic-Selection (P-S) and evaluate the 

evidence based on mathematical modeling, metagenomic data and microbial ecology 

studies. Finally, we reconcile the C-D and P-S dynamics on the basis of the ecological 

features of different environments that would favor either one. 
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Single species metagenomics 

Metagenomic approaches have demonstrated the value of comparing genomes of 

individual strains with the metagenomes from environments in which these species or 

ecotypes are present. Such comparisons have shown that certain genomic regions are 

underrepresented within any given metagenome and are therefore predicted to be 

unique to individual isolates 23-29. The metagenome represents all lineages within one 

sample and, if it has enough coverage, it should contain representatives from the 

predominant ecotypes. This virtual experiment has actually been carried out a number 

of times 24-30, showing regions that recruit poorly in the metagenome. These 

underecruiting genomic regions or Metagenomic Islands (MGIs) are therefore predicted 

to be unique to individual cell types. It is important to note that these MGIs must not be 

confounded with classical genomic islands, i.e. regions of unusual DNA composition 

that are generally indentified with lateral gene transfer, and have typically the hallmarks 

of mobile DNA elements or recombinatorial hot-spots. Nevertheless, some MGIs are 

obviously of foreign nature and show extraneous compositional features. One ideal 

system for this kind of comparison is provided by extreme environments that are 

heavily dominated by few microbes (very low diversity). For example, a saturated brine 

that is largely dominated by the halophilic archaeon Haloquadratum walsbyi 24. When 

the brine metagenome was compared to an already available genome of the strain 

isolated from the same pond many genes were either extremely divergent, highly 

rearranged or not found in the metagenome 27. They included large numbers of genes 

encoding the cell surface components, which in the case of Haloquadratum are 

glycoproteins, as well as glycosilation of surface components (Figure 1) 27. Many genes 

in the variable pool were the sensors of two component regulators and substrate 

transporters. These two features were interpreted to indicate differential adaptation to 

phage sensitivity and organic carbon degradation. A very similar pattern was found 

when again a nearly monospecific metagenome dominated by Candidatus 

Accumulibacter phosphatis was sequenced in sludges from enhanced biological 

phosphorus removal reactors 30. One could argue that these are special cases, since a 

single species has to perform many metabolic roles that would be shared among many 

in high diversity environments. However, a strikingly similar pattern of inferred functions 

is found even within metagenomic islands from high diversity environments like the 

open ocean (Figure 1).  

We have systematically studied MGIs larger than 10 kb in all sequenced marine 

bacterial species compared to a marine metagenome. The content of these MGIs was 

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

09
.3

48
9.

1 
: P

os
te

d 
28

 J
ul

 2
00

9



6 

 

strongly biased with respect to specific functional categories (Supplementary Figure 2 

and Supplementary Table 1). It is remarkable that all studied species contain within 

these MGIs genes that encode products that are extracellularly exposed (Figure 1). 

Paramount among them we find the variable O-chain of the LPS, which has long been 

known to be highly variable and a choice target for phage receptors (see, for example, 
31). Serotyping and phage typing are usually linked to O antigen changes determined 

by this gene cluster 32. In pathogens this variability has been often explained as host-

immunity evasion strategies, but in free-living microbes other explanations are 

required. Next by frequency are exo-polysaccharide biosynthetic clusters and/or sugar 

decoration of extracellular structures. Pilli and flagellar components (particularly their 

extracellular components) are also found. Recently, 33 an island was found containing 

an alternative set of external flagellar proteins. MGIs also frequently harbour giant 

proteins, whose function is still unclear, but that are probably extracellular 34 and 

porins. All those genes are potential phage recognition sites suggesting a potential role 

in phage avoidance. When the functional classification of genes encoded within MGIs 

is compared to the proportions found in the genome, the genes coding for potential 

phage recognition sites are heavily over-represented, followed by genes involved in 

nutrient transport and environmental sensing (Supplementary Figure 1). Thus it can be 

concluded that the overall phage-interacting genes tend to be non-shared and when 

they are shared, they tend to be more highly divergent. Phages depend heavily on the 

proper selection of the target cell and for that they rely on a prominent structure for 

their target recognition 35, 36. It is important to note that the high divergence in potential 

phage-recognition sites is found even in extremely compact genomes like Candidatus 

