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The DNA sequences containing multifarious novel symmetrical structure 

frequently play crucial role in how genomes work. Here we present a new 

scheme for understanding the structural features and potential mathematical 

rules of symmetrical DNA sequences using a method containing stepwise 

classification and recursive computation. By defining the symmetry of DNA 

sequences, we classify all sequences and conclude a series of recursive equations 

for computing the quantity of all classes of sequences existing theoretically; 

moreover, the symmetries of the typical sequences at different levels are 

analyzed. The classification and quantitative relation demonstrate that DNA 

sequences have recursive and nested properties. The scheme may help us better 

discuss the formation and the growth mechanism of DNA sequences because it 

has a capability of educing the information about structure and quantity of 

longer sequences according to that of shorter sequences by some recursive rules. 

Our scheme may provide a new stepping stone to the theoretical 

characterization, as well as structural analysis, of DNA sequences. 

Advancement of DNA sequencing techniques accelerates the increase of DNA 

sequences data; one important challenge is to identify the biological significations of 

the huge amounts of DNA sequences. Rapidly accumulating evidences have indicated 

that DNA variations ranging from one to millions nucleotides, which include SNPs, 

insertions, deletions, inversions, duplications and copy-number variants etc., might 

cause genetic diversity and diseases
1, 2

. To explore the complex relationships of the 

structure-to-function in essentials, it is necessary to make some attempts and 
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endeavours from mathematical and physical points of view. Currently, the area of 

DNA mathematical analysis mainly relates to some methods based on statistics, 

including the distribution and the correlation of nucleic acids
3, 4

, complexity
5, 6

, and 

some studies
7-10

 grounded on information theory. The correlative physical studies 

mainly include the characterization of structural and mechanical properties, the 

interaction mechanism of biological macromolecule, and dynamics modeling and 

simulation etc.
11-16

. 

Simplicity and symmetry play central roles as guiding principles in nature. 

However, different symmetry breakings make our world show itself complex external 

phenomena. If the essential principles can be deeply understood and utilized in some 

ways, then the current patterns may be complex but derivable from relatively simple 

generative principles
17

. Moreover, the discovery about symmetrical elements in life is 

remarkable
18, 19

, and then the analysis and classification of DNA sequences based on 

symmetry will greatly facilitate to understand the significance of DNA symmetry. In 

genomes, DNA mirror image, palindrome and direct repeat sequences have special 

functions and novel symmetries
20-23

; they are widespread and cause serious concern to 

us. The researches about the DNA symmetry involve the symmetries of molecular 

structures, bases, codons, genes and even genome on scale, as well as physical 

symmetry and mathematical symmetry and so forth on content
24-31

. 

It is clear that structural variation and symmetry are both significant to the 

functions of DNA sequences; but the complex relationship between such physical 

properties and biological functions is uncertain yet. For example, sequence structural 

variations lead to symmetry breaking in a certain extent; however, some breaking can 

result in functional diversification but others have not effect on the original function, 

also known as DNA polymorphisms. Moreover, some symmetrical structures have 

influence on the evolution of sequences
21, 22

. In the consideration of structural 

variation and symmetry, we stepwise classify all sequences invoking the general 
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principles of symmetry breaking, and have derived relevant equations to compute 

quantity of sequences existing theoretically. The equations are defined recursively 

like the Fibonacci numbers; this means that if giving the initial values and recursive 

rules, the quantity of sequences of any length can be calculated fleetly. Another 

contribution in this work is the analysis of symmetry about several typical sequences 

at different levels. The diversified symmetries and symmetry breakings at various 

levels demonstrate the important physical properties of DNA sequences, and it may 

contribute to studying the symmetry breaking mechanism consequently understanding 

sequences evolution
21

. The study may be a new method for the study of the symmetry 

origin and the growth mechanism from part to whole of DNA symmetrical sequences, 

it also offer a new thinking for the theoretical characterization and structural analysis 

of DNA sequences. 

Classification and quantity 

The multifarious repeat sequences containing novel structures account for a large 

portion of genomes. Many researches proved that repetitive sequences always play 

some pivotal roles in formation, organization and regulation of genes, and are 

important information of biological evolution
32-34.

 We attempt to understand the 

significance of novel symmetrical structures; hence, we classify DNA sequences step 

by step from the viewpoint of structures. 

