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How coupled brain rhythms influence cortical information processing to support 

learning is unresolved. Local field potential and neuronal activity recordings from 64- 

electrode arrays in sheep inferotemporal cortex showed that visual discrimination 

learning increased the amplitude of theta oscillations during stimulus presentation. 

Coupling between theta and gamma oscillations, the theta/gamma ratio and the 

regularity of theta phase were also increased, but not neuronal firing rates. A neural 

network model with fast and slow inhibitory interneurons was developed which 

generated theta nested gamma. By increasing N-methyl-D-aspartate receptor sensitivity 

similar learning-evoked changes could be produced. The model revealed that altered 

theta nested gamma could potentiate downstream neuron responses by temporal 

desynchronization of excitatory neuron output independent of changes in overall firing 

frequency. This learning-associated desynchronization was also exhibited by 

inferotemporal cortex neurons. Changes in theta nested gamma may therefore facilitate 

learning-associated potentiation by temporal modulation of neuronal firing. 

The functions of both low and high frequency oscillations in the brain have been the subject 

of considerable speculation1. Low frequency theta oscillations (4-8Hz) have been observed to 

increase in terms of power and phase-locked discharge of single neurons in a visual memory 

task2.  In hippocampus the phase of theta rhythm functions as the clock signal for timing of 

pyramidal neurons and long-term potentiation (theta peaks) and depotentiation (theta 

troughs)3.  These findings may reflect the patterns of synaptic plasticity and maintenance of 

the memory for a stimulus.  Fast frequency gamma oscillations (30-70Hz) can provide tighter 

control and coordination than oscillations in a lower frequency range4. Thus gamma activity 

in local neural circuits is hypothesised to be responsible for higher cognitive functions such 

as perceptual binding of visual features5. Studies of human electroencephalographic (EEG) 

recordings show event-related gamma activity indicating gamma as a signature of cortical 
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networks underlying object representations6.  Recent examples of coupling between gamma 

amplitude and theta phase (theta-nested gamma)7 therefore provide an effective combination 

for neuronal populations to communicate and integrate information during visual processing 

and learning and may provide a process of temporal segmentation that can maintain multiple 

working memory items8. Modulation of oscillatory synchronization can also increase 

synaptic gain at postsynaptic target sites thereby potentiating responses to learned stimuli9-10. 

   There is still debate as to whether critical changes in theta or gamma involve amplitude or 

phase parameters, or both. Some human EEG recording studies have reported that theta 

phase rather than amplitude is correlated with cognitive processes, the so-called phase reset 

model1,11, while others in the frontal and temporal lobes have placed more importance on the 

correlation between theta amplitude and gamma frequency7. The magnitude of both theta and 

gamma oscillations during encoding also appears to predict the efficacy of subsequent 

recall12 and the theta rhythm can both modulate gamma amplitude13 and the firing of single 

neurons2. We have investigated the impact of learning on theta and gamma oscillatory 

activity in the inferotemporal cortex (IT) of three sheep, using 64-electrode recording arrays, 

while the animals performed a face or object-pair discrimination learning paradigm14. We 

then developed a neural network model reproducing our electrophysiological findings to 

infer the functional consequences of observed learning associated changes.  

RESULTS 

Theta and gamma oscillations are coupled in inferotemporal cortex 

Overall data was collected from 17 recording sessions (5-6 per sheep) and during 

presentation of 20 face (5-10 per sheep) and 2 non-face object pairs (one each in 2 sheep)(see 

Supplementary Fig. 1 online).  There were no systematic differences in the patterns of theta 

or gamma oscillations in response to the different types of stimuli and so data were combined. 
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   A wavelet transform applied to each individual LFP showed substantial theta band activity 

across the 4-8Hz range, and synchronised across IT electrodes, before and during stimulus 

presentation (see Supplementary Fig. 2 online). There was a much smaller contribution 

from gamma band activity (30-70Hz) and across the recording sessions there was significant 

(P<0.001) coupling between theta phase and gamma amplitude before (mean±sem = 

76.5±6.2% of recording electrodes in left IT and 84.6±4.2% in right IT) and during 

(80.6±5.8% in left IT and 84.6±4.7% in right IT) visual stimulus presentation (see Fig. 1a).   

   Since our data confirmed the presence of cross-frequency coupling between theta and 

gamma oscillations, similar to that reported in human EEG studies7, we investigated whether 

the correlation between theta phase and gamma amplitude was a consequence of theta 

nested-gamma activity.  To test this, we generated one theta wave and gamma wave and 

nested (added) them together using two sine waves of 5 Hz and 50 Hz  which were linearly 

mixed. The gamma frequency sine wave (50 Hz) had an amplitude 1/5th of the theta 

frequency one (5Hz). Using a trial length of 500 ms, 30 trials were generated with a sampling 

frequency of 1 kHz. White noise was then added to the mixed sine waves with a signal to 

noise ratio equal to -5 dB. The coherence between the theta phase and gamma amplitude was 

maximal (Fig. 1b) confirming that the relationship between the theta phase and gamma 

amplitude is indeed a consequence of theta nested-gamma activity.  

Learning increases theta amplitude, theta/gamma coupling and the theta/gamma ratio  

An analysis of theta wave activity revealed a significant increase in the amplitude and power 

of the first theta wave after stimulus onset which was enhanced ~1.5 fold following learning 

(Fig. 2b and Supplementary Table 1 online). The proportion of recording electrodes 

showing a significant (P<0.05)  rise in theta amplitude and power increased in all animals 

after learning and in both left and right IT (mean±sem Sheep A: Right 5.5±4.7% before 
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learning vs 72.9±9.3% after learning, t-test two-tailed, t15 = -7.3,  P<0.001;  Sheep B: Left 

5.7±2.7% vs 52±8.7% t22 = -4.04, P<0.001, Right 7.8±5.6% vs 59±11.8% t20 = -3.41 P = 

0.002; Sheep C: Left 0% vs 32.6±9.2%, using one-sample t-test , t6 = 3.55 P = 0.012, Right 

0% vs 61.5±16.2%, t6 = 3.79 P = 0.009). No individual electrodes showed a significant 

increase in gamma amplitude and power although there was a small overall significant 

increase across electrodes following learning in the right IT of one animal (Fig. 2c). The net 

result was a significant ~1.4 fold increase in the ratio of theta to gamma during stimulus 

presentation after learning (Fig. 2d). Coupling between theta and gamma was also 

strengthened after learning in terms of a greater coherence (~10%) between the two 

frequencies (Fig. 2e) together with a tightening of theta phase, although with the latter only 

in the right IT where z-scores for theta phase were ~3-fold higher than in the left IT (Fig. 2f).  