Pelagibacter ubique (Figure 1), which has the smallest sequenced genome among 

marine prokaryotes. Despite its compact genome, the islands in the three available 

strains of Pelagibacter contain surface features (Figure 1a) and transport and sensing 

genes. Thus, the presence of potential phage targets in the strain-specific areas of the 

genome is a pervasive phenomenon in the open ocean, suggesting that this feature 

may apply to other free-living prokaryotic microbes subject to phage predation 

pressure. The second line of phage defense is intracellular. Our MGI data has 

numerous examples of these types of signatures such as restriction-modification 

systems and the clusters of regularly interspaced palindromic repeats (CRISPR) that 

are involved in phage interference 37-39. However, they are probably involved in 

infection efficiency providing a fine-tuning that would reinforce the primary control 

exerted by the receptor diversity.  

Constant-Diversity dynamics 
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The C-D dynamics is intended to explain microbial diversity in ecosystems where 

bacterial populations can interact with each other, i.e. the populations must compete 

with each other and phage particles have similar chances to infect any cell within the 

community. Let’s imagine an idealized aquatic habitat where organic nutrients are 

dissolved and in which a single prokaryotic species or ecotype is present. A large 

diversity of phage-sensitivity-types is required to avoid catastrophic lysis of the 

population. We will call these phage-receptor-types R1, R2…Rn (R stands for phage 

receptors), each recognized by a phage lineage, denoted as P1, P2…Pn. The phage-

types differ at the level of gene clusters that control the synthesis of complex surface 

components such as the O-chain or the pilli, which are extracellularly exposed and act 

as targets for phage recognition, analogous to a lock and key system. P-S occurs when 

a new adaptive mutant (or recombinant) arises within the ecotype and natural selection 

causes the mutant and its nearly clonal descendants to replace all competing variants 

within the ecotype 15.  However, we predict that the increase in number of that fitter 

lineage would alter the predator-pray equilibrium and phages targeting the receptor 

coded within this lineage would also increase (Figure 2a). This would select against the 

invasive clone that would eventually be replaced by the original “normal fitness” 

lineages. This way a constant high-diversity of lineages would be maintained steadily. 

Interestingly, the role played by phage predation modifies the classical ‘survival of the 

fittest’ axiom such that metabolically superior microorganisms which are better adapted 

to a physical environment are selected against by the biological pressure imposed by 

density-dependent phage predation. This “kill-the-winner” dynamics have already been 

proposed for different species of marine bacteria 21, 22 but here we propose that this 

process is responsible for maintaining closely-related lineages diversity. In a C-D 

situation, no dominant lineage is found within a population, and phage dynamics 

maintain many concurrent cell types that are selected against ecological success. This 

success will be influenced by factors such as growth rate or the efficient use of different 

substrates and therefore a corollary is that throughout the history of these clonal 

lineages each will acquire different, complementary capabilities for niche exploitation. 

As a consequence, a more efficient exploitation of the resources by the community is 

expected and a better ecosystem functioning would be achieved. For example, one 

prokaryotic clone cannot contain even a fraction of the transporters required to 

internalize the chemical diversity of organic compounds contained in a single 

eukaryotic cell. However, an ensemble of lineages carrying different sets of 

transporters could exploit every single one of them. A relationship between biodiversity 

and ecosystem efficiency has been demonstrated in plant ecosystems 40 and we 

predict that similar principles would apply for biogeochemical cycles controlled by 
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microbial communities, in such a way that ecosystem functioning would be more 

efficient and stable under high-diversity situations than under periodic clonal sweeps, 

as the latter would make nutrient and mineral recycling fluctuate (Figure 2b).  

Computer simulations of bacterial strain replacement in the presence and absence of 

phages show that viral predation affects biodiversity (Figure 3). In the absence of 

phages, microbial density for each lineage is dependent on the availability of the 

substrates and the efficiency of nutrient utilization. Thus, the lineage that uses the most 

abundant substrate at a given time is the most abundant (Figure 3c). If an 

environmental change (e.g. a variation on the concentration of nutrients) or a mutation 

(e.g. a change in nutrient utilization efficiency) occurs, the fitter lineage will be 

favoured, generating a clonal sweep. As a consequence, the diversity of the ecotype 

will be low (Figure 3b), as the better adapted strain dominates over other strains with 

smaller representation in the consortium. In the presence of phages, however, a richer 

lineage that uses the most abundant nutrient and/or that is able to metabolize more 

than one substrate will be preferentially attacked by phages, because phage-host 

interactions are density-dependent 21. This way the fitter bacterial strains are selected 

against, thus the density of the different bacterial lineages fluctuates around stable 

levels (Figure 3d). Therefore, bacterial diversity remains high, with all lineages present 

at similar values regardless of the availability of the substrates they utilize (Figure 3c). 