The principle of classification: for the sequences consisting of even (2n) bases, 

suppose that they are formed by right and left arms of equal length, we classify them 

according to the combinations of every two bases that locate at symmetrical sites of 

two arms. The combinations of two bases include 16 different cases (Fig. 1). If each 

base on left arm is the same as the base on the symmetrical site of right arm, e. g. 

sequence “AGTCC CCTGA”, then we denote the class of sequences as mirror image 

sequences and mark them by M, as illustrated by edge 1, 2, 3, 4 in Fig. 1. Obviously, 

M sequences possess mirror image symmetry, namely common bilateral symmetry. 
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The sequences merely illustrated by edge 5-8 are defined as the first kind of mirror 

conjugated sequences, and marked by MI, e. g. sequence “AGTCC GGACT”, also 

called DNA palindrome. MI sequences have not perfect bilateral symmetry, namely it 

is a type of symmetry breaking. However, it can be regarded as a special symmetry in 

which a imaginative “distorting mirror” making “A” and “T” be mirror image each 

other, similarly for “C” and “G”, positioned at the centre of MI sequence instead of 

the “plane mirror” in M sequences. The sequences illustrated by edge 9-12 and edge 

13-16 are defined as the second and the third kind of mirror conjugated sequences 

respectively, marked by MII and MIII. In this way, edges1-4, 5-8, 9-12 and 13-16 

illustrate four classes of different symmetries, respectively, and define four classes of 

symmetrical sequences. 

If a sequence contains odd (2n+1) bases, we regard the (n+1)th base as the 

centre, then there are still two arms of equal length n. In this case, one can also 

classify the sequences of odd length using the method dealing with the sequences of 

even length. As asymmetrical bases or segments frequently occur at the centre of real 

symmetrical sequences
21, 22

 namely central spacers, our method handling the 

sequences of odd length is not arbitrary. For simplicity in this study, we need to 

consider all sequences of even length only. 

Additionally, we name the sequences possessing certain symmetry at some sites 

and other symmetries at the rest of sites as asymmetry sequences. For example, 

sequence “ACTGG GGTTA” is an asymmetry sequence because the second base “C” 

and the last second base “T” are not identical but the rest bases possess mirror image 

symmetry. In reality, the majority of symmetrical sequences in genomes often contain 

a varying number of bases mutations that break the whole perfect symmetry, and 

sometimes influence whole functions
21, 35

. As known that the mutations are inevitable 

in evolution, the novel structures of symmetrical sequences play vital role in 

maintaining the complete biological functions of sequences
21

. 
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Based on the above principle of classification, we consider all cases concerning 

combination of different symmetries and have derived the formulas to calculate the 

quantities of all classes of asymmetry sequences. Theoretically, the total of sequences 

consisting of 2n bases equals to n24 , of which, M, MI, MII and MIII sequences all 

equal to n4 , because n bases on one arm produce n4  different combinations and one 

arm is automatically determined if another arm is given under a certain symmetry. 

The remainder is the asymmetry sequences (Fig. 2). The amounts of the 11 classes of 

asymmetry sequences can be calculated by the following equations: 

1

1

41_
n

i

i
n

n CAmount

 )1(  

i
jn

n

j

jn

i

j
n

n CCAmount
2

1

1

1

42_

 )2(  

i
jkn

j
kn

n

k

kn

j

kjn

i

k
n

n CCCAmount

)3(

1

)2(

1

)1(

1

43_

 )3(  

where n denotes the single arm length, and 
!

)!(!

n

ini
Ci

n
. 

Symmetrical sequences 

In the section, we study the structure and quantity of several symmetrical sequences at 

the different levels. Take the mirror image sequences M and the first kind of mirror 

conjugated sequence MI as examples, we subdivide them, discuss their quantitative 

formulas and further generalize the result to another two classes of mirror conjugated 

sequences. Furthermore, the direct repeat sequence, which has not bilateral 

symmetry, is also studied similarly. In view of the similarity of structure, we discuss 

M and MI sequences together in the following. 

Definition 1. M sequence 

Suppose sequence nsssS 221 ...  of length 2n, },,,{ TGCAsi and ni 21 , it is 
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named M sequence if 12 ini ss . 

