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Abstract 
 

Neurogenesis occurs in some regions of the adult mammalian brain and gives rise to 

neurons integrated into functional networks. In pathological or postlesional conditions, 

neurogenesis and astrogenesis can also occur, as demonstrated in the deafferented 

vestibular nuclei after unilateral vestibular neurectomy in the adult cat. Here we report that 

in cats infused with an antimitotic drug, cytosine-ß-D arabinofuranoside (AraC), the 

number of GAD67 and GFAP immunoreactive cells is increased, despite the total mitotic 

activity blockade observed in the deafferented vestibular nuclei after unilateral vestibular 

neurectomy. At the behavioral level, recovery of posturo-locomotor function was 

drastically delayed, and no alteration of the horizontal spontaneous nystagmus was 

observed. These cellular and behavioral results suggest that reactive neurogenesis and 

astrogenesis might contribute highly to vestibular compensation in the adult cat, probably 

by accelerating the recovery of vestibular functions. 
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INTRODUCTION 
 

Adult neural stem progenitors reside in many areas of the adult mammalian central 

nervous system (CNS), but continuous neurogenesis occurs only in two restricted regions: in 

the subgranular zone (SGZ) of the dentate gyrus (DG) of the hippocampus and in the 

subventricular zone (SVZ) of the lateral ventricles1. Among the interrogations raised by this 

new form of adult plasticity is the function of these new neurons2. In vitro experiments in 

rodents have shown that new DG or SVZ neurons develop electrophysiological and synaptic 

properties very similar to and even indistinguishable from mature neurons3-6. Spontaneous 

neurogenesis leads to functional integration, into pre-existing neural networks, of the cells 

newly generated in the DG7,8 and in the olfactive bulb6,9. These cells become active and 

contribute to the transmission of information in the brain. In response to physiological or 

pathological stimulations, newborn DG and SVZ neurons express the immediate early gene 

product c-Fos, a neural activity marker10,11. These data suggest that neurons elaborated during 

adulthood in delimited zones of the CNS can integrate pre-established neural networks and 

participate actively in their function. Outside these two discrete areas, proliferating cells give 

rise to glia but not neurons in the intact adult CNS. However, in pathological or injured states 

of the brain, neurogenesis and gliogenesis have been reported both in known neurogenic 

zones and in other areas12,13, such as the dorsal vagal complex or the vestibular nuclei (NV). 

In the dorsal vagal complex the number of newly generated neurons and microglial cells 

increases after unilateral vagotomy in the adult rat14; in the vestibular nuclei, astroglial and 

microglial reactions occur after unilateral removal of vestibular and cochlear receptors15,16. 

Together, these results suggest that the adult mammal CNS is able to generate the main 

characteristic cell types of nervous tissue (neurons, astrocytes and microglial cells) for brain 

restructuring and to integrate them in pre-established networks. But the functional benefit of 

this form of structural plasticity remains poorly documented. 
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We have previously demonstrated in the adult cat that unilateral vestibular neurectomy 

(UVN)17 causes an intense reactive cell proliferation in the deafferented vestibular nuclei 

(VN). Most of these new cells survive one month after injury and give rise to astrocytes, 

microglial cells, and neurons. The newly generated neurons express a GABAergic phenotype 

and might correspond morphologically to intrinsic commissural neurons, local vestibular 

interneurons, or to groups II, III, or IV, representing the vestibulo-ocular, vestibulo-olivary, 

and vestibulo-spinal neurons, respectively18. The question raised in the present study is 

whether reactive astrogenesis and GABAergic neurogenesis contribute functionally to 

vestibular compensation - i.e. the postlesional restoration of the impaired vestibular functions 

observed in various animal models19. To determine if reactive cell proliferation plays a 

functional role in the vestibular compensation process, the mitotic activity of the dividing new 

cells was blocked by a continuous infusion of cytosine-ß-D arabinofuranoside (AraC, S-

phase-specific antimitotic drug) in the fourth ventricle. To determine whether delayed AraC 

infusion had an incidence on vestibular compensation, the drug was administered to adult cats 

either immediately after being submitted to UVN or 3 weeks after UVN, when all the newly 

generated cells have been formed. Cell division blockage and its consequences were 

characterized at the cellular level with BrdU, GAD67, and GFAP immunostainings. 