The immediate consequence of this fine-tuning to different substrates would be the 

expansion of the gene pool within the ecotype. Thus, contrary to what would be 

expected by clonal replacements, C-D dynamics would predict a large pan-genome 

within ecotypes (Box 1).  

Another interesting feature shown by these simplified simulations (Figure 3d) relates to 

ecosystem functioning. In the presence of phage predation pressure and environmental 

changes, the lineage feeding on the most abundant substrate (or utilizing efficiently 

more than one substrate) undergoes substantial fluctuations in density. Lineages 

utilizing the least abundant substrates, on the other hand, show constant densities 

through time, undergoing only slight variations. Because the amount of density 

fluctuations is directly related to the probability of extinction, selection will favour less fit 

cells utilizing single, low-concentration substrates. This paradoxical selection against 

the fitter cells will give rise to lineages feeding on all accessible substrates, regardless 

of their availability. As a consequence, the ecosystem is expected to be more efficient. 

This high efficiency in substrate utilization at the ecosystem level will be sustained by 

the use of all available metabolites and minerals and by the presence of a high 

diversity, which is known to promote efficient ecosystem functioning 40, 41. Note that a 
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high bacterial diversity cannot be the consequence of the availability of different 

resources alone: it is only in the presence of phages when all cell types reach a similar 

average density regardless of the substrate they utilize; in the absence of phage 

predation, the exploitation of less favoured niches is selected against.  

Predictions from Constant-Diversity dynamics 

Despite several refinements all the Ecotype based models rely strongly on the 

relevance of P-S based on competition for the resources among individual lineages 

(see for example 15). C-D on the other hand predicts that P-S of an individual lineage 

with larger capabilities to exploit resources would be prevented by phages, and a better 

exploitation of resources is achieved by many different lineages sharing the 

environment. Both views make quite different predictions about microbial biodiversity 

and population dynamics (Table 1). Under P-S, a dominant cell type would be generally 

found, and this dominant lineage would change periodically. Under C-D dynamics, on 

the other hand, phages would keep in check dominant lineages and therefore many 

coexisting cell types would be found at any time. In addition, the former predicts that 

genomic variability among ecotypes is driven by niche exploitation and the latter that it 

is driven by phage avoidance (Table 1).  

What is the evidence for each of these models? The coexistence of multiple closely 

related strains is a commonly observed phenomenon in microbial communities, and is 

apparent from studies of cultured isolates 42, marker gene surveys 43, and 

metagenomic data 27, 44 (the ecological diversity of close relatives has been discussed 

in 15, 45). In addition, mathematical modelling of bacterial dynamics in the presence of 

phage indicates that a dramatically high number of strains is expected, as observed in 

metagenomic data (Box 2). Although a high number of strains has indeed been 

observed in free-living ecosystems, the maintenance of this high diversity through time 

remains to be explained. The evidence for phage-bacterial antagonistic dynamics first 

came from mathematical modelling as well as experimental studies 21, 22, 46, 47. Recently, 

excellent work on marine samples has shown that phages do influence their bacterial 

hosts in a density-dependent manner, mainly infecting a reduced number of phylotypes 

at any one time 48, as predicted by kill-the-winner dynamics. Similar results have been 

found in the horse gut when studying the relationship between coliphages and E. coli 

strains 49. In addition, detailed studies on marine flavobacteria have shown the degree 

of phage susceptibility in different co-inhabiting cell types, drawing a complex picture of 

phage-cell interactions 50. Recent data on the temporal variation in phage and bacterial 

diversity also show oscillations that are consistent with a constant control of abundant 

genotypes by their infecting phages (Rodríguez-Brito et al., under review): the data 
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show that dominant genotypes are not found through time and that a dynamic 

equilibrium of functionally-redundant microbial and viral strains continuously replaces 

each other in a Kill-the-Winner fashion, thus maintaining a stable metabolic potential 

and taxonomical signal. In terms of resource use, there is no experimental evidence 

showing that some bacterial cells within an ecotype are more generalist or have 

superior fitness. Furthermore, mathematical modelling indicates that evolution of 

microbial systems does not lead to decreased biodiversity by the expansion of a variant 

that is ecologically superior 51. On the contrary, it has been shown that some co-

existing strains differentially specialize in micro-niches thanks to their different gene 

content, for example by utilizing different sets of organic compounds heterotrophically 
27 or by exploiting different types of particulate matter 33. This supports the notion that 

selection favours resource diversification rather than a dominant genotype capable of 

using multiple substrates. It would nevertheless be interesting to experimentally 

measure the individual fitness of different bacterial strains isolated from nature in order 

to determine whether fitter variants are selected against in environments under phage 

pressure. 

