
Automated ocular artifact removal: 
comparing regression and 
component-based methods

Author(s): A.Schlögl(1), A. Ziehe(2), K.-R. Müller(3) 

Affiliation: 
(1) Graz University of Technology, Graz, Austria
(2) Fraunhofer FIRST, Berlin, Germany
(3) TU Berlin, Computer Science, Berlin Germany. 

Address:  
Institute for Human-Computer Interfaces, Graz University of Technology, 
Krenngasse 37/EG, A-8010 Graz, Austria
e-mail: alois.schloegl@tugraz.at

Abstract
Objective: The aim is to compare various fully automated methods for reducing ocular artifacts 
from EEG recordings.
Methods: Seven  automated  methods  including  regression,  six  component-based  methods  for 
reducing ocular artifacts have been applied to 36 data sets from two different labs. The influence of 
various noise sources is analyzed and the ratio between corrected and uncorrected EEG spectra, has 
been used to quantify the distortion. 
Results: The  results  show  that  not  only  regression  but  also  component-based  methods  are 
vulnerable to over- or under-compensation and can cause significant distortion of EEG. Despite 
common  belief,  component-based  methods  did  not  demonstrate  an  advantage  over  the  simple 
regression method. 
Conclusion:  The  newly  proposed  evaluation  criterion  showed  to  be  an  effective  approach  to 
evaluate 252 results from 36 data sets and 7 different methods. 
Significance: Currently, the regression method provides the most robust and stable results and is 
therefore the state-of-the-art-method for fully automated reduction of ocular artifacts.  

Keywords: ocular artifact, electroencephalogram, automated artifact processing 
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Introduction 

The electroencephalogram (EEG) can be corrupted by artifacts, this holds for standard offline EEG 
analysis studies (Nunez, 1993) as well as online decoding of brain signals (e.g. see Dornhege et al. 
2007). The importance of reducing ocular artifacts has been emphasized in several areas e.g. evoked 
potentials by Donchin (1977), sleep analysis by Anderer et al. (1999) and brain-computer interface 
research  by  Fatourechi  et  al.  (2007).  Ocular  artifact  processing  might  be  also  important  for 
clarifying  the  relationship  between  induced  gamma  band  activity  and  micro-saccades  (Yuval-
Greenberg et al. 2008, Fries et al. 2008). 

Two main  lines  of  research  have  tackled   removal  of  the  electrooculogram (EOG) from EEG 
recordings: (a) regression (Gratton et al. 1983, Elbert et al 1985, Semlitsch et al. 1986, Wallstrom et 
al. 2004, Schlögl et al. 2007) and (b) blind source separation (BSS) (Vigário et al. 1997, Jung et al, 
1998, 2000, Ziehe et al. 2000) methods. The idea in (a) is to use the known EOG channel activity 
for simply regressing their contribution out from all EEG channels. Alternative (b) decomposes the 
EEG and EOG channels to find the true underlying sources of brain and ocular activity blindly, i.e. 
without  imposing  strong modeling  assumptions  except  for ‘independence’  (Vigario et  al.  1997, 
Jung et al, 1998, 2000, Ziehe et al. 2000).   Several works  (Jung et al. 1998, p.64, 2000, p.1746, 
Casarotto et al. 2004), Romero et al. 2004, p.925, Shoker et al 2005, Nicolaou and Nasuto 2005, p. 
5991, Phlypo et al. 2007) claim that Independent Component Analysis (ICA) is advantageous over 
the regression method, because the EOG channels might be contaminated by EEG activity, causing 
an overcompensation  and removal  of  EEG activity.  However  this  argument  assumes that  EOG 
components identified by ICA contain EOG activity only and are not contaminated by EEG, which 
is not necessarily the case.  

Blind source separation (BSS) methods like ICA will always provide a decomposition, no matter, 
whether the underlying solution is good or not (cf. Meinecke et al. 2002). Vorobyov et al. (2002, 
p.294) recognize that ”ICA cannot guarantee that some individual independent components (ICs) 
contain  only noise and do not contain information about useful sources, especially in biomedical 
applications”.  Another possible problem of ICA is channel noise (e.g. amplifier  and impedance 
noise). The channel noise is another signal source and effectively doubles the number of sources 
(see Ziehe et al. 2000, Wübbeler et al. 2000) while the number of sensors (i.e. the number of EEG 
channels) is the same. Because ICA can identify no more sources than sensors, several components 
will represent a mixture of signal and noise sources. 

There  is  no  consensus  whether  the  approach  (a)  or  (b)  is  to  be  preferred  under  exactly  what 
circumstances: while Blind Source Separation (BSS) is generally recognized as one of the leading 
methods for artifact removal, it is Wallstrom et al. (2004) that find an advantage of regression and 
Principle Component Analysis (PCA) methods over the ICA approach. In other words there seems 
to be no unique view in an important practical issue. 

This work therefore aims to contribute to the quest for a practical “reference method” in ocular 
artifact removal by providing an objective numerical comparison between fully automated methods 
only. While some of the BSS methods could be hand-tuned by manual component selection, such 
manual influence is often undesirable from an application point of view, because it requires highly 
trained staff and it may also introduce subjective influence and personal bias into the evaluation. 

First, the paper introduces the automatic EOG removal methods (Table 1 shows an overview of the 
methods  used),  then  provides  their  results  on  a  large  base  of  EEG  data  and  puts  them  into 
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perspective and finally a brief conclusion is given.

Methods

Linear Superposition Model, Regression method 

The EEG and EOG artifacts can be considered as a linear superposition of  N EEG and  M EOG 
channelscomponents. This can be written in the from of a regression model 

Y t=
E tbN×M⋅

Ot (1) 

Accordingly, the observed EEG at time t is a vector Y t  with N elements, and the observed EOG 

activity  Ot at  time  t has  M elements.  The  observed  EEG  data   Y t   consists  of  a  linear 

superposition of the true EEG activity E t  and the ocular activity Ot  that propagates through the 

mechanism of volume conduction to each EEG electrode. The propagation factors are described by 
the model parameters bN×M  which describe the influence of M components of the ocular dipoles to 

each of the  N EEG channel.  Because the propagation  mechanism is  simple volume conduction 
(Nunez, 1981; Malmivuo & Plonsey, 1995;  Kierkels et al. 2006, p.246), it depends only on the 
geometry and the conductivity of the head tissue. It is reasonable to assume that, these are constant 
during the whole EEG recording time T 0t≤T   and independent of frequency. 