Repercussions of AraC infusion on the behavioral recovery processes were evaluated with 

oculomotor and posturo-locomotor tests.  
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 RESULTS 

AraC infusion blocks cell proliferation  

Using 5-bromo-2’deoxyuridine (BrdU) injected 3 hours before the adult cats were killed by 

perfusion, we examined the cells newly generated in the vestibular nuclei and the 

subventricular zone. A very low level of BrdU-immunoreactive (Ir) cells was observed in the 

vestibular nuclei (VN) complex and around the subependimary layer of the fourth ventricle of 

control cats, as previously described in this model17 [medial vestibular nuclei (MVN), 19 ± 

1.93; inferior vestibular nuclei (IVN), 33.19 ± 2.02; lateral vestibular nuclei (LVN) 24.5 ± 

1.93; superior vestibular nuclei (SVN), 23.75 ± 2.55)]. In contrast, a significantly high 

number of BrdU-Ir cells was found in the SVZ of these animals, with a mean value of 2902.5 

± 82.3.   

During vestibular compensation, we aimed to characterize the functional role of the 

reactive cells generated after UVN. Cell proliferation was blocked using AraC delivered in 

the vicinity of vestibular nuclei. Consistent with a previous report on adult UVN cats17, we 

found a strong ratio of surviving BrdU-Ir cells in all the deafferented VN when UVN was 

coupled with a continuous infusion of sodium chloride (NaCl) during 30 days (Fig. 1 a,b). 

We found an increase in BrdU immunoreactivity, showing a multiplying factor of 2700 to 

6250 according to the homologous VN (MVN, 843.74 ± 25.5; IVN, 1044.0 ± 22.83; LVN, 

1530.37 ± 11.33; SVN, 648.75 ± 31.93). NaCl did not influence the rate of cell proliferation 

in UVN cats and could therefore be considered as innocuous. In contrast, the number of 

BrdU-Ir nuclei in the VN was close to zero in cats infused with the antimitotic drug 

immediately after UVN (UVN/AraC D0-30 group), thus confirming the efficacy of AraC. AraC 

blocked the cell proliferation in the whole VN.  

In cats submitted from the twentieth to the fiftieth day (D20-50) to NaCl or to AraC 

infusion, the number of BrdU-Ir cells in the VN was similar to that of the UVN cats infused 
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early with NaCl (UVN/NaCl D0-30), see Fig. 1 a,b. Delayed infusion had no incidence on cell 

proliferation, and training the cats on the rotating beam did not influence the rate of cell 

proliferation in the VN (data not shown). 

Furthermore, neither the UVN nor the AraC infusion in the fourth ventricle affected 

BrdU immunoreactivity in the SVZ (Fig. 2 a,b). The total number of BrdU-Ir nuclei in the 

SVZ of the UVN/AraC D0-30 (3115.83 ± 97.37) remained similar to the controls or to the 

UVN/NaCl D0-30 cats (2902.5 ± 82.31 and 2896.66 ± 99.35 respectively). This finding 

indicates that AraC acts selectively and blocks local reactive cell proliferation only if the 

infusion occurs early after UVN.  

 

AraC infusion decreases the number of GFAP-immunoreactive cells 

To determine the effect of UVN on reactive astrogenesis in the VN, immunohistochemical 

staining was carried out on brainstem sections at 30 days post-vestibular axotomy. GFAP-Ir 

cells detected in the VN of the five groups of cats are presented in Fig. 3a. GFAP-Ir cells, 

characterized by richly branched cells with translucent cytoplasm, were sparse in the control 

group and became further conspicuous in the deafferented VN of UVN cats submitted to early 

NaCl infusion. The control group exhibited a relatively high number of GFAP-Ir cells in all 

the VN (MVN, 35469.58 ± 536.62; IVN, 27772.35 ± 970.97; LVN 40872.58 ± 495.71; SVN, 

41041.3 ± 454.75), see Fig. 3b. After UVN, a strong astroglial reaction was observed on the 

deafferented VN only. In the UVN/NaCl D0-30 group, the numbers of astrocytes were 

109428.6 ± 1035.87 in the MVN, 70191.2 ± 1949.8 in the IVN, 79470.3 ± 1808.3 in the 

LVN, 131160.5 ± 1199.04 in the SVN. Infusion of AraC from D0-30 in UVN cats significantly 

decreased GFAP immunoreactivity in the deafferented VN as compared to the UVN/NaCl D0-

30 group (P = 0.0001). However, the total number of GFAP-Ir cells in each deafferented VN 

of this AraC group remained significantly higher than for the control group (P = 0.0001). The 
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astroglial reaction observed in the UVN cats infused with NaCl or AraC from D20 to D50 was 

similar to that observed in the NaCl D0-30 group. These data suggest that delayed infusion had 

no incidence on GFAP-immunoreactivity. The double immunohistochemical labeling (GFAP 

versus BrdU) showed newly generated GFAP-Ir cells only in the UVN/NaCl D0-30 group (Fig. 