Other predictions are more difficult to evaluate with the available data. Ecosystem 

functioning, for example, has been thoroughly studied in terrestrial ecosystems, where 

a high biodiversity has been related to resource utilization efficiency 40, 41. This 

information is still limited in microbial ecosystems but they also relate microbial 

diversity to ecosystem efficiency and stability 52. It would be interesting to quantify the 

efficiency and stability of ecosystem functioning in natural conditions and in the 

laboratory where both bacterial diversity and the presence of phages can be 

manipulated in microcosm experiments 53, 54. We would predict that the presence of 

bacteriophages would promote resource specialization in their bacterial hosts, 

regardless of the respective availability of substrates, facilitating efficient nutrient 

recycling and system stability.  

The C-D dynamics counter-intuitively predicts that the strain of higher fitness would be 

selected against and that phage predation would select for cell types of lower fitness 

that utilize any substrate regardless of its availability (Figure 3). By keeping a low 

profile in the population, the cells would be part of a selection unit formed by bacterial 

strains of sub-optimal but nearly-equal fitness where predation risk is equally shared 

among the strains. Thus, the fitness concept under P-S dynamics is dependent on the 

efficiency with which a resource is used but the evolutionary success of a strain under 

C-D dynamics is dependent on the fitness of the other strains co-inhabiting the 
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environment and is therefore a relative concept. This is analogous to the outcome of 

game theory models for optimal market strategies: there is no optimal economic 

strategy per se; instead, the best market tactic depends on what the competitors are 

doing. This thinking has been successfully applied to evolutionary theory, giving rise to 

models that conclude that once an optimal proportion of strategies is achieved in a 

population, those proportions are in equilibrium over time 55. We believe these 

Evolutionary Stable Strategies (ESS) best define the situation in bacterial populations 

in the presence of phages, because under those conditions the fitness of bacteria 

would be lowered to an equilibrium point in which demographic success would be 

approximately equal among cell types. Any strain increasing its resource utilization 

would be quickly eliminated by phage predation and an ESS would necessarily imply 

adjusting growth rates to those of the rest of the population, unless the cell is immune 

to phage attack for some reason. The idea does not go against natural selection but it 

does require that bacterial “fitness” includes ecological aspects such as predation 

avoidance 17.  

Microbial Evolution under phage pressure 

Under which circumstances should we thus expect P-S or C-D to predominate? The 

influence of phage predation on bacterial diversity requires that bacterial populations 

interact with each other; therefore host-associated niches can act as physical barriers 

preventing direct cell competition and phage dispersal. Thus, pathogens are not 

expected to follow C-D dynamics unless they become very numerous and persist within 

a host for a long time. C-D dynamics are also not expected in physically-constrained 

microbial communities such as biofilms, where populations cannot interact with each 

other nor invade other niches, apart from constraining phage attack and dispersal. By 

definition, C-D dynamics require the presence of phages and therefore are expected to 

be less common in specific environments with limited viral presence or efficiency. 

Accordingly, large MGIs are not observed in biofilms as the work carried out in the acid 

mine drainage system shows 56. Thus, although the presence of C-D patterns mediated 

by phage predation is pervasive in natural environments inhabited by competing, free-

living cells, the two population dynamics are not mutually exclusive and P-S selection is 

still expected to occur in circumstances of low predation pressure (e.g. intracellular 

environments), physically-constrained cells (e.g. biofilms) or physically isolated 

environments subject to founder effects (e.g. animal hosts). 