   We found no evidence for theta-phase resetting in response to stimulus presentation with 

<1.5% of recording electrodes showing a significant (P<0.05) effect. There was also no 

significant increase in the associated phase reset z-score following learning (Fig. 2g). 

   Overall, levels of theta synchronization across recording electrodes were higher in the right 

hemisphere (>95%) than in the left (47-48%) but with no effect of learning (Fig. 2h). This 

together with the theta phase-tightening our results indicates a greater degree of 

synchronization in theta activity in the right compared with the left IT, although it is high in 

both hemispheres. Such hemispheric differences might reflect a greater synchronization of 

synaptic inputs to the right IT from earlier centres in the visual processing system.  

Learning does not alter stimulus evoked visual potentials or neuronal firing rates 

Following stimulus onset there were similar peak response latencies for the visual evoked 

potential (VEP – characterised by P100 and N300 components see Fig. 2a), MUA and first 

theta wave (overall mean±sem across all recording sessions across the 3 animals: VEP: P100 
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= Right 129±7 ms, Left = 118±6 ms; N300 = Right 366±13 ms Left 324±16 ms; MUA: Right 

267±4 ms, Left 255±4 ms; Theta = Right 257±14 ms, Left 231±11 ms) (see Fig. 2a). Neither 

the response latencies nor the magnitudes of the P100 and N300 components of VEPs were 

influenced by learning (data not shown). While the magnitude of MUA responses changed 

significantly in response to stimuli both for electrodes with overall increased (overall 

mean±sem pre = 17±1.1Hz vs during = 29.4±1Hz before learning, t4 = -18.4, P<0.001 and 

19.7±1.7Hz vs 31.6±1.8Hz after learning, t4 = -37.6, P<0.001) or decreased activity (pre = 

29.2±1.5Hz vs during = 17.1±1Hz before learning, t4 = 15.7, P<0.001 and 32±2Hz vs 

19.7±1.2Hz after learning, t4 = 16.0, P<0.001) there was no significant effect of learning on 

this or on the proportion of electrodes showing increased firing rates (48.4±2.5% vs 

52.1±3.5%, t4 = -1.62, P = 0.18). This is therefore consistent with the absence of learning-

associated changes in gamma amplitude. 

Learning-evoked changes in theta/gamma activities can occur in <10 min 

The learning effects on IT theta nested gamma could be extremely rapid and with two face 

pairs, from two different animals, we were able to plot changes across sequential blocks of 

trials taking place over 20-30 min where learning was successfully achieved. In both cases 

there was a very close correspondence between the attainment of the >80% learning criterion 

and the changes in theta amplitude the theta/gamma ratio and coherence (see Fig. 3). In three 

other cases (2 face pairs and 1 object pair) where learning only occurred after a number of 

days of training there was also a similar close relationship between the achievement of the 

>80% learning criterion and altered theta amplitude, theta/gamma ratio and coherence values. 

Overall for the five different stimulus pairs when comparisons were made between the trials 

during learning and the first 40 trials where learning was achieved there was an enhancement 

in the IT of the stimulus-evoked increase in theta amplitude (mean±sem change from pre 
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(100%) to during stimulus = 106.8±4.1% during learning vs 124.9±2.7% after learning, 

paired t-test, t4 = -3.07, P=0.04), the theta/gamma ratio (113.6±10.7% vs 132.5±6.7%, t4 = -

2.97, P=0.04), theta/gamma coherence (105.5±3.7% vs 119.4±5%,  t4 = -2.89, P=0.04) and 

theta phase tightening (only for right IT, 101.7±2.4% vs 107.8±3.4%, t4 = -5.14,  P=0.007). 

Theta-nested gamma can be generated by neuronal networks incorporating both fast 

and slow inhibitory interneurons 

We next generated a neural network model based on 100 excitatory (glutamatergic with α-

amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) and N-methyl-D-aspartatic acid 

(NMDA) receptors) output neurons modulated by 50 fast and 50 slow inhibitory (γ-

aminobutyric acid type A receptors (GABAA) neurons and projecting to a single downstream 

neuron (see Fig. 4a). By adjusting the coupling strength between these neurons we found 

they could indeed produce theta-nested gamma oscillations (Fig. 4b). The generation of theta 

nested gamma required only a weak, but present, coupling coefficient between the fast 

inhibitory GABAA receptor type neurons and the excitatory ones and a strong coupling 

between the latter and the slow inhibitory type ones. There also had to be recurrent coupling 

between the fast inhibitory and excitatory cells. Increasing the fast inhibitory coupling 

strength tended to amplify gamma activity whereas increasing that of the slow inhibitory 

coupling amplified theta. So the two types of connections appear competitive in this context.   

Learning effects on theta/nested gamma in the model are produced by altering NMDA 

receptor sensitivity and potentiate responses by downstream neurons  

We first established that the model was able to reproduce patterns of theta and gamma 

activities observed in the IT. Simulations revealed similar changes in theta power during 

stimulus application and at the same latency (see Supplementary Figs 2 & 3 online). Theta 
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activity was also strongly synchronised and there was phase tightening during the stimulus 

(see Supplementary Figs 4 & 5 online).   

   Having validated the model’s utility we next used it to investigate potential functional 

consequences of shallow nested gamma (as seen after learning) on communication between 

excitatory and downstream neurons in comparison with deeper nested gamma (similar to 

before learning) or where gamma activity was minimal. Fig. 4b shows that the downstream 

neuron response during the stimulus is strongest when there is shallow nested gamma and 

there is increased theta amplitude and strong coupling between the two frequencies. With 

deeper nested gamma, excitatory neuron responses appear more highly synchronised and 

there is reduced theta/gamma coherence and a weaker downstream neuron response. When 

gamma is minimised there is also reduced downstream neuron activity and theta/gamma 

coherence (Fig.4b). Thus for optimal coupling between gamma and theta, and to evoke 

maximal responses in the downstream neuron, gamma should be shallow nested on theta as 

seen after learning.   

   We then used the model to investigate if NMDA receptor changes alone in the network 

could reproduce learning-induced changes in IT theta/gamma activity. It was found that 

increased NMDA receptor sensitivity on and between the excitatory neurons (NMee) and 

between them and the slow inhibitory ones (NMes) could account for the enhanced theta 

amplitude without changing gamma (Fig 5a). It was possible to achieve the same outcome by 

combining NMDA receptor changes with increased GABAA receptor sensitivity between the 

slow inhibitory and excitatory neurons (data not shown).  If the connection with the fast 

inhibitory neurons (NMef) was also altered this increased gamma amplitude and therefore 

did not replicate IT findings. Changes in the theta gamma ratio and theta/gamma coherence 

seen in IT recordings were also confirmed (Figs 5b,c). Theta and gamma amplitude and 
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coherence values were higher in the model than in IT recordings although the theta/gamma 

ratio was similar. This probably reflects the limited network size and complexity of the 

model compared with the IT itself and the greater noise inherent in in vivo brain recordings.  

