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Conservation reserves are one of the most important tools for managing 

biodiversity1. Ever since Diamond2, based on theory of island biogeography3, 

proposed that a single large reserve was preferable to several small reserves of the 

same total area, there has been an enduring debate about the veracity of his 

assertion4-12. The so-called SLOSS debate – should we have a Single Large reserve 

Or Several Small reserves – features in every conservation text book and is central 

to conservation theory. Population dynamic models suggest that the design that 

minimizes the risk of extinction of species is case-specific, with the optimal number 

of reserves ranging between one and very many13-17. Uncertainty is pervasive in 

ecology, but, the previous analyses of the SLOSS debate have not considered how 

uncertainty in the model of extinction risk might influence the optimal design. 

Here we show that when uncertainty is considered, the SLOSS problem is 

simplified and driven more by the aspirations of the manager than the population 

dynamics of the species. For a given budget of land area to be reserved in a region, 

the optimal solution is to have on the order of twenty or fewer reserves for any 
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species. This result shows counter-intuitively that considering uncertainty actually 

simplifies rather than complicates decisions about designing nature reserves. 

When minimizing the probability of extinction, the optimal number of reserves 

(n*) is extremely sensitive to the extinction risk faced by species17. In the absence of 

dispersal between individual reserves, and if the risk of extinction is small, the number 

of reserves that minimizes extinction risk can be very large (several thousand). When 

there is dispersal, few or many reserves can also be optimal16. However, aiming to 

minimize the probability of extinction (or maximize the mean time to extinction) 

exposes managers to possible errors, with the results potentially relying on the 

relationship between local extinction and area being very close to the truth. Aspects of 

metapopulation dynamics such as extinction risk of patches are difficult to estimate with 

precision; bounds on estimated probabilities of extinction can sometimes encompass 

almost all possible values between zero and one for even well-studied species18, 19. In 

circumstances where the risk of extinction is uncertain, managers may instead seek a 

reserve design that has an acceptably small extinction risk that is robust to uncertainty. 

Rather than minimizing the expected extinction risk, a better objective may be to 

maximize the chance that the risk is acceptably small. Conservation biologists often set 

a maximum acceptable risk of extinction for legislative and planning purposes20, 21. For 

example, there may be a requirement that the probability of extinction cannot exceed 

1% over a specified time period. Here we use models of metapopulation dynamics with 

and without dispersal to show that, when a given budget of land is available for the 

reserve system, a large number of reserves is never optimal in the presence of 

uncertainty. 

We extend a model of the extinction of species in a set of reserves to account for 

uncertainty (see Methods Summary). We initially assume there is no dispersal among 

reserves, and then include dispersal. The model without dispersal has two parameters, 
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the probability of extinction of the species within the timeframe of management concern 

when all the available area for the reserve system is in a single reserve (x1), and the 

scaling parameter describing how the mean time to local extinction changes with the 

size of an individual reserve (b, typically in the range 0.5 – 2.522). This leads to the 

probability of extinction of the species from the total reserve system within the 

timeframe of management concern 
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if the reserve system is composed of n reserves of equal size17.  

The extinction probability if the budget of available land area is placed in one 

reserve, x1, is usually very uncertain, leading to uncertainty in the risk of 

metapopulation extinction xn. The probability that the risk of metapopulation extinction 

xn is acceptably small (less than a, see Methods) is maximized when the following 

implicit equation is solved for the number of reserves n,  
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When b=1 the optimal number of reserves is simply n* = –lna/ln2. For b<4, (2) is 

approximated by n* � lna/(0.4363 – 1.1295b). For b>4, a better approximation is n* � –

lna / b. 

If the aim is to maximize the probability that the extinction risk is below a 

required threshold of between 0.01% and 10%, the optimal number of reserves is small, 

and typically less than 20 (Fig. 1). With the aim of having an extinction risk of less than 

1% and with b=1, the optimal number of reserves is seven. Remarkably, the results are 

independent of the uncertainty in x1, or even its expected value. However, for the most 

endangered species or if there is little area available for establishing the reserve system, 
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the aspiration may be low (e.g., a=0.1) in which case the optimal number of reserves is 

less than five. Thus, when considering uncertainty in the estimate of extinction risk and 

maximizing the chance that the risk of extinction is acceptably small, the optimal 

number of reserves is never large. For example, if we choose a land area budget of 

15,000 ha of mountain ash forest to conserve the greater glider (Petauroides volans) in 

the Central Highlands of Victoria, then b = 0.87 and the probability of extinction within 

100 years for a single 15,000 ha patch is predicted to be x1 = 0.0027717. In this case, xn 

is minimized when n = 735, with each reserve being approximately 20 ha in size. This is 

a highly fragmented reserve system, and one that may be risky if the prediction of x1 is 

unreliable. In contrast, if we consider uncertainty in x1 and assume a high aspiration 

because greater gliders are relatively common (a = 0.01%), a system of n = 17 reserves, 

each of almost 900 ha, is maximally robust to uncertainty in the extinction risk (x1). 