The C-D dynamics presented here may shed some light on different aspects of 

microbial evolution. One of them is the function of giant proteins, which are over-
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represented in metagenomic islands and that could therefore be involved in host-phage 

interactions. In addition, if predation pressure is so intense, we would predict that 

genes providing phage resistance would be among the fastest-evolving in free-living 

species in order to counteract the fast phage adaptability 57, giving rise to an 

evolutionary arms-race 35 analogous to the one between the immune system and 

surface antigens in bacterial pathogens. Another aspect that should be explored is the 

potential role of phages in defining the limits of bacterial populations or ecotypes. In 

that sense, phage infection may provide a link between the evolutionary process of 

generating diversity and the mechanistic explanation for it, which indicates that lack of 

recombination is responsible for population genetic divergence 58. The phages 

themselves could help homogenization of sequences by recombination, by providing a 

constant flux of homologous sequences among the population that is co-infected by the 

same phage type. With the sequencing of viral metagenomes 59, our understanding of 

the diversity and specificity of phages will be improved, and mathematical modelling of 

the viral-bacterial interactions should become possible under realistic assumptions. In 

addition, experimental evolution studies in presence and absence of phages 17 and 

further genomic characterization of natural environments with different phage pressure 

should confirm whether the P-S and C-D dynamics complement each other and may 

explain evolution of intraspecific microbial diversity under different ecological 

circumstances.  
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FIGURE LEGENDS 

Figure 1. Metagenomic Islands (MGIs) identified by comparison with available 

metagenomes. Representative species were selected that recruited at >90% DNA 

sequence identity over >80% of the genome. (a) Genome recruitment of the marine 

alpha-proteobacterium Candidatus Pelagibacter ubique HTCC1062, HTCC1002 and 

HTCC7211 when compared with the Global Ocean Survey database (GOS, Phase I 60 

and Phase II). Individual sequences were aligned to the sequenced strain genome and 

the alignment-sequence conservation visualized in the form of percent identity plot. 

Regions larger than 10 Kbs with unusually low representation in the metagenome 

(MGIs) are marked with a brief description of their main features. (b) Genome 

recruitment of Prochlorococcus marinus MED4, P. marinus MIT9301, Burkholderia sp. 

383 chr.1, Shewanella sp. MR-4, Aeromonas hydrophila subs. hydrophila ATCC 7966, 

and Synechococcus sp. WH812 when compared with the GOS dabatase. The 

recruitment of Salinibacter ruber DSM 13855 and Haloquadratum walsbyi DSM 16790 

was performed with solar saltern metagenomes 24, 61.  MGIs related to extracellular 

components are marked following the colour pattern indicated in panel (a). Recruitment 

plots were collected from http://gos.jcvi.org/openAccess/genomes.html with the 

exception of S. ruber DSM 13855 and H. walsbyi DSM 16790. A full description of the 

MGIs contents from all species that recruited over 80% can be found at Supplementary 

Table 1. 

 

Figure 2. Population dynamics under (a) Constant-Diversity and (b) Periodic-

Selection. Several sympatric clones with diverse capabilities to exploit environmental 

resources coexist within an ecotype in an aquatic habitat simultaneously. The different 

resources are represented by geometric symbols, indicating a different niche. These 

lineages differ in the set of receptors to phages, indicated by R#. Any strain from one 

specific lineage will recruit very poorly for the genes responsible for the R#, which 

would be clustered in metagenomic islands. Many genes throughout the genome and 

required for the exploitation of the niche are linked to the corresponding R# and 

hitchhike with it. At some point in time one lineage will gain in fitness and replace other 

lineages. This could be achieved by a mutation (including a Horizontal Gene Transfer 

event, indicated as HGT) or by an environmental change favouring one particular 

genotype. Under Constant-Diversity (a) this situation is only transient because an 

increase in the frequency of cells carrying the specific phage receptor would unsettle 

the predator/pray equilibrium and select against the invasive clone that would 
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eventually be replaced by the original “normal fitness” lineages. Kill-the-winner 

dynamics would therefore give rise to a constant, high diversity of lineages that would 

be maintained steadily. By these equilibrium a more efficient exploitation of the 

resources by the community is predicted and a better ecosystem functioning achieved. 

Under Periodic-Selection dynamics (b), lineages with higher fitness would expand and 

replace other cell types, giving rise to a clonal sweep. The process would be repeated 

after advantagous mutations or when environmental changes increase the fitness of a 

given strain, decreasing diversity. Ecosystem efficiency is also expected to be reduced, 

as the lineages exploiting substrates of low availability would severely decline.  