Figs 5d,e  show that firing rates of the excitatory neurons are slightly decreased following the 

NMDA receptor changes mimicking learning but there is nevertheless a highly significant 

overall increase in the firing rate of the downstream neuron and this is positively correlated 

with the size of the theta/gamma ratio (Pearson correlation, r = 0.34, P<0.01 – Fig. 5f).  

Both the model and IT recordings show temporal desynchronization of neuronal output 

occurs following learning induced theta-nested gamma changes   

The potentiation of downstream neuron responses predicted by the model despite the absence 

of excitatory output neuron firing rate changes suggests that some form temporal re-

organisation of the latter is occurring to enhance their impact. We therefore investigated 

whether temporal synchronization in the excitatory neuron output to the downstream neuron 

is significantly altered as a result of simulated learning changes. Repeated simulations using 

the model confirmed that learning produced a significantly greater desynchronization of the 

excitatory neuron output across a range of stimulus strengths (overall mean ± sem 

synchronization index before learning = 0.068±0.0005 and after learning = 0.062±0.001 t-test, 

t18 = -5.3, P<0.0001, Fig. 6a). Synchronization levels were negatively correlated with the size 

of the theta/gamma amplitude ratio (Pearson correlation r = -0.42, P<0.001, Fig. 6b) and the 

firing frequency of the downstream neuron (r = -0.88, P<0.001, Fig. 6d).  

     An analysis of the distribution of active excitatory neurons in the network revealed that 

activity occurred primarily during the peak and subsequent fall of each theta wave and that 

on average significantly more time bins contained firing neurones after changes associated 
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with learning (mean ± sem = 4.99±0.29 before learning vs 5.92±0.19 after learning, 5ms bins 

during each theta wave for 1s during the stimulus,   t18 = -2.73, P=0.01, Figs. 6 d and e)      

     Our model therefore predicted that learning-induced changes in theta and its relationship 

to gamma should increase the impact of the firing of excitatory neurons on downstream ones 

by desynchronizing their output. We therefore investigated whether such desynchronization 

occurred in MUA recordings from IT neurons. Despite the contribution of both inhibitory 

interneurons and output neurons to the MUA, after learning there was indeed a significant 

desynchronization across the 5 electrode arrays in the 3 animals during the period of the first 

theta wave after stimulus onset (during learning synchronization index = 0.0867±0.007 pre-

stimulus and 0.0905±0.009 during stimulus, t-test, t4 = -0.9, P = 0.42; after learning = 

0.0856±0.005 vs 0.0797±0.006, t4 = 4.41, P= 0.01). This difference between during and after 

learning was significant (% change from baseline (100%) during stimulus = 104.3±4.7% 

during- vs 94.2±1.4% after learning, paired t-test t4 = 2.71 P=0.05).  As in the model, levels 

of synchronization were also negatively correlated with the theta/gamma ratio (Pearson 

correlation, r = -0.29, P<0.001, Fig 6c) and after learning there were significantly more 5ms 

bins with spike activity across each electrode during stimulus period theta waves (4.30±0.28 

vs 4.93±0.22, t4 = -4.75, P=0.009 using only electrodes showing stimulus-evoked increased 

firing rates in the recording arrays, Supplementary Fig 6 online). There was also a 

significant negative correlation between the number of bins with spike activity per theta 

wave and the magnitude of the synchronization index ( r =  - 0.3, P = 0.01).  

DISCUSSION   

Overall therefore our results have demonstrated for the first time that theta nested gamma in 

the IT is both influenced by learning and may serve an important function in the 

amplification and discriminability of inputs converging onto downstream neurons through a 
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temporal desynchronization effect. These learning effects can also be extremely rapid (<10 

min). The shallow-nested coupling of theta and gamma frequencies is essential for this 

functional outcome with learning induced changes in theta amplitude rather than theta phase 

being of key importance. Our neural network model also demonstrates for the first time that 

competitive and reciprocal coupling between fast and slow inhibitory interneurons and 

excitatory output ones is important for the production of theta-nested gamma and that 

learning-induced changes within the IT can be simulated simply by increasing NMDA 

receptor sensitivity within the proposed network as in many other learning situations. 

  To the best of our knowledge this is the first demonstration of the presence of theta-nested 

gamma in IT and our model shows that it could be maintained with a simple network of 

excitatory glutamatergic pyramidal neurons and slow and fast inhibitory GABAA receptor 

interneurons that could be present in this and other neocortical regions. That both slow and 

fast inhibitory interneurons are required for the generation of theta-nested gamma confirms a 

previous prediction15,  although differs from another study in the hippocampus suggesting 

that it is the h-current generated in oriens-lacunosum interneurons that is important16.   The 

presence of such fast and slow type GABAA receptor responses has recently been confirmed 

in the neocortex17 as well as the hippocampus18. 

    The main learning-associated change in theta oscillations we found in the IT was in terms 

of amplitude rather than phase and our results therefore do not support a key role for resetting 

of theta phase in cortical information processing contrary to some previous studies1,11. The 

lack of any co-incident alteration in the amplitude of gamma oscillations is in-line with our 

similar failure to find any change in stimulus-evoked neuronal firing rates in the IT following 

learning. Indeed, previous research in monkeys has also failed to find evidence for reward-

associated learning changes in firing rates of individual IT neurons19. 
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    While the effects on theta-nested gamma we observe following learning could be achieved 

by altering the sensitivity of NMDA receptors alone in our model they could also be 

reproduced through a combination of changes to both NMDA and GABA A receptors 

although it was felt that restricting changes to NMDA receptors alone more closely reflected 

known effects of learning induced plasticity changes in the brain where it is changes in 

NMDA receptors rather than in GABAergic ones that are consistently important20.  

   A recent study has reported a decorrelation shift in visual cortex neurons during responses 

to visual stimuli using a pair-wise correlation analysis approach21. However, the greater 

desynchronization of neuronal activity we have observed following learning using a 

synchronization index measure across a whole network might still at first seem counter-

intuitive. The increased theta amplitude we have shown, together with increased coherence 

between theta phase and gamma amplitude and a tightening of theta phase at individual 

electrodes, or the excitatory neurons in the model might indicate a tighter control of neuronal 

output and greater synchronization. However, changes in theta activity would also modulate 

the firing thresholds of the output neurons cells and the large increases seen after learning 

across the network would therefore result in a greater variability in firing thresholds. This 

would lead to a greater variability in the timings of firing thresholds being reached and an 

overall reduction in synchronisation with individual neurons becoming less likely to fire at 

the same time.  Our findings from both the model and MUA showing that after learning there 

is neural spike activity across a wider range of time bins during theta waves in the stimulus 

period provides some support for this hypothesis.      