4 a-c); no co-localization of these two markers was detected in the UVN/AraC D0-30 group 

(Fig. 4 d-f).  

 

AraC infusion decreases the number of GABAergic neurons 

To clarify whether, after UVN, AraC affects GABA-immunoreactivity in the VN, the number 

of GAD67 immunopositive neurons was quantified in the different groups by the optical 

fractionator method20. The number of GAD67-Ir neurons was moderate and symmetric in 

both sides of the VN in the control group. The mean data for these animals were 98.48 ± 7.91 

in the MVN, 82.65 ± 5.01 in the IVN, 108.46 ± 5.90 in the LVN, and 69.12 ± 4.02 in the 

SVN. In contrast, UVN significantly increased the number of GAD67-Ir neurons in the 

deafferented MVN, IVN, and LVN, whatever the vestibular-neurectomized groups compared 

to the control group (P = 0.0001). No changes were observed in the SVN. In the UVN/NaCl 

D0-30 group, the values were 293.62 ± 14.68 in the MVN, 161.9 ± 5.2 in the IVN, 198.85 ± 

8.62 in the LVN, and 72.45 ± 5.88 in the SVN (Fig. 5 a,b). Despite the lack of the reactive 

cell proliferation in the VN under early AraC infusion from D0 to D30, a significant increase in 

the number of GAD67-Ir neurons was still observed in the deafferented VN, relative to the 

control group (P = 0.0001). The number of GAD-Ir neurons in the UVN/AraC D0-30  

remained significantly lower than in the other UVN groups of cats for the MVN, IVN, and 

LVN (Fig. 5 b). Double immunohistochemical labeling (GAD67 and BrdU) showed newly 

generated GAD67-Ir neurons only in the UVN/NaCl D0-30 group (Fig. 4 g-i); no co-

localization of these two markers was detected in the UVN/AraC D0-30 group (Fig. 4 j-l). 
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AraC infusion has no incidence on the horizontal spontaneous nystagmus (HSN) 

For nystagmus recordings, cats were placed on an apparatus with their heads fixed, thus 

maintaining the horizontal semi-circular canals in the horizontal plane. The frequency of HSN 

was recorded by a camera and measured in the light as the number of quick phase beats 

towards the contralateral side relative to UVN in 10 sec (five repeated measures per animal 

per sampling time). The variance analysis (ANOVA) did not demonstrate significant effects 

depending on the groups, the postoperative time, or the interaction between these two factors. 

Immediately after UVN, animals showed an HSN that disappeared progressively. One day 

after UVN, the frequency of HSN in all the groups was between 14 and 16 beats per 10 

seconds and declined progressively to disappear totally at the 8-day postlesion delay whatever 

the groups (Fig. 6 a). The AraC infusion did not alter the HSN, which fully recovered in UVN 

cats infused with AraC or with NaCl.   

 

AraC infusion delays the posture function recovery 

Static posture recovery was evaluated by measuring the surface delimited by the four legs of 

cats. Significant effects appeared depending on the groups (P = 0.0001), the postoperative 

time (P = 0.0001), and the interaction between these two factors (P = 0.0001). As a rule, the 

UVN cats infused with NaCl and those infused with AraC after a 20-day delay recovered 

similarly and did not differ from control UVN cats without any infusion. These three groups 

of cats regained a normal support surface 7 weeks after vestibular nerve transection. 

Conversely, the recovery of the UVN/AraC D0-30 group was strongly delayed. Fig. 6 b shows 

the time course of posture function recovery in UVN cats infused with AraC or with NaCl. 