 

Figure 3. Cell density and microbial diversity under Constant-Diversity and 

Ecotype dynamics. The graphs show the outcome of computer simulations from a 

simplified model of an ecosystem inhabited by six bacterial lineages, each of them 

utilizing optimally one specific substrate, whose availability varies through time (a). In 

the absence of phages (c), microbial density is directly related to the availability of the 

substrates and the efficiency of nutrient utilization. After an environmental change (e.g. 

a variation in nutrient concentration) or a mutation (e.g. a gene transfer improving 

nutrient utilization efficiency), the fitter lineage is favoured, generating a clonal sweep. 

As a consequence, the diversity of the system (b) measured by the Shannon Index in 

the figure, drops. In the presence of bacteriophages, the lineage of higher metabolic 

fitness is preferentially attacked by viruses, assuming density-dependent phage-host 

interactions. This kill-the-winner dynamics selects against the fitter bacterial strains, so 

the density of the different bacterial lineages fluctuates slightly (note the differences in 

scale) around stable levels (d) and bacterial diversity remains high (d), with all lineages 

present at similar values regardless of substrate availability. The model is a coupled set 

of differential equations and is composed by six pairs of equations which are repeated 

for each of the six substrates. There is no direct interaction between different strains of 

viruses, and the interaction between strains of microbes comes in the form of a 

common carrying capacity for the whole system. We have considered a simplified case 

in which one phage infects one cell type but it must be born in mind that several 

experiments indicate that host-virus interactions in natural systems are more complex, 

with each phage infecting different bacterial strains with different efficiencies 50, 62 (in 

other words, the binding probability between bacteriophages and cells is graded 63). 

For the sake of simplicity, the decay rate was assumed to be the same for all the 

viruses. The same was true for the mass-action constant as well as the burst size. This 
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model was programmed in matlab (The MathWorks, Natick, MA, USA) and the code is 

available upon request. 

 

Supplementary Figures 

Figure S1. Relative frequencies of different functional categories in Metagenomic 

Islands (MGIs) compared to their frequency in the genome. Graphs show the 

percentage distribution in each COG category for Candidatus Pelagibacter ubique 

(data from the genomes of strains HTCC1062, HTCC1002 and HTCC7211),  

Prochlorococcus marinus (genomes of strains P. marinus MED34, P. marinus 

MIT9301, P. marinus AS9601 and P. marinus MIT9312) and Shewanella (genomes of 

strains Shewanella sp. MR4 and Shewanella sp. ANA3). The genomic frequencies 

were calculated without taking into account the COGs found in MGIs.  

Figure S2. Relative frequencies of different functional categories in Metagenomic 

Islands. Graphs show the percentage distribution in each COGs category for 

Candidatus Pelagibacter ubique (data from the genomes of strains HTCC1062, 

HTCC1002 and HTCC7211), Prochlorococcus marinus (genomes of strains P. marinus 

MED34, P. marinus MIT9301, P. marinus AS9601 and P. marinus MIT9312), 

Shewanella (genomes of strains Shewanella sp. MR4 and Shewanella sp. ANA3), 

Synechococcus sp. WH8102, Burkholderia sp.383, Aeromonas hydrophila subs. 

hydrophila ATCC7966, Salinibacter ruber DSM 13855 and Haloquadratum walsbyi 

DSM 16790. A. Detailed COG distribution of the categories: Carbohydrate transport 

and metabolism, Amino acid transport and metabolism and Inorganic ion transport and 

metabolism in Candidatus Pelabibacter ubique. B. Detailed COG distribution of 

categories: Carbohydrate transport and metabolism, Amino acid transport and 

metabolism and Inorganic ion transport and metabolism in Prochlorococcus marinus. 

C. Detailed COG distribution of the categories: Signal transduction mechanism, 

Carbohydrate transport and metabolism, Amino acid transport and metabolism and 

Inorganic ion transport and metabolism in Shewanella. 
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Box 1. Constant-Diversity and the Pan-genome 