Definition 2. MI sequence 

Suppose sequence nsssS 221 ...  of length 2n, },,,{ TGCAsi and ni 21 , it is 

named MI sequence if is  and )21(12 nis in  are complementary. 

Here the complementary relation is the normal Watson-Crick base pairing rules; 

namely “A” and “T” are complementary, similarly for “C” and “G”. According to the 

definition 2, sequence “CGCGAATTCGCG”, the so-called Dickerson-Drew 

dodecamer, is a MI sequence that structure continues to be the subject of intense 

experimental and theoretical study during the past over 20 years 
25, 36

. Obviously, in 

the above MI sequence, the twelve bases can be segmented as three parts “CGCG”, 

“AATT” and “CGCG”, which are all MI sequences. According to our investigation, 

the type of sequences, each segment satisfying the symmetry that the whole sequence 

satisfies, is considerable in M and MI sequences. For this reason, further, we classify 

M and MI sequences into M combinator and M generator, MI combinator and MI 

generator, respectively, to study their subtle structure. 

Definition 3. M and MI combinator and generator 

Suppose M (MI) sequence S is a combinator if and only if it can be segmented 

as khhhS ...21 , 2k , where ih  )1( ki  is also M (MI) sequence. Otherwise, S is a 

generator. 

(a) GCCG CAAC | CAAC GCCG M combinator 

(b) GC GC CATG | CATG GC GC MI combinator 

(c) ACTGC | CGTCA M generator 

(d) ACTGC | GCAGT MI generator 

Sequence (a) is a M combinator which could be considered as a structure 

constructed by four linked shorter M sequences; and (b) is a MI combinator, consists 

of 6 linked shorter MI sequences. Sequences (c) and (d) are generator, they are 
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inseparable. It is worth noting that some combinators have multiple segmentation 

methods. For example, MI combinator (b) also can be constructed by linking four 

palindromes “GCGC”, “CATG”, “CATG”, and “GCGC” end to end, instead of the 

above 6 pieces, it means that the segmentation is not unique. However, we can avoid 

the problem of multiple segmentations by taking generators as units. In this way, the 

segmentation of (b) can only be 6 pieces. 

Quantitatively, we calculate the amounts of M and MI generators and 

combinators using computer, and the part result (n≤18) was listed in Table 1. By 

analyzing the numbers, recursive relation among these numbers is deduced as:  

4 1

( ) 4 ( 1) ( / 2)

4 ( 1)

G G G

G

n

M n M n M n n is even

M n otherwise

  (4) 

0 1

( ) 4 ( 1) ( / 2)

4 ( 1)

C C G

C

n

M n M n M n n is even

M n otherwise

  (5) 

Given the initial values of equations when n=1, we can calculate the amounts of 

sequences of any length recursively. Take )(nMG  as an example: if n=1, then 

4)1(GM ; if n=2, 12)1()1(4)2( GGG MMM ; if n=3, 48)2(4)3( GG MM . By 

analogy, the amount of long sequences can be calculated recursively using the amount 

of shorter sequences that can be derived using that of more short sequences. For MI 

sequence, because )(_ nM GI  and )(_ nM CI  have the same quantitative relation with 

)(nMG  and )(nMC , respectively, they can also use equation (4) and (5). Another two 

kinds of mirror conjugated sequences MII and MIII both can be classified by the same 

method applied in MI, and satisfy the same quantitative equations. The recursive 

relation is a main contribution of the study. It is effective in calculating the quantity of 

sequences, also is revelatory in studying DNA growth mechanism because the 

recursive procedure may well be similar to the growth procedure of DNA sequences. 
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Moreover, the recursive computational procedure means that among the numbers 

investigated, there exists an order that can be formulated, and containing the 

analogical properties that implies a type of symmetry by reason of the predictability 

of the recursive formulas
37

. 

In addition, an interesting observation is that the amount of generators is always 

more than that of combinators for given n, and the ratio of them rapidly tends to 2.20 

with the increase of n. If we interestingly compare generator and combinator to “egg” 

and” chicken” respectively, we may could say that “eggs” are more than “chickens” 

and there were “eggs” before “chickens”. 