It should be noted that the regression model can be also written in the following form 

[ Y t

Z t
]=[ IN×N bN×M

0M×N IM×M ]⋅[ Et

Ot
] (2) 

whereas Z t  represents the observed EOG channels. 

  
If the EOG activity is measured, its contribution can be removed using the least squares solution of 

equation (1). A  leftright multiplication of equation (1) with  Ot
T   and applying the expectation 

operator  〈 .t〉  over time t yields 

〈 Y t⋅
Ot
T
〉=〈 Et⋅

Ot
T
〉bN×M⋅〈

Ot⋅
Ot
T
〉 (3) .

Because EEG and EOG can be considered uncorrelated, the term 〈 Et⋅
Ot
T 〉 becomes zero, the true 

model coefficients are 

b=〈 Y t⋅
Ot
T
〉⋅〈 Ot⋅

Ot
T
〉
−1

(4) 
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and the EEG data can be corrected according to 

Et=
Y t−b×Ot (5) 

The method is also known as “least squares approach” or “multiple least squares approach” , if 
more than one EOG component is removed.  

This model takes into account only EEG and EOG sources. In practice, other noise sources (e.g. 
amplifier and impedance noise, electric and magnetic interferences, muscle activity) occur, too. In 
order to analyze the possible influence of these noise sources on the reduction method, a noisy 
model  has  to  be  considered  (see  Appendix  A:Noisy  mixture  model).  One consequence  of  this 
analysis  is  the  fact,  that  the  model  estimates  b =β are least  biased  if  the  signal  to  noise ratio 
between EOG and other noise sources is as large as possible. Therefore, we estimated the model 
coefficients from data with large ocular activity. Furthermore, it can be advantageous to filter the 
data (e.g. for removing the very low frequency components of the 1/f amplifier noise, and the very 
high frequency activity). 

Linear Mixture Model, blind source separation  

Blind source separation (BSS) methods like ICA are based on a linear mixture model of the EEG 
sources S t

 and the ocular activity Ot

[ Y t

Z t
]=A⋅[ St

Ot
]=[aN×N bN×M

cM×N dM×M
]⋅[ St

Ot
] (6) 

where A  is the mixing matrix, Y t  and Z t  are the observed EEG and EOG channels, respectively. 

The inverse of the mixing matrix is called the unmixing matrix W  

 W=[ uN×N vN×M

wM×N xM×M]=A−1=[aN×N bN×M

cM×N dM×M]
−1

 (7)

which is used for reconstructing the EEG S t and EOG Ot components from the observed data.

[ St

Ot
]=A−1

⋅[ Y t

Zt
]=W⋅[ Y t

Z t
] (8)

The unmixing matrix  W  can be obtained by minimizing an algorithm-specific loss function that 
enforces independence rsp. uncorrelatedness over time (Hyvärinen and Oja, 2000). Accordingly, the 

eye activity Ot is orthogonal to the EEG activity St , thus 〈 St⋅
Ot
T
〉=0 N×M . If the separation 

between EEG and the EOG  provides the correct decomposition, Et and St describe the same 

signal subspaceand both are uncorrelated to the EOG activity  Ot . The term „signal subspace“ 

refers to the fact that the components and St and Et span a smaller “signal space” with in a 
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larger one. In the present case, the signal space is spanned by [ Y t

Zt
] and [ St

Ot
] .  Removing some 

components (e.g. Ot  or Z t ) forms a smaller signal space (i.e. subspace). Ideallyn ideal case, 

both Et and St describe the EEG activity, but are not necessarily the same because the activity 
can be described on the surface or the source level.  

The ICA approach has become very popular through the software package EEGLab (Makeig et al. 
1996, Delorme and Makeig, 2004). Because independence implies uncorrelatedness (Hyvärinen and 
Oja, 2000), the reconstruction of the EEG without the EOG components (equation 9) is equivalent 
to  removing the EOG components  through a least  squares approach (applying equation (10) to 
equation (4) and (5)). In both cases the orthogonal EOG components are removed by projecting the 
recorded data to a signal subspace orthogonal to the subspace described by the EOG components. 
The corrected EEG activity is 

E t=aN×N⋅
S t=aN×N⋅[uN×N v N×M ]⋅[ Y t

Z t
]

(9)
and can be also obtained by applying 

Ot=[wM×N x M×M ]⋅[ Y t

Z t
]
 (10) 

to the regression method (see equations 4 and 5). 

BSS provides a number of independent components that can be as large as the number of EEG 
channels. Additional criteria are necessary to identify which component is related to ocular activity. 
Often, the components are hand selected by trained experts by considering time course, frequency 
content and topography of a component (cf. Ziehe et al. 2000, Wübbeler et al. 2000). The drawback 
of  this  approach  is  that  such  manual  data  processing  is  time  consuming  and  subjective 
interpretations may be introduced.  

Various automatic attempts have been proposed (Barbati et al. 2004, Joyce et al. 2003, Bouzida et 
al.2005, LeVan et al.  2006, Li et al.  2006., Vorobyov and Cichocki 2002, Kierkels et al.  2006, 
Boudet et al. 2007, Romero et al. 2008) that help to overcome manual interference which introduces 
a subjective component into the data analysis and can be labor intensive. Unfortunately some of 
them did not report crucial parameters like detection thresholds (Barbati et al. 2004, Bouzida et al. 
2005, Romero et al. 2008), or required an expert scoring (LeVan et al. 2006). These methods could 
not be reproduced and were therefore not considered in the current evaluation. The method of Li et 
al (2006) removed only a single component and is therefore considered inferior to a two-component 
regression method. The procedures proposed by Vorobyov and Cichocki (2002), Joyce et al (2003) 
and Kierkels  et  al.  (2006)   were described with sufficient  detailed  information,  in  order  to re-
implement the method in a software-algorithm. The method of Vorobyov and Cichocki (2002) mark 
a  component as blink artifact if the Hurst exponent of this component is between 0.58 and 0.64. 
The Hurst exponent H is an “index of dependency” and is closely related the fractal dimension D = 
2-H. H is in the range of zero to one,  a higher value indicates a smoother trend, a lower value more 
roughness. Joyce et al. (2004) use a five-step procedure which includes normalizing each channel to 
a variance of 1, computing the correlation between the recorded EOG channels and the IC's should 
be larger than 0.3, and the R.M.S of the first (temporal) derivative should be smaller than 0.2 (at 
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500 Hz sampling rate); Kierkels et al. (2006) compared several methods, the best method was SOBI 
(which is equivalent to TDSEP from Ziehe et al. 2000) and selected the components “if the cross 
correlation  between  an  extracted  component  and  one  of  the  recorded  EOG  signals  exceeds  a 
threshold value [of 0.7]”. 