   The prediction from the model that the impact of increased desynchronization in IT output 

neurons would lead to enhanced responses by downstream target neurons might also seem 

counter-intuitive. However, the more synchronized are the outputs from excitatory neurons 
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converging onto a downstream neuron  then the more input information can potentially be 

lost when more excitatory post synaptic potentials (EPSPs) are generated at the same time 

than are necessary to cause the downstream neuron to fire. However, if the EPSPs generated 

are more separated in time then they can avoid being rendered impotent by refractory period 

limitations and contribute more efficiently towards eliciting responses by the downstream 

neuron. Thus the net effect of a desynchronization shift in the IT output network could be 

that that the same number of EPSPs generated at downstream neurons would produce an 

enhanced response as observed in our model.  

   It would clearly be difficult to test the above model prediction directly in vivo without 

being able to make simultaneous recordings from multiple connected neurons in say IT and 

the frontal cortex. However, our combined in vivo and model simulation findings do provide 

a mechanism for how learning induced changes in theta-nested gamma could modulate 

temporal aspects of neuronal firing in neocortical networks such that downstream networks 

exhibit potentiated responses.    

METHODS 

Animals and visual discrimination training. Three female sheep were used (Ovis aries, one 

Clun Forest and two Dorsets). All experiments were performed in strict accordance with the 

UK 1986 Animals Scientific Procedures Act and during them the animals were housed inside 

in individual pens. The animals were trained initially over several months to perform 

operant-based face (sheep) or non-face (objects) discrimination tasks with a choice being 

made between two simultaneously presented pictures (side by side) only one of which was 

associated with a food reward. The position (left or right) of the rewarded picture was 

randomised in each trial. During stimulus presentations animals stood in a holding trolley and 

indicated their choice of picture by pressing one of two touch panels located in the front of 
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the trolley. The food reward was delivered automatically to a hopper between the two panels. 

The life-sized pictures were back projected onto a screen 0.5m in front of the animal using a 

computer data projector. A white fixation spot was presented constantly in between trials to 

maintain attention and experimenters waited until the animals viewed this spot before 

triggering presentation of the image pairs. The stimulus images remained in view until the 

animal made an operant response (generally around 1-3 s). In each case successful learning 

of a face or object pair required that a performance criterion of >80% correct choice over 40 

presentation trials was achieved consistently. By the end of training animals were normally 

able to reach the >80% correct criterion after 40-80 learning trials and to maintain this 

performance. Some previously learned stimulus pairs (over periods ranging from 10 days to 9 

months) were then presented during subsequent electrophysiological recording experiments 

although the animals were mainly presented with novel stimulus pairs and 

neurophysiological parameters recorded before and after the learning criterion was achieved.  

   For each sheep recordings were made in response to up to 11 different face or non face 

object pairs (Sheep A:  5 novel face and 1 novel object pair; B 7 novel face pairs, 3 

previously learned face pairs and one previously learned object pair; Sheep C:  2 novel face 

pairs and 3 previously learned face pairs.  Learning effects were monitored over between 80-

189 trials and data was collected over blocks of 20-40 trials. For the face pairs Sheep A and 

B were discriminating between the faces of different socially familiar or unfamiliar 

individuals (face identity discrimination) whereas for Sheep C discrimination was between 

calm and stressed face expressions in the same animal (n=3 pairs) or in different animals 

(n=2 pairs). With this animal the calm face was the rewarded stimulus. Where novel face or 

object pairs were being learned during recordings the >80% performance criterion was 

normally achieved between 20 and 80 training trials. The face and object pairs used for each 

of the 3 sheep are shown in Supplementary Fig. 1. 
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Electrophysiology. Following initial behavioral training sheep were implanted under general 

anesthesia (fluothane) and full aseptic conditions with either unilateral (one animal) or 

bilateral planar 64-electrode (for configuration see Supplementary Fig. 3a) arrays (epoxylite 

coated, etched, tungsten wires with 250µM spacing – total array area ~2mm x 2mm, 

electrode impedance ~0.2MΏ) aimed at the IT. Holes (0.7cm diameter) were trephined in the 

skull and the dura beneath cut and reflected. The electrode bundles were introduced to a 

depth of 20-22 mm from the brain surface using a stereotaxic micromanipulator and fixed in 

place with dental acrylic and stainless-steel screws attached to the skull. Two of these screws 

acted as reference electrodes, one for each array. Electrode depths and placements were 

calculated with reference to X-rays, as previously described22. Electrodes were connected to 

34 pin female plugs (2 per array) which were cemented in place on top of the skull (using 

dental acrylic). Starting 3 weeks later the electrodes were connected via male plugs and 

ribbon cables to a 128 channel electrophysiological recording system (Cerebus 128 Data 

Acquisition System - Cyberkinetics Neurotechnology Systems Inc., USA) and recordings 

made during performance of the different face and non-face pair operant discrimination 

tasks. This system allowed simultaneous recordings of both neuronal spike and local event-

related (LFP) activity from each electrode. Typically, individual recording sessions lasted 

around 30 min and for 80-200 individual trials. There was at least a week between individual 

recording sessions in each animal.   

   The LFPs were sampled at 2 kHz and MUA spikes at 30 kHz and digitized for storage from 

~3 seconds prior to the stimulus onset to ~3 seconds after the stimulus onset (stimulus 

durations were generally 1-3 s).  Neural recordings from our data acquisition system 

consisted of two large raw data files, one for the LFP and the other for the MUA. We used 
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custom Spike 2 (Cambridge Electronic Design, Cambridge, UK) scripts to translate these into 

text files arranged either by trial or electrode prior to further analysis.    

   LFP or MUA data contaminated with noise artefacts, such as from animal chewing food, 

were excluded as were LFPs with unexpectedly high power. For LFPs, offline filtering was 

applied in the range of 1-200 Hz and trend was removed before spectral analysis. Any trials 

having more than 5 points outside the mean ± 5 standard deviation range were discarded 

before the analysis. Blocks of trials where no visual evoked potential could be discriminated 

(this only occurred in Sheep C) were also excluded. The mean and the standard deviation 

values of different parameters were calculated across all trials for 500 ms before and 500 ms 

during the presentation of the visual discrimination pairs (i.e. prior to the performance of any 

operant response).  The LFPs and MUA responses were all aligned to the onset of the visual 

stimuli. All analyses were carried out using custom written routines in Matlab (The 

Mathworks Inc, Natick, MA). Use of custom spike-sorting software revealed that 1-4 single 

neurons were contributing to the MUA at each electrode23. 

