

SGN Database: From QTLs to Genomes

Isaak Y Tecle, Naama Menda, Robert Buels and Lukas Mueller

Boyce Thomson Institute for Plant Research, Cornell University, Ithaca, NY 14853.

One of the major challenges of the post-genomic world is linking genomic variation to phenotypic variation of complex traits. Quantitative trait loci (QTL) analysis is used to dissect the genetic basis underlying polygenic traits. At the SOL Genomics Network (SGN) (http://sgn.cornell.edu), we have developed software tools and a database to store raw phenotype and genotype data from QTL studies, perform on the fly QTL analysis using R/QTL statistical software (http://www.rqtl.org), and visualize QTL map locations. Users can identify peaks and flanking markers for QTLs for traits of interest. The QTL software fully integrates with other analysis tools at SGN such as the Comparative Map Viewer (http://sgn.cornell.edu/cview/view_chromosome.pl), and is fully cross-referenced with other SGN-curated datasets (markers, BACs, and unigenes). For example, using the Comparative Map Viewer, users can compare predicted QTL regions to genetic maps of interest from the same or different Solanaceae species. Using the emerging tomato genome sequence, users can also identify corresponding BAC sequences or locations on the tomato physical map, which can yield candidate genes for a trait of interest.

Currently, QTL data from three F2 and two backcross population QTL studies on fruit morphology traits (up to 46 traits per population) is available at the SGN website for viewing.

Phenotype and Genotype Data Analysis

At the population level, basic statistics of phenotype data for traits are shown.

SGN population: QTL Tomato Howard German x LA1589 F2

Population detai	ails	
[Edit]		
Name:	QTL Tomato Howard German x LA1589 F2	
Description:	QTL Tomato Howard German	
Organism:	Tomato	
Uploaded by:	Esther van der Knaap	

Phenotype Data

View/hide phenotype data summary 🕿					
Trait	Minimum	Maximum	Average	No. of lines	Graph
distal angle macro 10%	69.77	172.26	142.52	113	*
distal angle macro 15%	61.8	145.58	119.24	113	***
distal angle macro 20%	52.58	120.9	96.92	113	<u></u>

Clicking on the number of lines or graph icon (above) opens a page where phenotype data and QTL(s) for a trait are displayed (below).