Further, besides the recursive relation in quantity, we hope to explore the 

recursive relation in structure. Therefore, combinators were classified in considerable 

detail in the following. Considering that every combinator consists of several 

generators, we can classify combinators according to the numbers and lengths of the 

generators within them. If arm length n=1, combinator does not exist. If n=2, only 

four combinators constructed by two shortest generators of length 2 exist, denoting 

the type of combinators as“2+2”. For instance, the four sequences of MI combinators 

are “ATAT”, “TATA”, “CGCG” and “GCGC”. If n=3, such combinators consists of 

three generators of length 2, denoting the type as “2+2+2”. If n=4, however, three 

different types present, including “2+2+2+2”, “2+4+2”, and “4+4”. All types of 

combinators of arm lengths ranging from 2 to 8 are listed in Table 2. 

To characterize the types and quantity of combinators in detail, taking M 

combinator for instance, we denote it as ),...,,( 21 jC hhhM , )2( j . That means that 

one combinator consists of j generators, and the length of the ith generator is ih , 

)1( ji . The amount |),...,,(| 21 jC hhhM  can be calculated as: 

oddisjhMhMhM

evenisjhMhMhM
hhhM

j

j

GGG

GGG

jC )2/(......)2/()2/(

)2/(......)2/()2/(
|),...,,(|

2
1

2

21

21

21   (6) 
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where, )2/( iG hM , the recursive equations of M generators (equation (4)), represents 

the amount of M generators of arm length / 2ih . For example, 4)1()2,2( GC MM , 

48124)2()1()2,4,2( GGC MMM . According to the equation (6), the amount of 

various M combinators with different structure can be computed using the equations 

(4). The three types of mirror conjugated sequences MI, MII and MIII combinators 

have the same structural and quantitative properties as M combinators. 

Through elaborating these specialties, we observe that generator is significant 

not only in quantity because its amounts are precondition of calculating the amounts 

of combinators, also in structure because they construct combinators completely. 

Direct repeat sequence is another class of special sequences with novel 

symmetry, and many researches proposed that direct repeat sequence plays an 

important role in the control of gene expression and chromatin organization
32-34

. In 

the classification as described above, direct repeat sequences has not been classified 

due to its translational symmetry rather than the bilateral symmetry like M, MI, MII 

and MIII sequences, then we discuss its structural and quantitative properties solely. 

Definition 4. Direct repeat sequence 

Suppose sequence nsssS ...21  of length n, },,,{ TGCAsi , ni1 , it is named 

direct repeat sequence if integer 1t  exists such that for each tni1  we 

have iti ss . 

In the definition, t represents the periodicity, which is the most important 

feature of direct repeat sequences. For example, “ACACACAC” is a direct repeat 

sequence, and its repetitive unit “AC” of length 2 repeats four times, then the 

periodicity t=2. We can classify direct repeat sequences of given length according to 

the length of repetitive unit. In the example, however, “ACAC” can be regarded as a 

repetitive unit that repeats two times and t=4. In other words, periodicity t is not 

unique sometimes for the same sequence. To ensure consistency of classification, our 

classification of direct repeat sequences is based on the length of the shortest 
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repetitive unit, then the periodicity t equal to 2 in the above example. Consider the 

case of n=12, proper divisors of 12 are as follows: 1, 2, 3, 4 and 6, then the types of 

direct repeat sequences consist of 121)(a , 621 )( aa , 4321 )( aaa , 34321 )( aaaa  and 

2654321 )( aaaaaa . They mean that one base repeats 12 times, t=1; 2 bases as a unit 

repeats 6 times, t=2; similarly, 3, 4 and 6 bases as a unit repeats 4, 3 and 2 times, 

respectively, t=3, 4 and 6. Obviously, the types of direct repeat sequences depend on 

the divisors of length n. We denote the amount of repetitive unit of length m as f (m), 

it is defined recursively as follows: 

i

m mif

m

mf 1)(4

14

)(  (7) 

where i indicates the proper divisor of m. Then the amount of direct repeat sequences 

of full length n, R (n), can be calculated by accumulating its f (m): 

m

mfnR )()(  (8) 

where m indicates the proper divisor of n. 