The nascent field of population genomics has shown that the gene pool of prokaryotic 

species can be extremely large. Different lineages of bacteria contain different 

genomes (similarly to the way the different tissues have different proteomes in a 

multicellular eukaryote) increasing enormously the metabolic and ecological 

capabilities of one bacterial species. As a consequence the concept of bacterial 

species has dramatically changed during the last years 7, 64 and bacterial species are 

more appropriately described nowadays by their “pan-genome”, which includes a core-

genome containing genes present in all strains and an accessory-genome consisting of 

partially shared and strain-specific genes. If a bacterial species is more than a 

semantic term and has in fact a biological meaning, the core (or “backbone”) genome is 

the essence of this phylogenetic unit and is thought to be representative at various 

taxonomic levels 65. The accessory (or adaptive) genome, on the other hand, includes 

key genes to survive in a specific environment, it is commonly linked to virulence, 

capsular serotype, adaptation and antibiotic resistance and might reflect the organism’s 

predominant lifestyle 66. Ecotypes have been claimed to have the quintessential 

properties of species i.e. they are ecologically distinct groups belonging to genetically 

cohesive and irreversible separate evolutionary lineages 15. One key question is 

weather the pan-genome reflects the diversity of ecotypes within one species or, if 

actually ecotypes are the real bacterial natural species and a large pan-genome can be 

found again when sequencing different lineages within a single ecotype.  

One of the arguments that is often used to explain ecotype genetic cohesiveness is the 

Periodic-Selection (P-S) dynamics, the genome-wide purging of diversity that occurs 

when a new adaptive mutant (or recombinant) arises within nearly asexual bacterial 

populations and causes the mutant and its nearly clonal descendants to replace all 

competing variants within the ecotype. If P-S occurs then the pan-genome of one 

ecotype would be very narrow. Constant-Diversity dynamics on the other hand would 

maintain the potential for a relatively large pan-genome within one ecotype by 

preventing any specific lineage from achieving a clonal diversity sweep. Although 

phage interacting genes are the part of the accessory-genome that is directly involved 

in C-D other adaptive genes hitch-hike with them allowing different lineages to have 

specialities within a single ecotype or genetically cohesive unit (the cohesiveness is 

clearly apparent in the core-genome). Although individual ecotypes can not be 

experimentally separated, simple environments in which ecological units are well 

defined can serve as a starting point to test whether a pan-genome structure exists 

within ecotypes. One such environment is the saturated brine dominated by a single 

prokaryotic species where most of the biomass providing nutrients comes from the 

degradation of the microalgae Dunaliella (see Box Figure). In this extremely halophilic, 

simple ecosystem, the bacterial cells that degrade Dunaliella form a coherent and 

distinct ecological unit that must approximate an ecotype. When the metagenome of 5 

litres of water from this single-species ecosystem was sequenced, a surprisingly large 
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gene pool was found and the inferred pan-genome was twice the size of the 

sequenced isolate 24. A large portion of this pan-genome structure was due to genes 

related to environmental sensing and nutrient transport 27 which is consistent with the 

idea that a genomically-diverse ecotype is needed to efficiently degrade all the organic 

matter, as the number of required metabolic and transport genes far exceeds those 

that can be squeezed within a single genome. Thus, single-species metagenomics 

support that a high diversity (or a large pan-genome) exists even within very limited 

spatial and temporal frames and are clearly in favour of C-D over P-S dynamics taking 

place, at least in homogeneous aquatic environments. Counter-intuitively C-D should 

enhance resource exploitation by maintaining a large genetic reservoir –the pan-

genome- that can be used by the population. This has been recently shown in microbial 

microcosm experiments, as the evenness in community composition was shown to be 

a key factor in preserving the functional stability of an ecosystem 52. 

Figure Box 1. Rodriguez-Valera et al.

CO2

H2O

+

Haloquadratum 

walsbyi

Solar saltern crystalizer biomass turnover

transporterH. walsbyi cell

Periodic Selection (P-S) Constant Diversity (C-D)

Dunaliella 

salina

organic 

compounds
(3132494 pb)

 

BOX 2. How much richness can lytic viruses produce in a prokaryote community 

The community of heterotrophic prokaryotes in the photic zone of pelagic environments 

is relatively stable, usually in the range 3 105 – 3 106 cells ml-1. One model suggested 

for the mechanisms controlling richness within this community is that it is regulated by 
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lytic viruses 21. Since this is a density-dependent loss mechanism, it will act selectively 

on host populations reaching a sufficient size. By preventing these from sequestering 

all the limiting resources and filling up the total community size of 3 105 – 3 106 cells ml-

1, viral lysis will leave room for other, potentially less competitive, host population to fill 

in the remaining part of the prokaryote community. The richness which such a 

mechanism can produce is the ratio between the size of the total community and the 

average size of the host populations. Assuming a steady state, the balance between 

production and loss of viruses of type i is given by the equation: 

iiiiii
VVBm δβ =− )( 1  Eqn. 1, 

Where mi, βi, and δi are the burst size, the effective adsorption constant, and the 

specific decay rate, respectively, for the host-virus pair Bi ,Vi. The -1 comes from one 

virus being lost at infection. Eliminating Vi and solving for Bi gives the size of the steady 

state host population Bi: 

ii

i

i

m
B

β
δ
)( 1−

=  Eqn. 2 

The highest richness allowable corresponds to the smallest possible values for all Bi, 

and thus to low δi , but high mi  and βi – values. 