   At the end of the experiments animals were euthanized with an intravenous injection of 

sodium pentobarbitone and the brains removed for subsequent histological confirmation of 

X-rays that array placements were within the IT cortex region.  

 

Visual evoked potentials (VEP) and MUA. The VEP was extracted from the LFPs by trial-

averaging after aligning the data to the onset of stimulus. Two major peaks were identified 

from the VEP in the initial 500ms of stimulus presentation: positive peak at ~100ms (P100) 

and a negative peak at ~300ms (N300). We calculated the latency for these two peaks by 

finding the time corresponding to the maximum and minimum peak value respectively.  The 

amplitudes of these two peaks were calculated as their peak values after subtracting the 

average baseline in the 100ms before stimulus onset. 
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   For the analysis of MUA data a Gaussian kernel with width of 30ms was convolved to the 

spike train. We used the maximum peak value in the initial 500 ms of stimulus presentation 

to characterise the MUA latency.  In each trial the responsive MUA was defined by a paired 

t-test (P<0.05) comparing the spike count in the pre-stimulus period and during-stimulus 

period using a bin width of 20 ms.   

 

Time-dependent spectrum analysis. To extract spectral content relating to time, we used a 

wavelet transform to disclose the time-dependent spectrum of the LFP data. The wavelet 

transform convolves the LFP )(tx with a mother wavelet )(tψ 24 : 
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The wavelet transform was applied to each individual LFP trial at each electrode and a final 

time-dependent spectrum estimated as the trial-averaged scalograms (modulus square of the 

wavelet transform). When comparing pre-stimulus and during stimulus theta band activity we 

used the amplitude of the wavelet transform at 4-8 Hz and averaged it across this band. For 

the gamma band amplitude in the 30-70Hz frequency range was analysed. Theta and gamma 

power was also calculated, although in our freely behaving animals we found the amplitude 

measure to be less variable across trials and sessions whereas power was susceptible to 

abrupt changes making comparisons more difficult. To determine the significance of 

responsiveness at each electrode a post-hoc t-test (with Benjamini-Hochberg correction) was 

used to compare the amplitude of the wavelet transform in the 500ms pre-stimulus with the 

500ms during stimulus periods.  The amplitude changes illustrating the effect of learning 
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were normalized by subtracting the amplitude value of the pre-stimulus period and dividing 

by the maximal value for each electrode.   

   The theta/gamma ratio was also calculated as the direct ratio between the theta amplitude 

and gamma amplitude (or theta power and gamma power).  

 

Cross-frequency coupling. We used coherence analysis to measure the dependency between 

the signals in the two different frequency bands. The main idea of coherence analysis is to 

detect the modulation between amplitude and phase of the two band-limited signals in each 

frequency band. To do this we can separate the raw signal into two sets of band-pass filtered 

signals25. The first set has frequencies from 30 Hz to 70 Hz, in 2 Hz step with 1 Hz 

bandwidth. This will create a real-valued band-pass filtered signal set )}({ txamplitude in which 

we can extract the amplitude signal used for gamma band. The second set of real-valued 

band-pass filtered signals )}({ tx phase  is created by filtering the raw signal with centre 

frequencies from 2 Hz to 20 Hz, in 1 Hz step with 1 Hz bandwidth. This set can be used to 

extract the phase signal for the theta band. The amplitude and phase signals can be extracted 

by applying a Hilbert Transform to both sets to generate complex-valued analytic band-

passed signals, i.e. )}({ txamplitude  is taken to create a set of analytic amplitude time series 

)}({ tA and the phase set )}({ tx phase  is extracted to create a set of analytic phase time series 

)}({ tϕ . When we have both the amplitude and phase signals the coherence 

)(
)()(

fC
ttA ji ϕ between i-th amplitude signal A(t) and j-th phase signal )(tϕ  is calculated by: 
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Where
)()()( fS tAtA ii  and 

)()()( fS tt jjji ϕϕ  are the auto-spectra for the i-th A(t) and j-th )(tϕ and 

)()()( fS ttA ji ϕ  is the cross-spectrum between them. The confidence interval for the coherence 

is given by7 : 

)1/(11 −− Kα  

where α  is the significant level (e.g. 01.0=α ) and K is the trial number which corresponds 

to the disjointed number of periodograms. The phase-locking index is then measured by the 

coherence in the range between 0 and 1 so that a large coherence value indicates a strong 

cross-frequency modulation. Coherence calculation is attained at all the pair-wise frequency 

combinations between two bands and a Bonferroni correction is applied to the multiple 

comparisons over all the frequency pairs. The coherence analysis was performed for all the 

electrodes and at each electrode the theta/gamma coherence values were calculated for all the 

pairs in the theta and gamma band.  

 

Phase reset. Since the complex Morlet wavelet was used to compute the time-dependent 

spectrum of LFP, the wavelet transform also provided phase information in the time-

frequency domain.  We therefore took out the angle of the complex wavelet transform as the 

instantaneous phase of LFP at each frequency. For a given trial k at time t the phase time 

series )(tkϕ were obtained by wavelet-transforming the LFP in trial k. If an electrode exhibits 

phase-locking across N trials the distribution of phase should depart from uniformity and this 

can be tested by a Rayleigh statistic25,26: 

∑∑
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Therefore the hypothesis of uniformity should be rejected at a certain significance level if 

phase-locking was found for that electrode.  The Z-score for the Rayleigh statistic is given 

as 2NRZ = .  

   To see if theta band waves exhibit phase-resetting with a locked phase over trials, we 

calculated the Z -scores as a function of time in the during-stimulus range across all trials. An 

electrode was considered to be phase-locking if all the samples from the time of stimulus 

onset at a given frequency (4 - 8Hz) pass the criterion of the Rayleigh test (P < 0.001) 

throughout two full oscillatory cycles. A comparison was made across all the electrodes in a 

recording array and a Bonferroni correction applied to compensate for type-I errors.  

 

Cross-array synchronization. To assess whether there was synchronization of the LFP 

phases, the Rayleigh statistic was also used to calculate a Z-score across all the electrodes. In 

each trial the Z-score for theta phase (4-8Hz) was calculated for each time point in the 500 

ms pre-stimulus and the 500 ms during stimulus periods for all the electrodes. If >80% of all 

time points across the combined 1 s interval were found to have a significant phase-locking 

(P < 0.005), then the LFPs were considered to be synchronized in that trial. For bilateral 

recordings, the left and right hemispheres were analysed separately. 