Therefore, if n is a prime number, direct repeat sequences merely include four 

kinds of sequences: “AA…A”, “TT…T”, “CC…C” and “GG…G”. Because the 

proper divisor of n is only one, such that 4)1()( fnR . If n is a composite number, 

the types and amounts of direct repeat sequences lies on the amounts and size of the 

proper divisors of n. 

Symmetry of sequences 

In consideration of the principle of classification is symmetry, here we discuss the 

symmetries of several typical sequences, such as mirror image sequences M, first kind 

of mirror conjugated sequences MI and direct repeat sequences, at the levels of bases, 

generators/repetitive units and molecules. 
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M sequences possess mirror image symmetry at the level of bases array, that is 

to say every two bases that locate on symmetrical sites of two arms are the same. For 

M combinators, it possess not only mirror image symmetry at the level of bases also 

both mirror image symmetry and translational symmetry at the level of generators 

(Fig. 3a and b). It is understandable that the symmetry of M sequences at the level of 

bases is determined by its definition; moreover, the symmetries of M combinators at 

the level of generators depends on its structural features that each generator is also 

read exactly the same on both directions. 

MI sequences possess the first kind of mirror conjugated symmetry (A-T, C-G) 

at the level of bases, that is to say every two bases that locate on symmetrical sites of 

two arms are complementary. MI combinators possess only translational symmetry at 

the level of generators (Fig. 3c and d), and the point is different from M combinators. 

It is easy, similarly, to understand MII and MIII sequences are similar to MI sequences 

in structure. Therefore, MII and MIII sequences have also translational symmetry at the 

level of generators besides its relevant mirror conjugated symmetry at the level of 

bases. 

For direct repeat sequences, bases always repeatedly appear with certain 

periodicity that is the length of repetitive unit. Thus, direct repeat sequences have 

translational symmetry at the level of bases. Obviously, they possess translational 

symmetry at the level of repetitive units also (Fig. 3e). 

It is well known that the molecular backbone of DNA strand is constructed from 

alternating sugar and phosphate molecule; it means the backbone has translational 

symmetry. If we consider bases together with backbone, all above translational 

symmetry still retain; however, mirror image and mirror conjugated symmetries lose. 

Additionally, we have observed the existence of overlapping among five classes 

of symmetrical sequences (M, MI, MII, MIII, and direct repeat sequences); the 
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relationship among them is shown in Fig. 4. For instance, sequence “ACCA ACCA 

ACCA ACCA” is not only a direct repeat sequence also a mirror image sequence. In 

details, the direct repeat sequence as a whole possesses mirror image symmetry if its 

repetitive unit possesses mirror image symmetry, and we denote the type of sequences 

as DM, and the amount |DM| can be calculated as: 

i

G inMDM )2/][(||  (9) 
where )2/][( inMG , the recursive equations of M generators (equation (4)), represents 

the amount of M generators of arm length [ ] / 2n i ; and [ ]n i  represents the array 

composed of the even proper divisors of n. Similarly, the direct repeat sequences also 

possess mirror conjugated symmetry if repetitive units possess certain mirror 

conjugated symmetry, and its amount |DMI|, |DMII| and |DMIII| both equal to |DM|. 

Conclusions 

Our study should be a new step towards the mathematical and physical cognition of 

DNA sequences. Nevertheless, the study is the first screen for the understanding of 

how symmetry plays key roles in DNA classification and theoretical computation and, 

as such, it serves as a guild for the future exploration of DNA growth mechanism and 

symmetry breaking principles. In the study, three main contributions are as follows. 

(1) We classify all sequences in detail based on symmetry, the stepwise refined 

classification contribute to the understanding of DNA sequences structure from small 

scale to large scale. (2) Moreover, we perform theoretically computation about 

sequences quantity, and have found a series of recursive equations that are often very 

useful when confronting a complex computation. Using our classification principle 

and recursive equations, one can fleetly and effectively calculate the quantity and 

structure of DNA sequences of any length existing theoretically. Classifying mirror 

image sequences M and mirror conjugated sequences MI, MII and MIII into generators 

and combinators, an observation is that the ratio of generators to combinators tends to 

2.20 with the increase of length n. From the standpoint of structure, they can be 
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compared interestingly as “egg” and “chicken” respectively, and “eggs” are more than 

“chickens” and there were “eggs” before “chickens”. (3) The results about symmetry 

study show that M sequences possess translational, mirror image and both 

translational and mirror image symmetries at the level of molecules, bases and 

generators, respectively. MI, MII and MIII are asymmetrical at the level of molecules; 

and possess the symmetries corresponding to their definitions at the level of bases; 

however, at the level of generators, possess translational symmetry. Direct repeat 

sequences possess translational symmetry at all three levels, molecules, bases and 

repetitive units. 