Recently, the Non-Gaussian Component Analysis (NGCA) has been suggested (Blanchard et al. 
2006, Kawanabe et al. 2007) as an alternative BSS method. NGCA identifies sources with a non-
gaussian distribution, from a linear mixture of gaussian and non-gaussian sources. Based on the 
assumptions that (i) the EOG within the training set has a non-gaussian distribution, and (ii) there 
are three EOG components (x-y-z direction), the heuristic of selecting the first three components 
has been applied. 

Optimal projection
The filtering by optimal projection (FOP) approach in Boudet et al.  (2007) is closely related to 
Common  Spatial  Subspace  Decomposition  (CSSD)  and  the  Common  Spatial  patterns  (CSP) 
(Ramoser et al, 2000, Blankertz et al. 2008) and assumes also a linear mixture model. Unlike BSS 
methods, this approach uses two data sets (one with and one without EOG artifacts) for identifying 
the components representing artifacts  and for identifying desirable  components. Once,  the EOG 
components are known, they can be removed with the least squares approach. 

According to Boudet et al. (2007), the covariance matrices Ca  (from data with artifacts) and C r  

(from data without artifacts) were simultaneously orthogonalized such that 
C r⋅P=Ca⋅P⋅D (11)

or

Ca
−1⋅C r =P⋅D⋅P−1 (12)

with the eigenvector matrix P and a diagonal eigenvalue matrix D. Like in the other methods,  it is 
assumed that the true EEG and EOG are orthogonal (i.e. uncorrelated). According to Boudet et al. 
(2007), the eigenvectors with an eigenvalue above a threshold of 0.3 indicate an ocular artifact 
source. The fixed threshold can result in a varying number of components removed. In the present 
study no more than five components were removed. 

The selected eigenvectors were applied to obtain the EOG components according to equation (10) ; 
then the obtained EOG activity was removed with regression (i.e. least squares) approach according 
to equations (4) and (5). 
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Table 1: Automated methods for reducing ocular artifacts.

Method Short description
Regression (REG) 
(Schlögl et al. 2007)

Regression  analysis  using  2  EOG  channels  for  vertical  and 
horizontal components 

JOYCE 
(Joyce et al. 2002)

ICA  components  are  obtained  using  SOBI/TDSEP  algorithm 
components of from (common average reference) EEG and two 
bipolar EOG.  

HURST 
(Vorobyov and  Cichocki, 
2002)

Select the components with an Hurst exponent between 0.58 and 
0.64.  from (common  average  reference)  EEG and two  bipolar 
EOG. (Fs=250Hz, Filter 0.1-100Hz)

KIERKELS 
(Kierkels et al. 2006) 

ICA  components  are  obtained  using  SOBI/TDSEP  algorithm 
components of from (common average reference) EEG and two 
bipolar  EOG.  If  the  cross  correlation  between  an  extracted 
component and one of the recorded EOG
signals  exceeds  0.7,  the  component  is  marked  as  an  ocular 
component and is removed.

FOP
(Boudet et al. 2007) 

Filter using optimal projection

PCA-3 Three  principle  components  with  largest  eigenvalues  from 
(common average reference) EEG and two bipolar EOG. 

NGCA
Blanchard et al. (2006) 
Kawanabe et al. (2007)

The  first  three  components  from  (monopolar)  EEG  and  two 
bipolar EOG were removed.

Data
Two data sets from two different studies on Brain-Computer-Interfaces (BCI) were used. Data set A 
contains 19 data sets from 10 different subjects and was recorded in the Graz BCI lab; the EEG was 
amplified by an amplifier from g.tec (Guger Technology, Graz, Austria), and were filtered between 
0.5 and 100 Hz and sampled with 250 Hz. Twenty-two EEG channels, three EOG channels, one 
ECG and one respiration channel was recorded (for more details see also Schlögl et al. 2007). Both 
data  sets  contain  recordings  of  resting  EEG with eyes  closed and eyes  open,  recording  during 
deliberate eye movements (the subject was asked to rotate the eyes clockwise and counterclockwise 
around the whole field  of vision,  and perform eye blinks).  This  was followed by a number of 
experimental EEG recordings for a BCI study. 

Data set B consisted of 17 data sets (originally 25, but 6 were not complete and in two cases the 
EOG channels had large drifts) from 15 different subjects and was recorded in the Berlin BCI lab. 
The  data  were  recorded  with  a  BrainAmp  system  (BrainProducts  GmbH,  Munich,  Germany), 
filtered between  0.016 and 250 Hz, and sampled with 1000 Hz; 54 EEG channels and horizontal 
and vertical EOG were recorded. Each data set contain a so-called “artifact recording” (containing 
eye  movements,  muscle  activity  and resting EEG) and experimental  EEG recording  containing 
three different motor imagery tasks, and consecutive BCI recordings with online feedback. The eye 
movement data was recorded according a protocol where the technician asked  5 times to move the 
eyes  up-center-down-center-up-  ...  and  left-center-right-center-left-  with  a  pacing  of  approx.  1 
second. Furthermore, several eye blinks were recorded. If not stated otherwise, the data of set B was 
down-sampled to 250 Hz, by averaging 4 consecutive samples into 1. This procedure attenuates all 
frequency components above 114 Hz by more the 3 dB (i.e. low pass anti-aliasing filter of 114 Hz). 
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Accordingly, the data contains horizontal and vertical EOG components as well as blink artifacts. 
Therefore a single component (like for eye blinks) will not be sufficient, but more components are 
needed. Based on biophysical consideration, it is expected that at least three components (for the 
three  spatial  directions)  are  necessary  (Elbert  et  al.  1985,  Schlögl  et  al.  2007).  Additional 
components might be needed due to the change of the dipole location (Berg and Scherg, 1991). In 
this study, the eye movement data and the first experimental recording was used. For one method 
(FOP), the resting EEG during eyes open was used, too. Note that we will provide the data used 
within this paper online (ftp://ftp.tu-graz.ac.at/pub/bsdl/EEGwithOcularArtifacts/) as a reference for 
further studies. 