 

Phase-tightening. We calculated the Z-scores for LFP phases in 500ms pre-stimulus and 

500ms during stimulus periods across all the electrodes in the recording array. If the Z-score 

was significantly higher (t test, P<0.05) in the during-stimulus period than in the pre-stimulus 

period then the phase was considered to be tightened.  We used the percent change from the 

pre-stimulus to during-stimulus period to indicate the tightening of phase.  

 

MUA synchronization. We measured synchronization in MUA data by counting the spikes 

within a brief time window (bin width, 2.5-10ms). This is similar to a peri-stimulus time 
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histogram (PSTH) over all MUA channels. In each trial we produced a PSTH over all the 

MUA channels and normalized it by the sum of the counts in all PSTH bins. If 

synchronization occurred in a certain time bin there should be a high spike count for that bin. 

Normalization was carried out to ensure that the influence of differential firing rates was 

removed.  We then defined a MUA synchronization index as the sum of all the normalized 

spike counts which exceed half of the maximum value. We calculated the synchronization 

index choosing a bin width of 5 ms although we also used bin sizes of 2.5 ms and 10 ms and 

similar trends were observed. 

   The synchronization index was based on the following. Suppose that the total time T is 

divided into small time bins τ ( TNT =τ/ ), and that R spike trains are given by ikX =0 (there 

is no spike) or 1 (there is at least one spike),  i = 1,2,…,R,  k =1, …, TN. We can then define: 

 
∑∑

∑
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, 

If we then find those MlZ
lk ,,1, L=  (M<TN), that are larger than max(Zk/2), then the 

synchronization index α  can be defined as: 

                  α =  M

Z
M

l
kl∑

=1  

Network model. We constructed an excitatory-inhibitory network comprising three 

populations of neurons: 100 excitatory (pyramidal) neurons, 50 inhibitory fast (inter) neurons 

and 50 inhibitory slow (inter)neurons. Similar models using fast and slow GABAA kinetics 

have been investigated for hippocampal neurons27. Here we focused on the network property 

in the visual discrimination tasks. Each set of neurons obeys the following integrate and fire 

equation: 
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where eC , IC  are the capacitances for excitatory and inhibitory neurons, and eI , IfI  and IsI  

represent the background currents for these three kinds of neurons, excitatory neurons(EX), 

fast inhibitory neurons (INf) and slow inhibitory neurons (INs). appI  is the external input. In 

the model, we assume that the initial conditions of all neurons are random and the 

connections are all-to-all. Each cell receives AMPA and NMDA receptor mediated currents 

from excitatory pyramidal cells, and GABAA receptor mediated currents from INf neurons 

and INs neurons. The only exception is that INs neurons do not receive inputs from INf ones. 

Thus the synaptic inputs have the following general forms: 
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in which eE , IE  are reverse potentials of excitatory and inhibitory neurons, respectively;  

AMekg
−

, NMekg
−

, GAklg
−

  ( sfelk ,,, = ) are maximal channel conductances for AMPA, NMDA 

and GABAA receptors, respectively. An action potential is discharged when the membrane 

potential reaches a firing voltage threshold thV . Then the membrane potential is reset to resetV  
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and stays there for an absolute refractory period refτ . For EX cells, the parameters in the 

model are thV  = -52 mV, resetV  = -59 mV, refτ = 2ms, eC  = 0.5 nF, eLg  = 0.025 μ S, eLV  = -

70mV, the excitatory reverse potential eE  = 0 mV.  For inhibitory cells, we set thV  = -52mV, 

resetV = -60mV, ILV  = -65mV, IC  = 0.2 nF, ILg =0.02 μ S. The refractory time refτ = 1ms. The 

inhibitory reverse potential IE  = -70mV.  The gating variables m
AMs  and m

NMs are described by 

two first-order kinetics28:                          

⎪
⎪
⎩

⎪⎪
⎨

⎧

−−=

−−= ∑

lx
m
l

m
llx

m
l

j
lxjlx

ssx
dt

ds

xtt
dt
dx

,,

,,

/)1(

/)(

τα

τδα
 

with NMAMl ,= where jt  is the presynaptic spike time.  The channel parameters are xα =1 

ms-1, xτ =0.05 ms, sα =1 ms-1, sτ =2 ms. The inhibitory postsynaptic current (IPSP) from 

slow and fast interneurons is mediated by the GABAA receptor. The gating variables m
fGAs ,  

and m
sGAs ,  obey simple first-order kinetics (S10):         

sflsstt
dt

ds
Il

m
lGA

j

m
lGAjIl

m
lGA ,,/)1)(( ,,

, =−−−= ∑ − τδα        

Here the superscript in 
−
jt  indicates that the increment of m

lGAs , by a spike should be calculated 

using the value of m
lGAs ,  immediately before the spike on the right hand side of the equation: 

sfltststss j
m

lGAIj
m

lGAj
m

lGA
m

lGA ,)),(1()()( ,,,, =−=−=Δ −−+ α  

For the fast GABAA channel, we chose Ifτ = 9 ms, and Ifα  = 1 ms-1.  For the slow GABAA 

channel, Isτ = 50 ms, Isα  = 0.2 ms-1. In the simulation spikes in all presynaptic neurons are 

connected to a convergent neuron. For the background current of EX cells, we set 
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)100,,1(),(7.0 L=+= itI i
i
e ξ  where )(tiξ  is white noise with 1.0=eσ . For inhibitory cells, 

we set the background currents fixed and homogenous, for INf cells )50,,1(,85.0 L== jI j
If  

and for INs cells )50,,1(,6.0 L== kI k
Is .  

 

Parameters and analytical methods used in application of the model. To generate post 

learning effects the following coefficient values were used for the different sites of AMPA 

(AM), NMDA (NM) and GABAA (GA) receptors (e = excitatory neuron, s = slow inhibitory 

neuron and f = fast inhibitory neuron):  AMee = 0.02; AMef = 0.08; AMes = 0.0005; NMee 

= 0.0035; NMef = 0.001; NMes = 0.00055; GAff & GAss = 0.08; GAfe = 0.015; GAse = 

0.06; GAsf = 0.03.  For pre-learning only the values of two NMDA receptor coefficients 

were reduced: NMee to 0.002 and NMes to 0.0001. 

    All the methods for calculating theta/gamma parameters were the same as for the data 

from IT recordings. For Fig. 4 and the Supplementary Figs. 2-5 data are from a single run 

of the model. For Figs. 5 and 6  results are an average of 10 runs of the model. 

 

 

ACKNOWLEDGEMENTS 

This work was supported by a BBSRC grant and the Search Foundation (USA) (KK) and an 

EPSRC and EU grant (JF).  We thank Andrew Tate and Andrea Leigh for their help with 

behavioural and recording experiments. 