QTL and Comparative Map Analysis

genodata4.csv : Gnumeric											
<u>File Edit View Insert Format Tools Data H</u> elp											
🗋 🗁 🗔 🛛 🖴 🕾 👘 🛍 🗠 🔻 🗞 🔻 🕄	2 👫 🚹 100%	• 🔹 🖨									
S <mark>Open a file</mark> ▼ 10 ▼ ▲ ▲ ▲ ▲ ■ ■ ■ ==	😔 % · 🕏	.00 00.		•							
A1 💥 🖑 = ID											
A B C D E F G H	J K	L	M N	V							
1 ID CD51 CD57 CT101 CT141 CT143 CT156 CT157 CT16	7 CT178 CT182	2 CT205	CT206 CT21	11 🔺							
2 3 7 5 3 9 12 4	5 4	11 2	6	12							
4 03S10-1 NA NA 2 3 2 3 1	2 1 NA	NA	2	3_							
5 03S10-1C 2 1 1 2 3 3 1	1 1	2 3	3	2							
6 03S10-10 2 2 5 2 2 3	2 3	3 2	2	1							
7 03510-10 3 1 2 3 2 3 1 2 3 2 2 2 2 2 2 3 1 3 3 2 2 3 1 3 3 2 2 3 1 3 3 3 2 2 3 1 3 3 3 2 2 3 1 3 3 3 2 2 3 1 3 3 3 3 2 2 3 1 3 3 3 3 2 2 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3<	1 3	3 2	1	2	opodata	A court Co	umoric				
9 03S10-10 2 3 3 2 2 2 3	🥡		Taala Data	p.	renocaca	4.CSV : OI	umenc				
10 03S10-1C 2 1 1 2 2 1 2	<u>File Edit View I</u> r	nsert F <u>o</u> rmat	<u>l</u> oois <u>D</u> ata	Help							
11 03S10-10 3 2 NA 2 2 3 1	🗋 🗁 🔚 🛛	≞ 🕰	* 🖬 聞	5	- 6	- 💫	$\sum f(\mathbf{x})$	₽ JZ 🗎	l 100% 🗸	\Rightarrow	
12 03510-10 1 3 NA 2 2 2 1 13 03510-10 2 2 NA 3 2 2 1											
14 03S10-11 2 3 2 2 3 2 3	Sans	- [1						S %	•		
15 03S10-11 3 2 3 3 2 2 1		— ID									
16 03S10-11 1 2 3 2											
17 03510-11 3 3 2 3 2	A	в с	D	E	F	G	Н	J	к	L M	N
19 03S10-11 2 3 2 2 2 3 3		DAM10 DAM	15 DAM20	DAM25	DAM2	DAM5 D	FEB10 DFEE	320 DFEB30	DFEB5 DFE	I DFEP	FA
20 03510-11 2 1 2 2 2 2 2 2	2 03S10-1	144.11 12	1.16 98.29	77.48	174.54	163.59	0.6	0.8 0.9	1 0.44	0	0 420.72
21 03S10-11 3 2 NA 2 2 NA 2	4 03510-10	159.67 14	1.61 118.94	96.07	176.32	174.78	0.62	0.8 0.9	1 0.47	0	0 410.82
23 03510-11 2 2 2 1 3 1 3 23 03510-12 3 1 2 2 2 1 2	5 03S10-10	153.53 1	28.7 103.47	83.14	172.04	172.08	0.62	0.8 0.9	2 0.47	0	0 266.52
24 03S10-12 2 2 2 3 2 1	6 03S10-10	145.93 1	22.8 101.88	80.66	174.05	161.77	0.61	0.81 0.9	2 0.45	0	0 607.47
25 03S10-12 3 1 1 3 3 3 2	8 03510-10	129.8 10	2.74 79.69	59.59	177.14	159.88	0.62	0.81 0.9	2 0.48	0	0 256.28
26 03S10-12 2 2 1 3 3 2 27 03S10-15 3 2 2 1 3 3 2	9 03510-10	141.01 11	8.18 95.13	76.05	177.12	162.44	0.6	0.79 0.9	1 0.45	0	0 494.29
	10 03S10-10	125.78 10	2.34 81.05	62.59	156.3	143.39	0.57	0.78 0.	9 0.39	0	0 542.06
	11 03510-10	152.24 12	9.27 106.35	86.36	173.83	167.76	0.6	0.79 0.9	1 0.45	0	0 324.6
genodata4.csv	13 03510-11	144.45 12	2.16 102.14	80.8	175.81	170.41	0.62	0.82 0.9	2 0.48	0	0 265.98
	14 03S10-11	147.26 11	3.06 85.43	64.02	222.56	174.18	0.67	0.84 0.9	4 0.53	0	0 352.61
	15 03S10-11	155.59 13	3.27 108.13	85.42	178.2	172.8	0.65	0.82 0.9	3 0.5	0	0 444.58
	16 03510-11	152.74 13	2.72 111.97	90.45	174.93	170.7	0.61	0.8 0.9	2 0.46	0	0 426.99
	18 03510-11	147.62 9	3.01 58.02	36.86	264.58	225.44	0.71	0.84 0.9	2 0.58	0	0 399.66
	19 03S10-11	146.35 11	9.16 95.77	74.96	176.34	170.84	0.62	0.81 0.9	2 0.48	0	0 302.5
Dhanating and ganating raw	20 03S10-11	154.09 12	9.78 104.87	83.24	184.82	196.04	0.63	0.81 0.9	2 0.48	0	0 313.08
Friendlype and genolype raw	21 03S10-12	142.82 11	7.42 94.74	73.6	174.69	166.98	0.62	0.82 0.9	3 0.47	0	0 287.8
data far unload to CCN	23 03510-12	108.19 8	7.31 67.48	54.06	118.19	95.88	0.47	0.72 0.8	8 0.25	0	0 271.43
uala iui upiuau iu JGIN	24 03S10-12	120.37	92.4 68.74	51.55	166.9	154.56	0.64	0.85 0.9	6 0.48	0	0 689.02
•	25 03S10-12	131.93 1	10.5 90.62	71.61	176.12	152.19	0.59	0.81 0.9	3 0.44	0	0 259.88
	27 03510-12	144.04 10	5.59 81.04	60.97	235.48	196.27	0.62	0.82 0.9	2 0.46	0	0 238.02
	20 02510 12	15652 12	602 1142	02.02	177 7	160.24	0.60	0.01 0.0	0 47	0	0 220 22 ·
	nhanadata 4 aru										
	phenodata4.csv										
									Sum=0		