In reality, the majority of DNA symmetrical sequences do not satisfy a certain 

perfect symmetry; namely they are asymmetry or symmetry breaking in a certain 

extent. The phenomenon is consistent with that the symmetry breakings frequently 

present in symmetrical things whatever they are natural or artificial. Therefore, that 

exploring the mechanism of symmetry breakings in DNA sequences presents new 

challenges and opportunities to researchers
18, 21, 24

. So far, although our work have not 

be directly contacted to a certain biological signification, it is hopeful to provide a 

new insight into DNA analysis since it is well known that nature's rhythms are often 

linked to symmetry and simplicity
17-19, 37

. 

Reference 

1.  Inoue, K. & Lupski, J. R. Molecular mechanisms for genomic disorders. Annu. 

Rev. Genomics Hum. Genet. 3, 199-242(2002). 

2.  Lupski, J. R. Genomic disorders: structural features of the genome can lead to 

DNA rearrangements and human disease traits. Trends Genet. 14, 417-422(1998).  

3.  Peng, C. K. et al. Long-Range Correlations in Nucleotide-Sequences. Nature 356, 

168-170 (1992). 

http://www.iciba.com/consistent/
http://www.iciba.com/with/
http://dj.iciba.com/challenges/


 14 

4.  Luo, L. F., Lee, W. J., Jia, L. J., Ji, F. M. & Tsai, L. Statistical correlation of 

nucleotides in a DNA sequence. Phys. Rev. E. 58, 861-871(1998). 

5.  Troyanskaya, O.G. et al. Sequence complexity profiles of prokaryotic genomic 

sequences: A fast algorithm for calculating linguistic complexity. Bioinformatics 18, 

679-688(2002). 

6.  Orlov, Y. L. & Potapov, V.N. Complexity: an internet resource for analysis of 

DNA sequence complexity. Nucleic Acids Res. 32, W628-W633(2004). 

7.  Zhou, L. Q., Yu, Z. G., Deng, J. Q., Anh, V. & Long, S. C. A fractal method to 

distinguish coding and non-coding sequences in a complete genome based on a 

number sequence representation. J. Theor. Biol. 232, 559-567(2005). 

8. Voss, R.F. Evolution of long-range fractal correlations and 1/F Noise in 

DNA-Base Sequences. Phys. Rev. Lett. 68, 3805-3808(1992). 

9. Dodin, G., Vandergheynst, P., Levoir, P., Cordier, C. & Marcourt, L. Fourier and 

wavelet transform analysis, a tool for visualizing regular patterns in DNA sequences. 

J. Theor. Biol. 206, 323-326(2000). 

10. Arneodo, A., Bacry, E., Graves, P. V. & Muzy, J. F. Characterizing long-range 

correlations in DNA-sequences from wavelet analysis. Phys. Rev. Lett. 74, 

3293-3296(1995). 

11. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. 

Crystal structure of the nucleosome core particle at 2.8 angstrom resolution. Nature 

389, 251-260(1997). 

12. Marko, J. F. DNA under high tension: Overstretching, undertwisting, and 

relaxation dynamics. Phy. Rev. E. 57, 2134-2149(1998). 

13. Smith, S.B., Cui, Y.J. & Bustamante, C. Overstretching B-DNA: The elastic 

response of individual double-stranded and single-stranded DNA molecules. Science 

271, 795-799(1996). 