 

 

AUTHOR CONTRIBUTIONS 

KMK designed the IT recording experiments and carried them out with HF and AUN. Data 

analysis was performed by YZ, AUN, HF and KMK. JF developed the neural network model 



 25

with contributions from XZ, YZ and KMK. Model simulations and analyses were performed 

by YZ and XZ. The paper was written by KMK, JF and YZ with technical contributions from 

XZ, HF and AUN..    

 

1.   Buzsaki, G. Rhythms of the Brain (Oxford University Press USA, 2006).  

2.  Lee, H., Simpson, G.V., Logothetis, N.K. & Rainer, G. Phase locking of single  neuron 

activity to theta oscillations during working memory in monkey extrastriate visual cortex. 

Neuron 45, 147-156 (2005). 

3.  Holscher, C., Anwyl, R. & Rowan, M.J. Stimulation on the positive phase of hippocampal 

theta Rhythm induces long-term potentiation that can be depotentiated by stimulation on 

the negative phase in area CA1 in vivo. J. Neurosci. 17, 6470-6477 (1997). 

4.  Jensen, O., Kaiser, J. & Lachaux, J.P. Human gamma-frequency oscillations associated 

with attention and memory. Trends Neurosci.. 30, 317-324 (2007). 

5.   Csibra, G., Davis, G., Spratling, M.W. & Johnson, M.H. Gamma Oscillations and Object 

Processing in the Infant Brain. Science 290, 1582-1585 (2000). 

6.  Busch, N.A., Herrmann, C.S., Muller, M.M., Lenz, D. & Gruber, T. A cross-laboratory 

study of event-related gamma activity in a standard object recognition paradigm. 

NeuroImage 33, 1169-1177 (2006). 

7.  Canolty, R.T., et al. High Gamma Power Is Phase-Locked to Theta Oscillations in Human 

Neocortex. Science 313, 1626-1628 (2006). 

8. Jensen, O. Maintenance of multiple working memory items by temporal segmentation. 

Neuroscience 139, 237-249 (2006). 

9.   Fries, P., Reynolds, J.H., Rorie, A.E. & Desimone, R. Modulation of Oscillatory 

Neuronal Synchronization by Selective Visual Attention. Science 291, 1560-1563 (2001). 

10. Fries, P. A mechanism for cognitive dynamics: neuronal communication through 

neuronal coherence. Trends Cog. Sci. 9, 474-480 (2005). 

11. Rizzuto, D.S., et al. Reset of human neocortical oscillations during a working memory 

task. Proc. Natl. Acad. Sci. USA. 100, 7931-7936 (2003). 

12. Sederberg, P.B., Kahana, M.J., Howard, M.W., Donner, E.J. & Madsen, J.R. Theta and 

Gamma Oscillations during Encoding Predict Subsequent Recall. J. Neurosci. 23, 10809-

10814 (2003). 



 26

13. Lakatos, P., et al. An oscillatory hierarchy controlling neuronal excitability and stimulus 

processing in the auditory cortex. J. Neurophysiol. 94, 1904-1911 (2005). 

14. Tate, A.J., Fischer, H., Leigh, A.E. & Kendrick, K.M. Behavioural and 

neurophysiological evidence for face identity and face emotion processing in animals. 

Phil. Trans.Roy. Soc. B: Biol. Sci. 361, 2155-2172 (2006). 

15. White, J.A., Banks, M.I., Pearce, R.A. & Kopell, N.J. Networks of interneurons with fast 

and slow Î³-aminobutyric acid type A (GABAA) kinetics provide substrate for mixed 

gamma-theta rhythm. Proc. Natl. Acad. Sci. USA. 97, 8128-8133 (2000). 

16. Tort, A.B.L., et al., On the formation of gamma-coherent cell assemblies by oriens 

lacunosum-moleculare interneurons in the hippocampus. Proc. Natl. Acad. Sci. USA. 104, 

13490-13495 (2007) 

17. Sceniak M.P. & MacIver M.B. Slow GABAA mediated synaptic transmission in rat visual 

cortex. BMC Neurosci. 9, 1-14 (2008). 

18.Pearce R.A. Physiological evidence for two distinct GABAA responses in rat 

hippocampus. Neuron 10, 189-200 (1993) 

19. Rolls, E.T., Judge, S.J. & Sanghera, M.J. Activity in the inferotemporal cortex of the alert 

monkey. Brain Res. 130, 229-238. 

20. Liu, L., et al. Role of NMDA Receptor Subtypes in Governing the Direction of 

Hippocampal Synaptic Plasticity. Science 304, 1021-1024 (2004). 

21. Smith, M.A. & Kohn A. spatial and temporal scales of neuronal correlation in primary 

visual cortex. J. Neurosci. 28, 12591-12603 (2008) 

22. Kendrick, K.M. & Baldwin, B.A. in Methods in Neuroscience (ed. P.M. CONN) 3-15 

(Academic Press, New York, 1991). 

23. Horton, P.M., Nicol, A.U., Kendrick, K.M. & Feng, J.F. Spike sorting based upon 

machine learning algorithms (SOMA). J. Neurosci. Meth. 160, 52-68 (2007). 

24. Torrence, C. & Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Met. Soc. 

79, 61-78 (1998). 

25. Fisher, N.I. Statistical analysis of circular data. (Cambridge University Press, Cambridge, 

1993) 

26.  Halliday, D.M., et al. A framework for the analysis of mixed time series/point process 

data--Theory and application to the study of physiological tremor, single motor unit 

discharges and electromyograms. Prog. Biophys. Mol. Biol. 64, 237-278 (1995). 



 27

27. Wang, X.-J. Synaptic Basis of Cortical persistent activity: the importance of NMDA 

receptors to working memory. J. Neurosci. 19, 9587-9603 (1999). 