QTL

[download population raw data]

Literature annotation

[Associate publication]

PMID: Morphological variation in tomato: a comprehensive study of quantitative trait loci controlling fruit shape and development. Show/hide abstract

SGN: distal angle macro 10% values in population QTL Tomato Howard German x LA1589 F2

opulation detail	s	
[Edit]		
Name:	QTL Tomato Howard German x LA1589 F2	
Description:	QTL Tomato Howard German	
Organism:	Tomato	
Uploaded by:	Esther van der Knaap	

Ranges for distal angle macro 10%

Clicking a bar will return a list of the lines with values in the specified range.

enotype Data	
View/hide phenotype data summary 🕿	
Plant accession	Value
03S10-99	69.77
03S10-53	100.76

3.8

3.04

parameters produces QTL map locations across the genome. Shown on the left is a QTL for a trait detected using a single QTL genome scan with a normal model and genotype probability of 0.01 calculated at every 5 cM.

analysis with preset statistical

At the plant accession level, images, phenotype and mapping data are shown. Details such as map location and primer sets for a marker can be viewed by clicking on the chromosome and marker of interest.

SGN accession: 03S10-90

Accession detai	nils	
[New] [Edit] [[[Delete]	
Accession	03510-90	
Description		
Population	QTL Tomato Howard German x LA1589 F2	
Organism	Tomato	
Uploaded by	Esther van der Knaap	

QTL map locations are crossreferenced to genetic maps of respective populations to indicate markers flanking a QTL. Using the Comparative Map Viewer, one can compare QTL map locations (A, B) to a variety of Solanaceae genetic maps (C) and tomato physical maps (D, including FingerPrint E) Contigs (FPC), Accessioned Golden Path (AGP) and International Tomato Annotation Group (ITAG) maps. ITAG maps are linked to Gbrowse where predicted genes, mRNA and CDS for are

Associated loci: [Associate locus]

Minus (bida abaa abaa abaa abaa asaa aa a					
view/hide phenotype data summary 🕿	10.82.00				
Trait	Value	Pop min	Pop max	Pop mean	
distal angle macro 10%	153.83	69.77	172.26	142.52	
distal angle macro 15%	132.15	61.8	145.58	119.24	
Mapping data					
4 9 9 4		_		4.0	44 40
		A 4		10	

Conclusion

QTL identification is an important approach in understanding the genetic basis of complex traits and development of marker assisted selection for faster, more reliable and cheaper improvement of polygenic traits in plants. The SGN QTL analyzer simplifies QTL detection and sharing data with the Solanaceae community. Through integration of user data with already existing genetic and physical maps at SGN, users are able to do comparative analysis, identify candidate genes and more.

References:

Broman KW, Wu H, Sen , Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889-890.

Mueller LA, Mills AA, Skwarecki B, Buels RM, Menda N, Tanksley SD (2008). The SGN comparative map viewer. Bioinformatics. 24(3):422-3.

Mueller LA, Solow TH, Taylor N, Skwarecki B, Buels R, Binns J, Lin C, Wright MH, Ahrens R, Wang Y, Herbst EV, Keyder ER, Menda N, Zamir D, Tanksley SD (2005) The SOL Genomics Network. A Comparative Resource for Solanaceae Biology and Beyond. Plant Physiol 138(3):1310-7.

http://sgn.cornell.edu

Contact SGN at:

sgn-feedback@sgn.cornell.edu

SGN code and software ftp://ftp.sgn.cornell.edu