A classical determination of the value for the adsorption constant β is given in 67 with a 

value of 0.24 10-8 ml min-1 virus-1 obtained both experimentally and theoretically from 

diffusion estimates. This is expected to be a high value since e.g. defense mechanisms 

in the host could lower the effective value relative to the collision frequency based on 

diffusion theory. 

Combining this with a, for natural systems, relatively high burst size of 100 viruses 

released per lysis and a relatively slow decay rate of 1 week-1, Eqn. 2 gives ca 400 

cells ml-1  as a low estimate for the host abundance that can sustain a population of 

free lytic viruses. For a community size of 106 ml-1, viral lysis can therefore be argued 

to allow a richness of around 2500 different hosts.  

Note that these “hosts” do not need to be different “species”. A host in one group able 

to construct a defense against one virus through e.g. incorporating a part of the viral 

genome in its CRISPR system 38 would potentially form a new host group without any 

other change in its genetic composition. Host groups in the sense used in this model 

could thus well be indistinguishable by methods such as e.g. 16S rRNA sequencing. 
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Table 1. Predictions from the Periodic-Selection and Constant-Diversity dynamics  

 

Periodic Selection  Constant-Diversity  

Low diversity of cell types, with a dominant 
ecotype 

Many concurrent cell types 

Abrupt changes in dominant cell type Stable, high diversity of cell types 

Dominant lineage is more fit in exploiting 
resources 

Each different lineage is suboptimal in 
exploiting resources 

Dominant lineage is more generalist  Resource diversification among strains 

Ecosystem expected to be less efficient due 
to lack of resource specialization 

Ecosystem expected to be more efficient due 
to resources use shared by many lineages 

Dominant lineage changes through time Different lineages are stable 

Absent/limited phage pressure High phage pressure 

Variability among lineages is small and mainly 
neutral  

Variability among lineages is large, adaptive 
and related to different sensitivity to phage 
predation and resource exploitation 

The ecotype has a restricted pan-genome  The ecotype has a large pan-genome  

Physically constrained populations (i.e. hosts, 
biofilms) 

Interacting populations (i.e. free-living) 

Species coherence given by regular clonal 
sweeps 

Species coherence given by phage specificity 

Competition driven by resource use efficiency Competition driven by Evolutionary Stable 
Strategy 
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GLOSSARY 
 

 
Metagenome: The total genetic repertoire of a given environment. It is formed by the 

pool of genes belonging to all the strains from each prokaryotic species inhabiting it. 

 

CRISPR: Clustered, Regularly Interspaced Short Palindromic Repeats. Widespread 

genetic system in Bacteria and Archaea that consists of multiple copies of palindromic 

repeats. Flanked by the repeats there are short spacers of phage origin that provides 

acquired resistance against viral infection. 

 

Kill-the-winner: Population dynamics of phage-bacteria interactions which postulates 

that an increase in a host population (winner) is followed by an increase in its 

corresponding phage predator that will increase its killing rate. It is analogous to 

classical Lotka-Volterra dynamics to explain predator-prey population dynamics. 

 

MetaGenomic Island (MGI): Genomic regions found in many prokaryotic genomes 

that show absent or very limited representation in the DNA pool of the environment 

they inhabit. They can be identified because the genes within a MGI are under-

represented in the metagenome. Metagenomically defined islands must not be 

confounded with islands of unusual DNA composition that are generally explained as 

lateral gene transfer events. Nevertheless, some metagenomic islands are obviously of 

foreign nature and show extraneous compositional features. 

 

Pan-genome: The total gene pool of a prokaryotic taxon. It is formed by the addition of 

all genes found in the different strains from a given species (species pan-genome) or 

from an ecologically distinct population (ecotype pan-genome).  
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Figure 3. Rodriguez-Valera et al.
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