28. Wang, X.-J. & Rinzel, J. Alternating and Synchronous Rhythms in Reciprocally 

Inhibitory Model Neurons. Neural Comp. 4, 84-97 (1992). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 28

 

Figure 1. Theta/gamma coupling in IT and in simulations. (a) Typical examples of coupling 

between theta phase and gamma amplitude in three animals for the pre-stimulus (left) and 

during-stimulus (right) periods (from top to bottom, sheep A session 071004-1 channel 2, 

sheep B session 110305-1 channel 3, sheep C session 230305-2 channel 75) before (left) and 

during (right) presentation of a learned stimulus pair. There is a clear increase in coherence 

across the ranges of both frequencies during the stimulus. The red/yellow contour lines 

indicate significance changes (P<0.001). (b) Theta phase/gamma amplitude coupling using 

simulation data (top two panels). 50 Hz sine waves were nested on top of 5 Hz sine waves 

with peak ratio 1:5. In the pre-stimulus period the amplitude of the sine wave is 1/3 of the 

one in the during-stimulus period. The bottom left panel shows the simulation using i) 

Complete sets of two cycles of 50 Hz waves inserted into the same phase of each 5 Hz wave 

cycle (blue). ii) Complete set of 50 Hz wave were inserted into the random phase of each 5 

Hz cycle (red). iii) Incomplete set of 50 Hz were inserted into the random phase of 5 Hz 

cycles in which not every 5 Hz cycle had 50 Hz waves on it.  
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Figure 2 Evoked potential, MUA and theta latency profiles and theta/gamma activity 

changes after learning (a) Typical average latency profile for theta, MUA and VEP (P100 

and N300) over 40 trials post learning (face-pair shown at time 0). (b) Mean ± sem % change 

in theta amplitude (c) Gamma amplitude (d) Theta/gamma ratio (e) Theta gamma coherence 

and (f) Theta phase tightening (g) Mean ± sem  z-scores for theta phase synchronization and 

(h) Theta phase reset in the right and left IT of the 3 different animals (A,B and C) during 

sessions where discrimination learning performance had yet to reach >80% criterion (NL, 

mean±sem correct % Sheep A = 57.5±3.2%, Sheep B = 57.1±7.6%, Sheep C= 67±4.5%) 

compared with those where it had (L, Sheep A=89.4±3.1% – P<0.001, Sheep B=85.7±4% – 

P=0.001, Sheep C=90.5±2.5% – P=0.002). *P<0.05, **P<0.01, ***P<0.001 vs NL and 

#P<0.05, ##P<0.01, ###P<0.001 vs right hemisphere. Overall mean ±sem pre-stimulus 

values across the 3 animals were: Theta amplitude (mV) Right 5.33±0.4, Left 6.99±0.37; 

gamma amplitude (mV) Right 1.75±0.19, Left 2.87±0.17; Theta/gamma ratio Right 

3.41±0.18, Left 2.95±0.13; Theta/gamma coherence Right 0.13±0.01, Left 0.128±0.01; Theta 

phase tightening Right z=37.3±1.85, Left 24.9±2.08.   
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Figure 3. Rapid time course of learning effects on theta nested gamma. Pseudocolor panels 

show changes in:  (a) Theta amplitude, (b) Theta/gamma ratio and (c) Coherence between 

theta phase and gamma amplitude in the right IT during the learning of one new face pair in 

Sheep B over sequential (top to bottom) blocks of 20-40 trials conducted over approximately 

20 min (data plotted from 60 electrodes). Discrimination performance across the 4 blocks 

was 70%, 93%, 90% and 90% correct respectively (i.e. the learning criterion of >80% was 

achieved in the second and subsequent blocks). The face pair stimulus occurs at time zero 

and the pseudocolor scale indicates normalised (by the maximum value during the stimulus) 

differences between pre and during stimulus.  
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Figure 4. Neural network model showing effects of altering theta and gamma contributions 

(a) Schematic showing connectivity in the neural network model together with the coefficient 

variables representing AMPA (AM), NMDA (NM) and GABA A (GA) receptors (IN(s) = 

slow and IN(f) = fast inhibitory neuron, Ex (e) = excitatory neuron  (b) Responses to both a 

ramped and white noise stimulus (top. Iapp = 0.8) made by excitatory neurons, LFP, the power 

contribution of different frequencies across the theta/gamma range, the downstream neuron 

and coupling of theta phase and gamma amplitude. Left column is with shallow nested 

gamma as seen in IT recordings following learning. Data are from a single run of the model 

(AMee = 0.02; AMef = 0.08; AMes = 0.0005; NMee = 0.0035; NMef = 0.001; NMes = 

0.00055; GAff & GAss = 0.08; GAfe = 0.015; GAse = 0.06; GAsf = 0.03 – theta/gamma 

ratio = 3.4:1 , middle is with deep nested gamma (GAfe = 0.045 – theta/gamma ratio = 2.7:1) 

and right is with minimal gamma (GAse and GAsf = 0.12 theta/gamma ratio = 10:1).   
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Figure 5. Learning effects produced by the model (after learning = black; before learning = 

gray) by altering NMDA receptor sensitivity alone (NMee and NMes see Fig 4a). Graphs 

show changes in (a) Theta and gamma amplitude as a function of stimulus strength (Iapp). (b) 

Theta/gamma ratio, (c) Coherence between theta phase and gamma amplitude (d) Firing rate 

of the excitatory output neurons (e) Firing rate of the downstream neuron and  (f) Positive 

correlation between firing rate of the downstream neuron and the magnitude of the 

theta/gamma ratio (r = 0.34, P<0.01). NMDA, AMPA and GABA A receptor coefficients for 

after learning are the same as for shallow nested gamma in Fig. 4b. For before learning 

NMee =  0.002; NMes = 0.0001. Data are means±sem from 10 averaged runs of the model. 

Taking an overall average across the different values of Iapp, t-tests revealed significant 

differences between before and after learning – theta amplitude (a), t18 = 81.5, P<0.0001; 

gamma amplitude (a), t18 = -12.1, P<0.0001; theta/gamma ratio (b), t18 = 32.02, P<0.0001; 

theta/gamma coherence (c), t18 = 2.6, P = 0.03; excitatory neuron firing rate (d), t18 = -2.23, P 

= 0. 04 and the firing rate of the downstream neuron (e), t18 = 13.6, P<0.0001.       
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Figure 6. Learning-associated desynchronization in model excitatory neurones and IT. 

Graphs show (a) Significantly greater desynchronization of the 100 excitatory neurons in the 

model as a function of stimulus strength (Iapp) after learning (black) compared with during it 

(grey) (using an overall mean for all Iapp values t18 = -5.30, P<0.0001). Data are mean±sem 

from 10 runs  (b) Negative correlation between synchronization index and firing rate of the 

downstream neuron r = -0.60, P<0.001 (c) Negative correlation between excitatory neuron 

synchronization and size of the theta/gamma ratio, r = -0.42, P<0.001, (c) Negative 

correlation between synchronization and the theta/gamma ratio in MUA recordings from IT 

(r = -0.3, P<0.001), (e) Firing frequency distribution and theta waves generated by the 

model’s 100 excitatory neurons in 5ms bins for 1s after stimulus onset during learning and (f) 

after learning (Iapp = 0.8). After learning more time bins during theta waves have active 

neurons compared with before learning as a result of greater desynchronization. NMDA, 

AMPA and GABA A receptor coefficients as in Fig. 5.    
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