Results

Evaluation 

The gold standard for validating  EOG correction  methods is  certainly  the  visual  evaluation  by 
experts (cf. Schlögl et al. 2007). In the present study, 252 results were obtained from 36 recordings 
and seven different methods. Each of these results consisted of about 6 to 10 minutes of corrected 
EEG with 20 (data set A) and 54 (data set B) channels. Expert scoring for each of these results 
(ideally by two or more independent experts) would have been a prohibiting factor for the present 
study. Therefore,  an alternative approach has been used. 

In other studies the signal-to-noise ratio was used as an evaluation criterion.  This requires  the 
“true” activity, which is only available for simulated data (like in Kierkels et al. 2006).  But in the 
present case of real-world data, the “correct” result is not known.  Alternatively,  the ratio r i  f   

between the spectral density functions of the corrected  E i f  and the raw (i.e. uncorrected) EEG 

Y i f   of some channel i  was used. 

r i f =
∣E i f ∣

2

∣Y if ∣
2

(13)

In the ideal case, the ratio ri  f   should be always smaller than 1, because the EOG component is 

removed.  In practice,  the noisy model   (see Appendix A:  Noisy mixture model),  and therefore 
E'  f  and Y'  f   must be used. The theoretical analysis of the noisy mixture model shows that the 

noise on the EOG components is propagated to the corrected signal. This can cause an increase in 

the noise components, and the ratio r i '  f   can become larger than 1. Moreover, correlated noise 
on EEG and EOG channels (e.g. through a common external source like line interference, or the 
noise  on  the  common  reference  electrode),  can  modify  the  ratio.  However,  this  is  a  minor 
difficulty, because line interference can be easily identified by its peak at 50/60 Hz, and the noise 
between EOG and EEG channels is assumed to be uncorrelated. This assumption is certainly true 
for the regression method,  because bipolar EOG channels were used.

r i ' f =
∣E i ' f ∣

2

∣Y i ' f ∣
2

(14)
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Figure 1 around here 

Figure 1 illustrates the meaning of this ratio. Case A indicates a reduction of EOG activity; case B 
show no change; and in case D the correction procedure adds some noise components to the EEG. 

The desirable case is A. The depth of the ratio is related to the relative amount of removed EOG. 
Case B shows no reduction, either there is no EOG artifact in the data (this would be acceptable) or 
the method did not remove any EOG. Case C shows a clear overcompensation, in other words, 
EEG activity is also removed. In several works, the regression method has been attributed to be 
vulnerable for this phenomenon. Case D describes the case where the EOG is contaminated by 
some other noise sources (see Appendix A). In such a case, this noise can propagate to the corrected 
EEG. In practice, one will observe a combination of these scenarios. But even in those cases. it is 
possible to determine the dominating mechanism. 

In the present study, the Welch method (Oppenheim und Schafer, 1989) with 1024 sample (4.1 s) 
Hanning window  has  been  used  to  estimated  the  power  spectral  densities.  Examples  of  the 

frequency dependent ratio  ri  f   of the most frontal channel are shown in Figures 2 and 3. Both 
models,  the  linear  mixture  and  superposition  model,  assume that  the  propagation  of  the  EOG 
activity does not depend on frequency. Because the EOG is a low frequency activity, the spectral 
power should become smaller (ratio smaller than one) only on the low frequency range. In the high 
frequency range, the spectrum should be not influenced (ratio equal 1), if overcompensation occurs 
(parts of the EEG are removed), the ratio will become smaller than one also for the high frequency 
range. If the ratio becomes larger than one, it indicates that some signal component has been added 
during the correction step. 

Figure 2 around here. 

Figure 3 around here. 

The ratio can be computed separately for every EEG channel i . Because of its proximity to the 
eyes, the most frontal  electrode is most sensitive to overcompensation and is also most vulnerable 
to noise propagation (because it has usually the largest weighting coefficients  i ). Therefore, the 

spectral  ratio  for  the  most  frontal  electrode  (typically  Fpz  or  Fz)  is  shown.  Moreover, 
electromagnetic  interference  from the  power line  was also present  in  most  data  sets.  This  line 
interference effect can have an arbitrary effect (it can became smaller or larger depending on its 
correlation with EOG). Therefore, the comparison of methods ignores changes around 50 Hz. 
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Regression analysis 
Figure 3 shows that regression analysis comes close to the desired result: for both data sets A and B, 
there is a  reduction in the low frequency range indicating a clear  reduction of EOG activity. This is 
also an indicator for the spectral content of the EOG activity, the spectral content of the EOG is 0-5 
Hz in data set A, and 0.5 to 10 Hz in data set B. In the high frequency range, the ratio is often close 
to one indicating no under- or overcompensation of EEG activity. 

It is notable that the ratio in data set B is often larger than one in the high frequency range. This is 
contrary  to  the  common  belief,  that  regression  analysis  removes  EEG  activity,  too.  It  can  be 
explained by the fact, that non-EOG noise (amplifier noise, impedance noise) is propagated to the 
corrected  EEG channels.  Because  the  correction  coefficients  can  be  quite  large  for  the  frontal 
channels, and if the impedances of the EOG channels are large (providing large impedance noise) 
the noise contribution can be significant. 

Method of Joyce et al. 
The method shows for data set A a clear reduction in the low frequency range. Unfortunately, the 
high frequency range is often also affected. The results for data set B show that the ratio r(f) is 
almost constant, and often smaller than one. This indicates a significant reduction of EEG activity 
(overcompensation effect).  

ICA component identified by the Hurst exponent. 