Our multi-reserve extinction model (eqn 1) is based on assuming no dispersal 

among patches, so there is no recolonization of reserves that experience local extinction. 

Models that include dispersal can be analyzed in a similar manner to find the number of 

reserves that lets us be as wrong as possible about the model (see Methods Summary). 

The results (Fig. 2) are qualitatively similar to those in the absence of dispersal (Fig. 1), 

especially by noting that 1/a will approximate the required mean time to extinction. 

These results (Figs 1 and 2) indicate that a large number of reserves is never optimal in 

the face of uncertainty.  

In the presence of uncertainty about the extinction risk, the optimal number of 

reserves is never large because such a strategy is particularly bad if the extinction risk is 

larger than expected. For example, assume that the predicted extinction risk of a species 

when all available habitat is in a single patch is x1 = 0.01 over the time frame of 

management concern, and b=1. Ignoring dispersal, seven reserves maximizes the 

probability that the extinction risk is below 0.01. Seven reserves would still lead to a 
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small extinction risk (<10-9) if x1 = 0.01, although not the smallest possible, which is 

approximately 10-21 with 69 reserves. However, if the extinction risk was estimated 

incorrectly and the actual risk in a single patch is x1 = 0.1, then a reserve system of 69 

reserves would lead to a very large extinction risk (0.95), while seven reserves would 

still provide a small extinction risk (0.01). Therefore, seven reserves provides a robust 

solution. In contrast, a system of 69 reserves is a dangerous option if the extinction risk 

turns out to be greater than expected (if x1 > 0.01). 

The reserve designs that maximize the probability of achieving an acceptable 

outcome (Figs 1 and 2) are independent of the uncertainty in the extinction risk (x1) or 

metapopulation growth parameter (r1), but instead depend on our minimum aspirations 

(a and A). This is an unexpected result, but extremely useful for managers and 

conservation planners because aspirations for extinction risks are much easier to 

determine reliably than actual extinction risks. The population dynamics influence the 

results through the scaling parameters. In the absence of dispersal, the relationship 

between patch area and extinction risk, b, is influential. When there is dispersal, the 

parameter c, which combines the influence of patch size on both extinction and 

colonization, is most influential. However, these parameters are usually much easier to 

estimate than the background risk (x1 or μ1), and they have a relatively small influence 

on the results. 

Uncertainty in the estimation of extinction risk occurs for several reasons. Risks 

are forecast over time periods that are often much longer than the time span of the 

available data, many aspects of population models that are used to predict risk are 

poorly understood, and forecasting population sizes requires assumptions about how the 

environment will change in the future, something that is prone to large error18, 19. 

However, the difficulty of estimating extinction risk actually simplifies the problem of 

reserve design. Uncertainty removes the many-reserve option from consideration 
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because it is not robust to uncertainty. Our results have practical implications for 

guiding the use of reserve design software that typically requires arbitrary decisions 

about how clumped a reserve system should be23. In the presence of uncertainty about 

extinction risk, the optimal number of reserves for single species is on the order of 

twenty or fewer, and the number is driven primarily by the aspiration of the manager 

rather than the dynamics of the species. 

Methods summary 

We assume there is a total budget of available land that may be distributed among one 

or more individual reserves. We model the extinction of species in a set of reserves17, 

assuming that the mean time to extinction of a species within a single reserve is a power 

function of the area of the reserve24, with scaling exponent b. In addition to b, the other 

parameter of the model without dispersal is the probability of extinction of the species 

when all the available area for the reserve system is in a single reserve (x1). We describe 

uncertainty in x1 by representing the value as a random variate with density function 

f(x1). For any density function f(x1), we find the number of patches n that maximizes the 

probability that the extinction risk of the reserve system over the time frame of 

management concern (xn) is less than a value that is deemed to be acceptable (a, see 

Methods). 

Models that predict the mean time to metapopulation extinction in the presence of 

dispersal25,26 can be analyzed in a similar manner. In this case, the key uncertain 

parameter is r1, the metapopulation growth rate, which defines the ratio of the 

colonization and extinction rates. Dividing up the reserve system into multiple reserves 

aims for a mean time to metapopulation extinction that is larger than achieved with only 

a single reserve. We aim to ensure that the mean time to extinction is at least A times 

what would be achieved with a single reserve. We then find the value of n that 
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maximizes the probability of achieving this objective given uncertainty in r1 (see 

Methods). 
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Methods 

In the absence of dispersal, the analysis is based on assuming that times to extinction 

within individual reserves have an exponential distribution, which is reasonable if the 

populations in the reserve are not declining deterministically. In the presence of 

deterministic declines, it is easy to show that in the absence of dispersal the optimal 
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number of reserves is small (n* = 1), so we confine our analysis to the assumption that 

the time to local extinction is exponential. The number of reserves that minimizes the 

predicted probability of extinction depends on the probability of extinction if all the 

available land is placed in a single reserve (x1) and the scaling parameter (b) that 

describes how quickly local extinction risk changes with the size of the reserve17 

n* ≈ [–1/bln(1–x1)]
1/b. (3) 

The optimal number of reserves (n*) when aiming to minimize the predicted 

probability of extinction is extremely sensitive to the extinction risk (x1). If x1 is very 

small the number of reserves that minimizes extinction risk can be very large (up to 

several thousands). For example, when b=1, the optimal number of reserves is 693 if 

x1=0.001 and 2023 if x1=0.00001. 