The UVN/AraC D0-30 group exhibited significantly higher values (5.5 ± 0.38) than the 

UVN/NaCl D0-30 group (5.0 ± 0.3) at 1 day post-UVN. The support surface reached control 
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values at 50 days post-UVN in the NaCl D0-30 group while it remained significantly large in 

the AraC D0-30 group (3.75 ± 0.03; P = 0.0001). The complete compensation of this parameter 

by the D0-30 AraC group was drastically delayed; it required 86 days. When AraC was infused 

from D20-50 after UVN, the recovery profile of the posture function was similar to that of the 

NaCl D0-30 group. These results suggest that early AraC infusion has an incidence on the 

support surface recovery. 

 

AraC infusion delays locomotor balance recovery 

Figure 6 c illustrates the mean development of the posturo-locomotor function in the cats 

infused or not with AraC during the preoperative conditioning period. Animals were 

conditioned to cross over the rotating beam, whose velocity was progressively increased. At 

one-day post-UVN, all animals fell on the deafferented side, and they were unable to walk on 

the rotating beam up to 8 days after vestibular deafferentation. As for posture recovery, the 

variance analysis (ANOVA) of the locomotor balance recovery demonstrated significant 

effects depending on the groups (P = 0.0001), the postoperative time (P = 0.0001), and the 

interaction between these two factors (P = 0.0001). Cats of the NaCl group crossed over the 

beam at the highest speed (100% Max P) at 46 days post-UVN. At this time, the AraC D0-30 

cats were able to walk on only the immobile beam. The Max P of this group was strongly 

delayed (about 3 times more) and was reached at 146 days post-UVN. When AraC was 

infused from D20-50 after lesion, the recovery profile of the locomotor balance function was 

similar to that of the UVN cats submitted to an early NaCl infusion (Fig. 6 d). This result 

suggests that the delayed Max P performance under AraC infusion is not imputable to the 

nature of the drug. Recovery of locomotor balance (Max P) was complete in UVN cats 

infused with AraC or with NaCl, but it was strongly delayed in the AraC group when infusion 

was continuously done early from D0 to D30. In summary, when AraC is infused immediately 
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after UVN, only posturo-locomotor function recovery is delayed whereas the spontaneous 

horizontal nystagmus recovery remains comparable to that of the NaCl-infused group. 

Moreover, delayed AraC infusion has no effect on behavioral processes. 

 

DISCUSSION 

This study shows that AraC infusion had no incidence on horizontal spontaneous nystagmus 

(HSN) compensation. The disappearance of HSN may be explained by ocular fixation, a 

behavioral strategy used to block the spontaneous nystagmus. Mammals stabilize their gaze 

using their fovea: this ocular fixation process can therefore be used by the feline with their 

pseudo-fovea. In addition, the SVN, which is the structure most involved in oculomotor 

function, does not exhibit neurogenesis17 and could thus require other plasticity mechanisms 

for compensation. 

Whereas posturo-locomotor recovery of cats infused with NaCl or with AraC 20 days 

after UVN reached control values 4 to 5 weeks after lesion, precocious AraC cell proliferation 

blockage (UVN/AraC D0-30) markedly delayed the recovery of postural and locomotor 

balance. For this group, the postural function was compensated at 3 months while the 

locomotor balance function was recovered later (5 months); for the other groups 1.5 month 

was required for both functions. A high number of newborn neurons were observed in the 

NVM, LVN, and IVN, which are mainly associated with static and dynamic postural 

functions21. This finding supports the notions that reactive cell proliferation contributes to 

restoration of the posturo-locomotor functions and that, since functional recovery is strongly 

delayed but complete after an early local AraC infusion, other compensatory mechanisms are 

involved. Thus, the functional recovery of these animals is not only dependent on 

neurogenesis and gliogenesis but it also requires other subprocesses at different levels. 

Different plasticity mechanisms underlying vestibular compensation have already been 
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described: molecular and neurochemical changes at pre- and postsynaptic levels of the VN 

cells22,23, synaptic plasticity24, sprouting of axon collaterals25, and astroglial and microglial 

reactions15,16. Similar findings in mice showed that, after unilateral labyrinthectomy, the 

blockade of BDNF expression induced by infusion of antisense oligonucleotides in the VN 

specifically delays the compensation of postural deficits without incidence on ocular 

nystagmus26. Interestingly, the peak of BrdU positive cells 3 days after UVN in the 

deafferented VN17 is correlated with a peak of BDNF and nerve growth factor (NGF) Ir-

cells27, suggesting that, in this model, neurotrophins secreted by both neurons and glial cells 

could modulate cell proliferation, survival, and differentiation28. Besides, Gliddon et al.29 

demonstrated in the guinea pig that chronic infusion of GABAA receptor antagonist in the 

deafferented VN specifically modified the expression of postural syndromes and not 

oculomotor ones, yet without incidence on their compensation rate. These data combined with 

ours strongly indicate that compensation of the HSN and posturo-locomotor functions would 

be governed by different processes30 and that astrogenesis, neurogenesis, and neurotrophin or 

neuromediator expression in the VN complex may participate in their recovery.  