Vorobyov and Cichocki  (2002) suggest  an ICA based method,  where any ICA “algorithm that 
ensures  robust  unbiased  estimation  of  the  separation  matrix  can  be  employed”  (Vorobyov and 
Cichocki,  2002, p. 297). In the present  work, we have used the JADE algorithm (Cardoso and 
Souloumiac, 1993) on 20 PCA components to identify the ICA components. It is suggested that 
components with a Hurst exponent between 0.58 and 0.64 represent eye blink components. Since 
the Hurst exponent might depend on the sampling rate and filter settings, data set B was filtered and 
resampled with the same settings (filter  between 0.1 Hz and 100 Hz, sampling rate 250 Hz) as 
Vorobyov and Cichocki (2002, p. 297). Data set  A has was already sampled with 250 Hz and 
filtered with 0.5 to 100 Hz; the frequency range could not be widened in order to match the other 
data. 

In all 19 cases of data set A, the spectral ratio between corrected and uncorrected data remained 
one. The reason is the fact the Hurst exponent of all components from data set A was in the range of 
0.29 and 0.52; the criterion of a Hurst exponent between 0.58 and 0.64 did not match this data. 
Therefore, no EOG components were identified, and  no data correction was performed.  

Quite the opposite happened for data set B. For a large number of recordings, the ratio became 
significantly smaller than 1 even in the high frequency range. This indicates that significant parts of 
the EEG have been removed as  well,  this  can be explained  by the fact  that  some components 
representing EEG activity have also a Hurst exponent in the range from 0.58 to 0.64. Thus, large 
overcorrection effects happened, i.e. significant EEG activity was removed in several recordings of 
data set B. 
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In other words, the proposed heuristic of a Hurst exponent in the range of 0.58 and 0.64 might have 
been suitable for the data used by Vorobyov and Cichocki (2002), but it is not a suitable heuristic 
for the data sets used in this work.

Method of Kierkels et al. 
Kierkels et al. (2006) used a simple criterion (correlation to any EOG channel larger than 0.7) for 
identifying  the  EOG  components;  regression  analysis  and  five  BSS  methods  (SOBI,  JADE, 
FastICA, PCA, R-ARE) were compared. SOBI was their best method, SOBI is also equivalent to 
TDSEP (Ziehe et.  2000). The results show overcompensation (reduction of EEG) as well as an 
increase in alpha EEG . The latter can be explained by propagation of occipital alpha into the EOG 
channel due to alpha contamination of the selected ICA components. 

Kierkels et al. assumed that the noise component is pure electrode noise and has a flat spectrum. 
However, the channel noise of real-world EEG recordings is also contaminated by amplifier noise 
which  has  typically  a  1/f  spectral  distribution.  Furthermore,  the  simulations  assumed  that  the 
activity of various dipols are uncorrelated, but the global alpha rhythm suggest a coupling between 
dipoles.  SOBI  is  using  these  second-order  statistical  correlations  for  its  decomposition.  As  a 
consequence, the identified components are not pure ocular activity (like in the simulated case) but 
are corrupted by the brain and noise sources in the real-world case. 

Filter of optimal projection (FOP) 
The FOP method shows for most cases in data set A similar results than the regression method. 
However one recording of data set A shows a clear reduction of high frequency activity, indicating 
an removal of EEG activity (overcompensation). For data set B, the method shows only one result 
with  clear  reduction  of  EOG  activity  (reduction  at  low  frequencies  but  no  reduction  at  high 
frequencies). All other 16 data sets of B show either a broad decrease or increase, indicating that 
either EEG is removed or some noise terms are added to the signal. 

Other BSS methods 
PCA shows for data set A a significant reduction of EEG activity. For data set B, the PCA method 
shows a reasonable reduction of EOG activity (low frequency range) and (with a few exceptions) 
almost no changes in the high frequency range. However, in a few cases the ratio is larger than one 
in  the  alpha  range  (10-15 Hz),  indicating  a  propagation  of  the  occipital  alpha  into  the  frontal 
channel. 

The Non-Gaussian Component Analysis (NGCA) is a promising method , because the spectral ratio 
is for most recordings very similar to the ideal curve (case A in Fig. 1). Despite a few exceptions 
(alpha propagation in one case of data set A, and a significant noise propagation in a few cases of 
data set B), NGCA seems to be the most stable and very promising method among the investigated 
BSS methods.  
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Table 2: Median and 1st and 3rd quartile of spectral ratio from 38 data sets. Ideally, the spectral ratio 
should be 1 for the upper frequency bands (8-13, and 20-40 Hz) and in the range between 0 and 1 
for the 1-4 H Hz range. The first and 1st and 3rd quartile span the “inter quartile range” and contain 
50% of the cases, 25 % each are below the 1st and above the 3rd quartile.   and  indicate whether✔ ✘  
the result is fine or not (see text for details). 

1-4 Hz 8-13 Hz 20-40 Hz

REG 0.519  [0.402, 0.871] ✔ 0.900 [0.846, 1.014] 1.014 [0.924, 1.153] 

JOYCE 0.066 [0.026, 0.100] 0.222 [0.125, 0.340] ✘ 0.303 [0.152, 0.447] ✘

HURST 1.000  [0.155, 1.000] ✘ 1.000 [0.594 , 1.000] ✘ 1.000 [0.475 , 1.000] ✘

KIERKELS 0.519 [0.395, 1.000 ]✔ ✘  1.000 [0.601 , 1.167] ✘ 0.922 [0.428 , 1.000] ✘

FOP 0.845 [0.597, 0.970] ✔ 0.985 [0.906, 1.038] 1.105 [0.989, 1.219 ] ✘

PCA-3 0.109 [0.057, 0.662] 0.234  [0.143, 1.116]✘ 0.213 [0.134, 1.081] ✘

NGCA-3 0.683 [0.444, 0.981] ✔ 1.001 [0.928, 1.080] 1.088 [1.005, 1.220 ] ✘

In order to summarize the results shown in figure  32, the distribution of the spectral ratio in the 
range 1-4 Hz, 8-13 Hz (alpha) and 20-40 Hz are subsumed in Table  12.  In the ideal  case,  the 
spectral ratio should be close to 1 for the upper frequency bands (alpha from 8-13, and 20-40 Hz). 

The method of JOYCE and PCA-3, show for the alpha band and 20 to 40 Hz a median of less than 
0.31, this indicates that in at least 50% of the recordings, the spectral power is reduced by a factor 
of 3. Also in case of the HURST and KIERKELS method, the power ist reduced to 60.1% or less in 
at 25% (9 out of 38) of the cases. FOP and NGCA-3 show that the power in the 20-40 Hz band is 
increased by more than 21% in at least 25 %  of the cases. 