http://apps.isiknowledge.com.ezp.lib.unimelb.edu.au/OneClickSearch.do?product=UA&search_mode=OneClickSearch&db_id=&SID=3CeFJ@GE3ep@LdEFgkk&field=AU&value=Marko%20JF&ut=000072116100035&pos=1
http://apps.isiknowledge.com.ezp.lib.unimelb.edu.au/OneClickSearch.do?product=UA&search_mode=OneClickSearch&db_id=&SID=3CeFJ@GE3ep@LdEFgkk&field=AU&value=Smith%20SB&ut=A1996TU69400042&pos=1
http://apps.isiknowledge.com.ezp.lib.unimelb.edu.au/OneClickSearch.do?product=UA&search_mode=OneClickSearch&db_id=&SID=3CeFJ@GE3ep@LdEFgkk&field=AU&value=Cui%20YJ&ut=A1996TU69400042&pos=2
http://apps.isiknowledge.com.ezp.lib.unimelb.edu.au/OneClickSearch.do?product=UA&search_mode=OneClickSearch&db_id=&SID=3CeFJ@GE3ep@LdEFgkk&field=AU&value=Bustamante%20C&ut=A1996TU69400042&pos=3


 15 

14. Brower-Toland, B. D. et al. Mechanical disruption of individual nucleosomes 

reveals a reversible multistage release of DNA. Proc. Natl. Acad. Sci. USA 99, 

1960-1965(2002). 

15. Evans, E. & Ritchie, K. Dynamic strength of molecular adhesion bonds. Biophy. 

J. 72, 1541-1555(1997). 

16. Schwalb, N. K. & Temps, F. Base sequence and higher-order structure induce the 

complex excited-state dynamics in DNA. Science 322, 243-245(2008). 

17. Stewart, I. Nature's Numbers: The Unreal Reality of Mathematics (Basic Books, 

New York, 1996). 

18. Qiu, W. Y. in Chemical Topology—Application and Techniques, Mathematical 

Chemistry Series (eds. Bonchev, D. & Rouvray, D. H.) 175-237 (Gordon and Breach 

Science Publishers, Amsterdam, 2000). 

19. Froggatt, C. D. & Nielsen, H. Origin of Symmetries (World Scientific, Singapore, 

1991). 

20. Urata, H., Ogura, E., Shinohara, K., Ueda, Y. & Akagi, M. Synthesis and 

Properties of Mirror-Image DNA. Nucleic Acids Res. 20, 3325-3332(1992). 

21. Rozen, S. et al. Abundant gene conversion between arms of palindromes in 

human and ape Y chromosomes. Nature 423, 873-876(2003). 

22. Lewis, S. M. & Cote, A. G. Palindromes and genomic stress fractures: Bracing 

and repairing the damage. DNA Repair 5, 1146-1160(2006). 

23. Holste, D., Grosse, I., Beirer, S., Schieg, P. & Herzel, H. Repeats and correlations 

in human DNA sequences. Phys. Rev. E. 67, 061913(2003). 

24. Touchon, M., Nicolay, S., Arneodo, A., d’Aubenton-Carafa, Y. & Thermes, C. 

Transcription-coupled TA and GC strand asymmetries in the human genome. FEBS 

Lett. 555, 579-582(2003). 



 16 

25. Johansson, E., Parkinson, G. & Neidle, S. A new crystal form for the dodecamer 

C-G-C-G-A-A-T-T-C-G-C-G: Symmetry effects on sequence-dependent DNA 

structure. J. Mol. Biol. 300, 551-561(2000). 

26. Gavish, M., Peled, A. & Chor, B. Genetic code symmetry and efficient design of 

GC-constrained coding sequences. Bioinformatics 23, E57-E63(2007). 

27. Zhang, C.T. A symmetrical theory of DNA sequences and its applications. J. 

Theor. Biol. 187, 297-306(1997). 

28. Wilhelm, T. & Nikolajewa, S. A new classification scheme of the genetic code. J. 

Mol. Evol. 59, 598-605(2004). 

29. Nikolajewa, S., Friedel, M., Beyer, A. & Wilhelm, T. The new classification 

scheme of the genetic code, its early evolution, and tRNA usage. J. Bioinform. 

Comput. Biol. 4, 609-620(2006). 

30. Arques, D. G. & Michel, C. J. A complementary circular code in the protein 

coding genes. J. Theor. Biol. 182, 45-58(1996). 

31. Arques, D. G., Fallot, J. P. & Michel, C. J. An evolutionary model of a 

complementary circular code. J. Theor. Biol. 185, 241-253(1997). 

32. International Human genome Sequencing Consortium. Initial sequencing and 

analysis of the human genome. Nature 409, 860-921(2001). 