In physiological conditions, astrocytes play a crucial role in ionic homeostasis and the 

maintenance of an ideal environment for neuronal cell function, participating in clearance and 

metabolism of neurotransmitters like glutamate in the extracellular space and regulating 

extracellular pH and levels of potassium31,32. Astrocytes also release various gliotransmitters 

such as glutamate, ATP, adenosine, D-serine, cytokines, BDNF, and NGF, and they proceed 

actively on adjacent neurons, glial cells, and blood vessels33. The increased number of GFAP-

Ir cells observed in the deafferented VN might enhance the release of these various 

gliotransmitters in the extracellular space in order to locally favor neuronal survival, 

differentiation, excitability, or cell proliferation. Besides their neuronal implication on VN 

functional and structural reorganization, these findings lead us to speculate that astrocytes 
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might contribute highly to structural plasticity mechanisms and probably accelerate the 

recovery of vestibular functions. 

The prevalent response to brain injury is reactive gliosis, which leads to hypertrophy of 

astrocytes and to upregulation of GFAP34. As previously observed17, the UVN cats infused 

with NaCl showed a strong reactive GFAP-immunoreactivity in the deafferented VN. Similar 

findings have been demonstrated after axotomy in the hypoglossal nucleus35 and after 

unilateral inner ear lesion in the vestibular and cochlear nuclei36. The increased number of 

GFAP-Ir cells could come in part from differentiation of the newly generated cells in the VN 

after UVN. They could also derive from mature astrocytes that retain developmental features, 

allowing dedifferentiation into other subtypes of astrocytes, neurons, or neural progenitors, as 

evidenced in the SVZ and in the hippocampus of mice31,37. Buffo and colleagues 

demonstrated that reactive astrocytes reacquired developmental stem cell properties and were 

a novel source of multipotent cells in the cortex after brain injury in the adult mouse34. In our 

model, the reactive astrogliosis in the deafferented VN was decreased in the AraC-infused 

group (D0-30) but remained stronger than in the control group. This observation, combined 

with the total lack of BrdU-Ir nuclei in the deafferented VN, confirms the absence of newborn 

astrocytes after UVN in this group. The persistent astrogliosis observed in these animals 

might result from pre-existent astrocytes, upregulating GFAP protein expression after UVN 

and taking part in the neuroplasticity of the system after nerve transection. This notion is 

consistent with results of other authors who demonstrated that AraC treatment inhibited 

postlesional glial scar formation selectively after hypoglossal nerve transection in the rat. In 

addition, after AraC treatment following axotomy, astrocytes upregulated GFAP-Ir without 

3H-thymidine incorporation or BrdU immunostaining38,39. 

As in our previous experiments40, the results presented here showed that, after UVN, a 

considerable amount of the cell proliferation observed in the deafferented VN differentiated 
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into GABAergic neurons. In contrast, in the deafferented VN of the AraC D0-30 group, which 

did not exhibit BrdU-Ir cells, the increased number of GAD67-Ir neurons suggests that pre-

existing neurons upregulated GAD67. These two plasticity mechanisms (GABA neurogenesis 

versus GAD67 upregulation) might occur in the deafferented VN in order to re-establish 

vestibular imbalance, which seems to be necessary for fine vestibular compensation. The 

GABAergic system is known to influence vestibular compensation41, to rebalance electrical 

activity between the VN on both sides22, and to control different steps of adult neurogenesis 

like differentiation42,43. The mechanism promoting neuronal and astroglial differentiation of 

the newly generated cells could implicate GABA inputs and GABAA receptors potentially 

located on neural stem cells44. It is known that GABAergic inputs to hippocampal progenitor 

cells promote activity-dependent neuronal differentiation45 and regulate the synaptic 

integration of newly generated neurons in the adult brain46. Interestingly, we have previously 

observed a strong increase in GABA-staining varicosities in the deafferented VN complex 

after UVN in the cat40, and it has been proposed that changes in GABA receptor function in 

the deafferented VN neurons act as a potent mechanism underlying vestibular 

compensation47. 