The spectral ratio should be smaller in the range of 1-4 Hz because the EOG activity is removed. 
JOYCE and PCA-3 show a much smaller factor, but it is reasonable to assume that alsosome EEG 
activityactitivity (like in the higher frequency bands) is removed. The median spectral ration of 1.0 
for  the  HURST method  indicates  that  in  at  least  50% of  the  cases  (>18  out  of  38)  no  EOG 
correction was performed. The median spectral ratio of Kierkels method seems fine, but the upper 
IQR value of 1.0 indicates that in at least 25 % (9 out of 38) no correction was applied. The median 
and IQRs suggest a clear EOG reduction for FOP  and NGCA-3 method, however, the reduction is 
less than for the regression method with a median of 0.519. 

Discussion and Conclusion

Evaluation criterion
The gold standard of visual scoring of the results from 7 methods on 36 recordings of at least 60 
minutes and 22 channels was not feasible in the present study. Therefore, a new criterion based on 
the ratio between the corrected and uncorrected EEG is suggested for evaluating EOG correction 
methods.  Other  criteria  need to  know the “correct”  EEG and are,  therefore,  only applicable  to 

12

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
09

.3
44

6.
1 

: P
os

te
d 

21
 J

ul
 2

00
9



simulated data; the proposed criterion is applicable to real world EEG recordings as well. 

The theoretical analysis in the appendix details the possible influence of other noise sources. The 
results of the regression method are not vulnerable to correlated noise, because the  noise of the 
bipolar EOG channels is uncorrelated to the noise on the EEG channels. For the sake of simplicity, 
it was assumed that the noise on the BSS-based EOG components is also uncorrelated to the noise 
on the EOG channels. The noise on the common reference electrode might cause a reduction of this 
noise source, too. Because, the noise on the reference channel is indistinguishable from global EEG 
activity, the result would look like an overcompensation effect (case C in Fig 1). However, this 
would also come at the cost that some EOG component might not be properly resolved and some 
EOG is not removed, because the number of removed components is not increased. In other words, 
the method might remove some other artifacts (e.g. noise from the common reference channel) but 
leave some EOG activity in the data. While this could be desirable in some cases, the purpose of 
this criterion is to quantify the amount of removed EOG. 

Comparison of Regression and component-based methods 
Regression  and  several  component-based  methods  are  investigated.  All  methods  rely  on  the 
assumption of an instantaneous, linear, frequency-independent, mixture of EEG and EOG activity. 
The difference between the regression approach (linear superposition model) and the component-
based approaches (BSS and FOP, the linear mixture model) remains in the manner how the signals 
describing the EOG activity are obtained. While the regression approach uses the observed EOG 
activity; the component-based approaches decompose the data into a number of independent (and 
uncorrelated) components, and different heuristics are used for identifying the EOG components. In 
order to avoid any subjective influence,  only fully automated, and no manual or semiautomated 
methods were considered. 
Despite the expectations found in a number of works (Jung et al. 1998,  2000, Casarotto et al. 2004, 
Romero  et  al  2004,  Shoker  et  al.  2005,  Nicolaou  and  Nasuto,  2005,  Phlypo  et  al  2007),  an 
advantage  of  component-based methods  could not  be  confirmed within  this  study.   A possible 
explanation  has  been  suggested  already  by  Vorobyov  et  al  (2002,  p.294):  the  identified  EOG 
components can be also contaminated by EEG activity and other noise sources.  The main criticism 
on the regression method was the possible EEG contamination of the EOG channels, which can 
cause overcompensation (reduction of EEG activity). This criticism is not confirmed by the present 
results, because almost no reduction (ratio r(f) is close to one) for the high frequency activity can be 
observed with the regression method. A likely explanation for the belief that the regression method 
is much more vulnerable to overcompensation than BSS methods, is the incorrect use of monopolar 
EOG channels as regressors. Monopolar EOG channels with a common reference electrode for EEG 
and EOG picks up a lot of global EEG activity, which is then also removed. Consequently, it is 
important that bipolar EOG channels with EOG electrodes close to the eyes are used as regressors. 

The fact that some BSS methods use higher order statistical moments (nonlinear information), is 
only an advantage for the identification step but not for the correction step. The correction step is 
the same linear operation for all methods (e.g. regression method), because all are based on the 
same linear model. The higher order information  might be advantageous compared to the PCA 
methods, which is also a blind method. The regression method is not a “blind” source separation 
method,  but  utilizes  the  available  information  from  the  EOG  channels.  In  other  words,  the 
regression method does not need to rely on some higher-order information for identifying the ocular 
artifacts, because it is already using the available reference information. The results suggest, it is 
more  difficult  to  identify  the  artifact  components  with  BSS  methods  than  with  the  dedicated 
channels  (like  EOG)  recording  the  artifact.  Novel  methods  (like  the  NGCA  algorithm)  might 
eventually overcome the limitation(s) of the current BSS methods.
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One could in principle criticize our findings  by arguing that (i) the data sets were corrupted by too 
much noise (non-EEG and non-EOG noise), (ii) the software implementation is insufficient, or (iii) 
the methods are not good enough. We have addressed  criticism in the following ways:  (i) The data 
sets  were  recorded  according  to  routine  procedure  by  well-trained  staff.  We  have  considered 
saturation  artifacts  (Schlögl  et  al.  1999),  other  artifact  types  like  electrode  artifacts  or  muscle 
artifacts were ignored in the present study. Even if these artifacts cause the degeneration of several 
EOG correction results, one must say that regression analysis seems to be most robust. 
(ii) The software is available through the open source software library BioSig http://biosig.sf.net 
and may be checked. 
(iii) the main differences between the regression approach and the blind source separation methods 
is the fact that regression utilizes directly all available information from the EOG channels, whereas 
the BSS methods ignore this additional information and solve the EOG removal problem  indirectly. 

The results in Fig 3 show that the correction procedure (regresssion) does not only influence the 
EOG-related frequencies in the EEG, but also the other noise (e.g. 50 Hz line interference) can be 
affected. This can be easily explained by the fact that the EOG channels do not only record EOG 
but also other noise sources like line interference. Accordingly, the noise sources will propagate 
through  the  correction  step  and  contaminate  the  corrected  data.  This  is  an  experimental 
confirmation  of  the  theoretical  considerations  based  on  the  “noisy  model”.  However,  if  the 
electromagnetic interference is picked up by the EOG channels, its likely that EEG is contaminated 
by  the same cause; and other means to remove line interferences  (e.g. Notch filter)  have to be 
applied anyway. 