While the above solution (3) provides the optimal number of reserves if x1 is 

known, error in the estimation of this extinction risk means that any solution based on 

(3) may be very misleading. Using a classical probabilistic approach, uncertainty in x1 

may be represented by treating x1 as a random variable with probability density function 

f(x1). Then, for a given density function f(x1) and number of reserves n, it is possible to 

determine the probability that the extinction risk of the reserve system (xn) is less than a 

required value that is deemed to be acceptable (a). Let x1' be the probability of 

extinction in a single patch such that the probability of extinction in an n-patch system 

is equal to the acceptable value a. Thus, for the extinction model (1) 

bnnax
−

−−= )1(1' /1
1 . (4) 

Then, the probability that the extinction risk of the n patch system is acceptable is 

equal to the probability that x1 is less than the critical value x1'. This probability is 

simply obtained as the definite integral of f(x1) between zero and x1' 
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The optimal reserve design is obtained by finding the number of reserves n that 

maximizes (5), i.e., maximizes the probability that the risk of extinction is acceptably 

small. For any arbitrary probability distribution f(x1), this is achieved by maximizing the 

upper bound of the integral x1' with respect to n. The value of x1' (4) is maximized when 

the following implicit equation is solved for n 
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This can be solved numerically for n, although when b=1 the analytical solution is  

n* = –lna/ln2 = –1.443lna. (7) 

An approximate solution of (6) can be obtained by expressing b as a function of 

ln(a1/n), and based on a Taylor series expansion at the point a1/n = 0.5, the solution of (6) 

is approximated by n* � lna/(0.4363 – 1.1295b). For b > 4, a better approximation is n* 

� –lna / b. 

The above multi-reserve extinction model is based on assuming no dispersal 

among patches, so there is no recolonization of reserves that experience local extinction. 

Models that include dispersal can be analyzed in a similar manner to find the number of 

reserves that lets us be as wrong as possible about the model. In this case, we represent 

the reserve as a metapopulation, with the occupancy of the reserve network modeled as 

a stochastic birth-death process, governed by a birth (colonization) rate λ and death 

(extinction) rate μ. Exact solutions for the mean time to extinction exist for these 

models25, 26. As above, we assume that the mean time to local extinction scales with 

patch area with exponent b. Consequently, for a given amount of habitat being reserved, 

the extinction rate parameter scales with the number of reserves as μ = μ1n
b. Similarly, 

we assume that the colonization rate parameter scales with patch area as λ = λ1n
–b', such 

that we define r = λ/μ = r1n
–c, where c = b + b', and b � c (see ref 16). Thus, the 

parameter c combines the influence of patch size on both extinctions and colonizations. 
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With these assumptions, the mean time to extinction of a system of n initially-occupied 

patches is given by24, 25:  
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If this is expressed relative to the mean time to extinction that would be achieved 

when all available habitat is placed in a single patch (n = 1, in which case 1̂T  = 1 / μ1), 

we have 
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In this formulation r1 = λ1/μ1 is the key uncertain parameter. Dividing up the 

reserve system into multiple reserves aims for a mean time to metapopulation extinction 

that is larger than achieved with only a single reserve. We assume that the aim is to 

ensure that the mean time to extinction is at least A times what would be achieved with 

a single reserve. Then, assuming particular scaling coefficients b and c, we determine 

the number of reserves that lets r1, the metapopulation growth rate, be as small as 

possible. This provides the reserve design that is most robust to uncertainty in r1 by 

maximizing the probability that ATTn >1̂/ˆ  for any probability distribution for r1. This 

is achieved by finding the value of n that minimizes r1 subject to the constraint that 

ATTn =1̂/ˆ , which we obtained by iterative numerical evaluation of eqn (9). 
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Figure legends 

Fig. 1. The number of reserves that maximizes the probability that the extinction 

risk is smaller than required (a) versus the reciprocal of the requirement (1/a), 

for different values for the extinction scaling parameter b. Results are presented 

relative to the reciprocal of the required extinction probability to facilitate 

comparison with Fig. 2 because 1/a will approximate the required mean time to 

extinction. 

Fig. 2. The number of reserves that maximizes the probability that the mean 

time to extinction of a metapopulation is at least A times the value obtained if all 

available habitat were in a single reserve. Results are shown for different values 

for c, the scaling coefficient for the metapopulation parameter r (c = 0.75, 1.0, 

2.0)) and for b, the scaling coefficient for the extinction rate (b=0, solid line; b=c, 

dashed line). 
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Fig. 1 
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Fig. 2 
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