Numerous hypotheses can be postulated to clarify the functional significance of such 

GABAergic neurogenesis in vestibular function recovery. As previously evoked17, newborn 

GABAergic neurons on the lesioned side could be inhibitory neurons directly acting on the 

contralateral excitatory neurons. Similarly, newborn GABAergic neurons could act on 

inhibitory mature neurons in the ipsilateral VN. Both mechanisms could contribute to 

attenuating the electrical asymmetry between the homologous VN. Another hypothesis 

concerns the effect of GABA on the VN neuron activity after UVN. GABA is known to elicit 

an excitatory signal in immature neurons and even in some mature neurons under specific or 

pathological conditions. The depolarizing or hyperpolarizing response depends on the Cl- 
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gradient across the cell membrane48,49 and on the cation-chloride-cotransporters expressed by 

mature and newborn neurons. To clarify the functional role of GABA in our model, the nature 

of inhibitory versus excitatory action of GABA should be determined by further studies. 

In conclusion, the current study provides cellular and behavioral evidence for adult 

reactive astrogenesis and neurogenesis that contribute to vestibular compensation in the adult 

cat. Microenvironments of neurogenic zones are thought to have specific permissive factors 

for the proliferation, the differentiation, and the integration of new cells2. In the intact brain, 

the vestibular complex seems not to deliver adequate cues to allow secondary neurogenesis, 

but after UVN, the local environment would express survival and optimal factors for new 

generated cells. The mature nervous system could recapitulate developmental process, leading 

new cells to survive, migrate, differentiate, and probably integrate existing neural circuitry 

required for fine vestibular compensation. Additional experiments will aim to specify the 

postlesional factors promoting this reactive vestibular astro-neurogenesis and to elucidate the 

role of GABAergic neurogenesis and astrogenesis in vestibular compensation.  
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MATERIALS AND METHODS 

 
Animals and surgeries. Experiments were performed on 40 adult domestic cats (3-5 kg) 

obtained from the “Centre d’élevage du Contigné” (Contigné, France). All experiments were 

carried out in line with the Animals (scientific procedures) Act, 1986 and associated 

guidelines, the European Communities Council Directive of 24 November 1986 

(86/609/EEC), and the National Institutes of Health guide for the care and use of laboratory 

animals (NIH publications No. 8023, revised 1978). Cats were housed in a large confined 

space with normal diurnal light variations and free access to water and food. 

Animals were anesthetized with ketamine dihydrochoride (20 mg/kg, i.m, Rhône 

Poulenc, Mérieux, France), received analgesic (tolfenamic acid; 4 mg/kg, i.m; Vetoquinol, 

Lure, France) and were kept at physiological body temperature using a blanket. The vestibular 

nerve was sectioned at a postganglion level after mastoïdectomy, partial destruction of the 

bony labyrinth, and surgical exposure of the internal auditory canal. The classical postural, 

locomotor, and oculomotor deficits displayed by the animals in the days following UVN were 

used as criteria indicating the effectiveness of the vestibular nerve lesion. Completeness of 

UVN had already been assessed by histological procedures in previous studies50.  

For the implantation and use of osmotic minipumps containing cytosine-ß-D 

arabinofuranoside (AraC) or NaCl, a stainless steel cannula was implanted under anesthesia 

into the fourth ventricle of the brain and connected to a subcutaneous minipump (Alzet, Alza 

Corporation, Palo Alto, CA; flow rate 2.5 µl/h for 30 days). A midline incision was made 

through the skin and musculature in the back of the neck, and a cannula connected to plastic 

tubing was inserted between the dorsal wall of the brainstem and the ventral face of the 

cerebellum and then cemented with dental cement to the skull. The air in the system was 

removed by filling up with saline or AraC (diluted into a NaCl solution, 0.13 mM), after 

which the tubing was connected to an osmotic minipump, and the skin was incised. Cats (n = 
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34) were infused continuously into the cerebrospinal fluid of the fourth ventricle with an 

antimitotic agent, AraC, known to block cell proliferation in brain structures, or with NaCl, 

using the osmotic minipump. 