Out of the 7 investigated methods, only Regression (REG), optimal projection filter  (FOP) and 
NGCA gave reasonable result.  However, NGCA and FOP do not show any advantage over the 
regression method which is easier to a apply and simpler to compute. Therefore, the regression 
method  is  the  state-of-the-art  method  (i.e.  reference  method)  for  automatic  EOG  artifact 
elimination.  Future approaches for EOG removal should be compared and validated against  the 
regression method.  This finding is in line with the general insight to always try to directly solve a 
problem given  all  information  available  (Vapnik  1995):  regression  does  so  by  using  the  EOG 
channels  as  additional  information,  whereas  the  component-based  approaches  identify  the 
components blindly and  use some heuristics  for selecting the ocular components. The heuristics 
can be more or less successful, currently they are less successful than the two-channel regression 
method. 

The inferior performance of the automated BSS methods is disappointing because it does not seem 
to provide a  solution to the problem of automatically identifying all EOG components. The EOG 
dipole lives in a three dimensional space (has a x,y and z direction, or VEOG, LEOG and REOG 
according  to  Elbert  et  al.  1985),  and  therefore  removing  only  two  spatial  components  is  not 
sufficient (Schlögl et al. 2007). Each eye has its own dipole with spatial components (total 6 spatial 
components). However, the two dipoles are strongly correlated, and therefore a reduction of the 
number of components might be possible. Whether three components are sufficient, or additional 
components are needed depend on the application area. E.g. if  vergence movements can not be 
avoided (because of fixating objects at different distances), one additional component is needed. 
Rapid  eye  movements  during  sleep  moves  the  two  eyes  independently,  therefore  at  least  two 
additional  components  (horizontal  and vertical)  are  necessary.  If  a subject  can move both eyes 
independently  (or blink independently),  three additional  components (total  6) will be necessary. 
Berg and Scherg, (1991) showed that ocular dipole change the location during eye movement, this 
might also require an additional component. In these cases, it is recommended to record additional 
EOG channels that capture the horizontal and the vertical components of each eye. 

Using additional EOG electrodes can have also another advantage. The theoretical analysis of the 
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noisy model shows, that other noise sources (amplifier noise, impedance noise etc.) propagates to 
the corrected data. It can be shown that the use of more (redundant) EOG channels can reduce this 
additional noise component on the corrected data. Consequently, future work in this area should use 
more EOG channels. 

Appendix A: Noisy mixture model

The models above assume that only EEG and EOG activity is recorded. However, in practice also 
other  components  like  technical  artifacts  (amplifier  noise,  quantization  noise,  impedance  noise, 
power line interference) and biological artifacts (muscle artifacts, etc.) do occur and are recorded. 
Therefore, it is reasonable to include a noise term, too. In the following, the effect of additive noise 
terms on the correction procedure will be analyzed. 

Lets assume the recorded EEG and EOG activity is contaminated by noise, Y and O are free of 
noise, and Y' and O' indicate the noise contaminated, recorded data. 

Y ' t=
Y t

N Y,t (A1)

O ' t=
Ot

N O,t (A2)

with  signal  covariances  Y=〈 Y t⋅Y t
T
〉 and O=〈 Ot⋅O t

T
〉  and  noise  covariances

NY=〈 N Y ,t⋅NY , t
T 〉 and NO=〈 NO ,t⋅NO , t

T 〉 .

Under the assumption that EEG and EOG are uncorrelated, we got the true model coefficients by 
equation (5). Moreover, it is reasonable to assume that the additional noise terms (caused e.g. by 
amplifier and electrode impedance) are uncorrelated to the other signals , specifically
〈 Y t⋅N Y ,t

T
〉=0 〈 Ot⋅N O ,t

T
〉=0 〈 Ot⋅N Y ,t

T
〉=0

〈 Y t⋅N O, t
T

〉=0 〈 E t⋅N Y ,t
T
〉=0 〈 E t⋅N O, t

T
〉=0

and we get 

b=〈 Y t
Ot
T
〉⋅〈 Ot

Ot
T
〉
−1
=〈 Y 't O't

T
−NY ,t

NT
O,t〉⋅〈

O't O't
T
−NO,t

NO,t
T

〉
−1 (A3) 

Typically the noise terms are not known, and the simplified estimator

=〈 Y 't⋅O't
T
〉⋅〈 O't⋅O't

T
〉
−1

(A4)

is used. Depending on the fact whether the noise term in the nominator or in the denominator are 
ignored, the estimates will be to large or to small causing over- or under-compensation for EOG 
artifacts. 

The  term  〈 NY , t⋅N O, t
T
〉 accounts  for  the  fact  of  a  common  noise  source  (e.g.  the  noise  of  a 

common reference  electrode,  muscle  artifacts,   etc.  ).  If  this  term is  non-zero  but  ignored,  the 
estimates can become larger than the true model parameters ∣β∣∣b∣ . 
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The term  NO=〈 NO ,t⋅NO , t
T

〉 accounts for the noise covariance of the EOG channels. Omitting 

this  noise  covariance  can  lead  to  an  systematic  underestimation  of  the  weighting  factors.  For 
example if the EOG noise is as large as the EOG, the denominator will become twice as large, 
consequently the model estimates will be only half of the true model parameters, causing a sever 
underestimation of the model coefficients. Consequently, in order to minimize the estimation error 
b−β  ,  the  noise  covariances  must  be  known  or  should  be  made  as  small  as  possible.  The 
corrected data is 

E 't=Y 't−⋅O't=Y t
NY ,t−⋅Ot−⋅NO,t=

Etb−⋅Ot⋅
NY ,t−⋅NO,t (A5)

and thus 

E 't=Etb−⋅ Ot
NE ,t (A6)

This equation describes the deviation of  the actually corrected data E' from the “true” EEG data E 

as defined by equation (6). The term b−⋅Ot accounts for the fact that the EOG correction is not 
perfect, because of errors in the estimated model parameters (e.g. over- or under-compensation can 

occur).  The  terms  N O,t⋅β account  for  the  fact  that  noise  on  the  obtained  EOG component  is 

propagated to the corrected EEG data, thus the covariance of the EEG noise becomes

NE=〈NY ,t−⋅NO,t ⋅
NY ,t−⋅NO,t

T
〉=NY⋅NO⋅

T
−⋅〈 NO,t⋅

NY ,t
T

〉−〈 NY ,t⋅
NO,t
T

〉⋅
T  

(A7)

The last two terms are zero if the EEG noise and the EOG noise are uncorrelated.