33. Johns, D. R., Rutledge, S. L., Stine, O. C. & Hurko, O. Directly repeated 

sequences associated with pathogenic mitochondrial DNA deletions. Proc. Natl. 

Acad. Sci. USA 86, 8059-8062(1989).  

34. Brahmachari, S. K. et al. Simple repetitive sequences in the genome-structure and 

functional-significance. Electrophoresis 16, 1705-1714(1995). 

35. Yen, P. H., Chai, N. N. & Salido, E. C. The human DAZ genes a putative male 

infertility factor on the Y chromosome,are highly polymorphic in the DAZ repeat 

regions. Mamm. Genome. 8, 756-759(1997). 



 17 

36. Drew, H. R. & Dicksson, R. E. Structure of a B-DNA dodecamer. III. Geometry 

of hydration, J. Mol. Biol. 151, 535-556(1981). 

37. Rosen, J. Symmetry Rules: How Science and Nature Are Founded on Symmetry 

(Springer-Verlag, Berlin Heidelberg, 2008). 

Acknowledgements This work was supported by the National Natural Science Foundation of China. 

Author Information Reprints and permissions information is available at npg.nature.com/ 

reprintsandpermissions. The authors declare no competing financial interests. Correspondence and 

requests for materials should be addressed to W.-Y. Q. (wyqiu@lzu.edu.cn). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 18 

Table 1 Amounts of M and MI generators and combinators, n≤18. 

 

Here )(nM ， )(nMG  and )(nMC  represent the amounts of M sequences, M generators 

and combinators, respectively. Likewise, )(nM I ， )(_ nM GI  and )(_ nM CI  represent the 

amounts of MI sequences, MI generators and combinators, respectively. Where, “n” represents 

the arm length of M and MI sequences. The arrows and the side expressions illustrate the 

relations between the above and the below numbers. The quantitative relation of )(nM , 

)(nMG  and )(nMC  are the same as )(nM I , )(_ nM GI  and )(_ nM CI , respectively. 

 

Table 2 Classification of combinators 

 

If the arm length of combinator equals to n, the number of types equals to
n

22 -1, where n
2  

indicates the largest integer at most n/2. 
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Figure 1. Combination of two bases that locate on two symmetrical sites 

of two arms. Four nodes indicate bases A, C, T and G, 16 different 

combinations of two bases are shown by 16 directed edges. Two bases linked 

by an edge locate at two symmetrical sites of two arms. For instance, the edge 

denoted as 5 represents the base A linked tail of the edge locates at left arm, 

and the base T linked head of the edge locates at the symmetrical site of right 

arm. 

 

Figure 2. Classifications and quantities of all sequences. There are four 

kinds of symmetry sequences M, MI, MII, MIII, and 11 kinds of asymmetries 

sequences. For instance, MI+MII represent the sequences that possess the 

first kind of mirror conjugated symmetry at some sites and the second kind of 

mirror conjugated symmetry at the rest sites. Amount_1, Amount_2 and 

Amount_3 (equation (1), (2) and (3)) represent the amounts of the asymmetry 

sequences assembling two, three and four kinds of symmetries, respectively. 

 

Figure 3. Symmetries of M combinators, MI combinators and direct 

repeat sequences. The arrows dyed the same colour represent the same 

generators/repetitive units, direction of arrows are employed to demonstrate 

symmetry. The concolorous arrows demonstrate mirror image symmetry if 

their direction are reverse, translational symmetry if their direction are the 

same, both of the above two kinds of symmetries if arrows are bidirectional. a 

and b, M combinators constructed by even generators and odd generators, 

respectively. c and d, MI combinators constructed by even generators and odd 

generators respectively. For the two kinds of combinators, their generators 

distribute symmetrically if the amount of generators is even, in contrast, one 

generator locates on the centre and the rest distribute symmetrically if the 
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amount of generators is odd. e, a direct repeat sequence, where repetitive unit 

is GACTA, t=5, and the repetitive times equals to m. 

 

Figure 4. Relationships among M, MI, MII, MIII and direct repeat 

sequences. We denote by DM, DMI, DMII and DMIII the intersections between 

direct repeat sequences with M, MI, MII and MIII, respectively. Note that M, MI, 

MII and MIII sequences have not intersections each other because of their 

different symmetry. 
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