The spectral  ratio  between  corrected  and uncorrected  data  of  the  realistic  (noise-contaminated) 
model is 

r i ' f =
∣E i 'f ∣

2

∣Y i ' f ∣
2
=
∣Y i f −i⋅O f NYi f −i⋅NOf ∣

2

∣Y if ∣
2
∣NYi f ∣

2

r i ' f =1
−∣i⋅Of ∣2∣i⋅NO f ∣

2
−2⋅real {NYi f ⋅iNO f }

∣Y if ∣
2
∣NYif ∣

2

(A8)

The proof for (A8) is based on the definition of the Fourier-transformation FT{.} and its properties: 
U  f =FT {u

t
},V  f =FT {v

t
}

FT {a⋅u
t
b⋅v

t
}=a⋅FT {u

t
}b⋅FT {v

t
}=a⋅U  f b⋅V  f 

∣U  f ∣2
=∣FT {u

t
}∣

2
=FT {cov u

t
,u

t
}

∣FT {u
t
v

t
}∣

2
=FT {cov u

t
, u

t
2 cov u

t
, v

t
cov v

t
, v

t
}

∣FT {u
t
v

t
}∣

2
=∣U  f ∣2∣V  f ∣22⋅∣U  f ⋅V  f ∣⋅cos

U , V

∣FT {u
t
v

t
}∣

2
=∣U  f ∣2∣V  f ∣22⋅real {U  f ⋅V  f }

where cov u t , v t  is the cross-correlation function between u t  and v t .
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Accordingly, the power spectrum density of the corrected EEG is

∣E '  f ∣2
=∣Y  f −⋅O  f N

Y
 f −N

o
∣
2
=

FT {cov Y ,Y cov O ,O cov N
Y

, N
Y
cov  N

O
, N

O
−2 cov Y ,O 

2cov Y , N
Y
−2cov Y ,N

O
−2cov  O ,N

Y
2cov O , N

O
−2cov N

Y
, N

O
}

Because 
cov Y , NY =0 ;cov Y , NO=0 ;cov O , N Y =0 ;cov O , NO=0 ;cov N Y ,N O=0.

and 
cov Y ,O=cov EO ,O=cov E ,O cov O ,O=cov O ,O 

becomes 

∣E '  f ∣2
=∣Y  f −⋅O  f N

Y
 f N

O
∣
2
=

FT {cov Y ,Y −cov  O ,Ocov N
Y

, N
Y
cov  N

O
,N

O
−2 cov N

Y
, N

O
}=

∣FT {Y }∣
2
∣FT {N

Y
}∣

2
−∣FT {O}∣

2
∣FT {N

O
}∣

2
−2⋅real {N

Y
 f ⋅N

O
 f }

Applying this formula to each channel i and normalizing with ∣FT {Y }∣
2
∣FT {NY }∣

2  yields 
the second line in equation (A8). 

For simplicity lets assume the noise terms  N O  and  N Y  can be neglected. Then, a variation of 

r  f   for different frequencies can be explained only by differing EEG and EOG spectra, and thus 

independent activity. The ratio r  f   becomes smaller than one in case of a non-zero ocular activity 

O  f  and is close to one if no ocular activity occurs. The ratio is also 1 in case of no correction 

=0 . The ratio  r  f  can become larger than one in case of a significant (non-EEG, non-EOG) 

noise source  N O  contaminating the EOG signal. Furthermore, if O  f  contains EEG activity, a 

reduction  of  the  ratio  in  the  higher  frequency  range  can  be  seen.  Accordingly,  the  spectral 

distribution of the ratio  ri  f   can be used to identify over-compensation as well as propagating 
noise from the EOG to the corrected EEG channels.  

The  criterion  can  not  be used to  determine  whether  the  correction  coefficients  β  are  correct. 
However, if there is no correlation between the noise of the EEG and noise of the EOG channels, 
only under-compensation can occur.  Therefore, the largest correction (smallest ratio r  f  ) in the 
low frequency EOG range is likely to provide the most accurate correction. 
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Legends: 

Fig 1: Ratio between spectra of corrected and uncorrected EEG. Case A indicates a reduction of 
EOG activity; case B show no change; case C shows a clear overcompensation, in other words, also 
some EEG activity has been removed; and in case D the correction procedure adds some noise 
components to the EEG. 

Fig 2: Correcting ocular artifacts. One example from data set A is shown. The first plot (a) shows 
time course of the raw EEG at Fz, the corrected EEG at Fz, and the two bipolar EOG channels. The 
subject was asked to perform various eye movements at t<0, and did the EEG experiment (cued 
motor imagery) at time t>0. The subjects were asked to perform the eye blinks only  between trials. 
The  first  data  segment  with  the  eye  movements  (t<0)  was  used  to  estimate  the  correction 
coefficients, (b) shows the topographic distribution of the correction coefficients for the two bipolar 
EOG channels. Then, the correction coefficients were used to correct the EEG data. Based on the 
experimental EEG data (t>0), the spectra of the raw and corrected EEG and the spectral ratio r  f 
was computed (c) using the Welch method with a Hanning window. 

Fig 3: Ratio r'(f) between corrected and uncorrected spectral density. Results from 7 methods and 2 
different data sets are shown. Each line is the result from the most frontal electrode from a single 
recording. Data set A was recorded with 0.5-100Hz filter and a sampling rate of Fs=250Hz, data set 
B used a  0.016 -  250 Hz filter  and Fs=1000Hz.  Data set  B was down-sampled  to  250 Hz by 
averaging  4  consecutive  samples.  The  eye  movement  data  used  for  estimating  the  correction 
coefficients  were  filtered  with  0.5  –  100  Hz.  The  correction  coefficients  were  applied  to  the 
unfiltered data of the experimental EEG data. The spectral ratio was obtained from the experimental 
EEG data only. 
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Figure 1
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Figure 2 
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Figure 3
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