 
Study design. To determine the functional role of the reactive cell proliferation occurring in 

the VN after UVN and its functional critical period, five groups of cats were used for both 

cellular and behavioral investigations: i) control that did not undergo UVN (n = 4), ii) UVN 

with early NaCl infusion (UVN/NaCl D0-30, n = 8), iii) UVN with early AraC infusion 

(UVN/AraC D0-30 , n = 8), iv) UVN with delayed NaCl infusion (UVN/NaCl D20-50, n = 8), v) 

UVN with late AraC infusion (UVN/AraC D20-50, n = 8). In addition, to determine if AraC 

provided behavioral changes (conditioning on rotating beam, postural function and global 

sensorimotor activity) and/or side effects (salivation, vomiting), a group of non-lesioned cats 

(n = 2) underwent an infusion of AraC during the conditioning period (Non lesioned AraC 

group). Another group of non-lesioned cats (n = 2) was used for determining if the 

conditioning on rotating beam affects cell proliferation in the VN (conditioning control 

group). (See Fig. 7). Immunostaining analyses of postlesional cell proliferation and cell 

differentiation were performed in the VN and the subventricular zone (SVZ). The changes in 

behavioral recovery profile were analyzed with different behavioral tests (ocular horizontal 

nystagmus, support surface, and conditioning on rotating beam). 

 
BrdU labeling and immunohistochemistry. Animals were injected with BrdU (200 mg/kg) 

and killed 27 (UVN D0-30) or 47 (UVN D20-50) days later (Fig. 7). The low doses administered 

to animals are not liable to generate side effects but are sufficient to mark the cells in S-phase 

synthesizing DNA (see17). 

The cats were deeply anesthetized with ketamine dihydrochoride (20 mg/kg, i.m, Rhône 

Poulenc, Mérieux, France) and killed by paraformaldehyde perfusion. See Tighilet, Brezun et 
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al.17 for details. Immunohistochemical labeling of BrdU-, GFAP-, and GAD67-

immunoreative (Ir) cells was performed according to Tighilet, Brezun et al.17. Double 

immunofluorescent stained sections were incubated with GAD67 or GFAP combined with 

BrdU-Ir. The optimal antibody dilutions and staining procedures are described in Table 1. 

Differentiation of the newly generated cells was analyzed with double labeling analysis 

performed using confocal imaging with a Leica TCS SP2 laser scanning microscope equipped 

with a 63x/1.32 n.a. oil immersion lens. The fields of view were then examined by confocal 

microscopy, and 1-µm-step Z series were obtained. 

 
Spontaneous nystagmus recovery. The cat was placed on an apparatus with its head fixed 

and bent forward 23 deg, thus maintaining the horizontal semicircular canals in the horizontal 

plane. The frequency of the horizontal spontaneous nystagmus was recorded in the light using 

a video camera (Sony HDV) as the number of quick phase beats towards the contralateral side 

relative to UVN in 10 sec (five repeated measures per animal per sampling time). 

 
Posture recovery. Posture deficits and recovery were evaluated by measuring the support 

surface delimited by the four legs of the cat standing erect at rest, without walking. The 

support surface can be regarded as a good estimate of postural control because it reflects the 

cat’s behavioral adaptation compensating the static vestibulospinal deficits induced by the 

vestibular lesion. As a rule, the support surface was small in the normal cat (about 50-100 

cm2) and greatly increased in the days following unilateral vestibular lesion. To quantify the 

support surface, cats were placed in a device with a graduated transparent floor that allowed 

them to be photographed from underneath. Five repeated measurements were done for each 

cat tested at each postoperative time, and an average was calculated for each experimental 

session. The support surface was measured as the surface delimited by the four legs using an 

image analysis system (canvas, 9TM, Deneba software, Miami, FL). Data recorded after 



 18

vestibular lesion were compared to prelesion values by using individual references, that is, 

each animal acted as its own control.  

 

Equilibrium function recovery. Locomotor balance function was quantified using the 

rotating beam experimental device. Two compartments (0.5 x 0.6 x 0.5 m) were connected by 

a horizontal beam (length: 2 m; diameter: 0.12 m). The beam, placed 1.2 m off the ground, 

could be rotated along its longitudinal axis with a constant angular velocity ranging from 0° to 

588,4 °/s (about more than 1.5 turn/s). The beam was equipped with a safety net to ensure the 

animals were protected in case of fall. Animal reward consisted of a small piece of fish (or 

meat) placed in a small bowl in the target compartment. Cats were conditioned to cross over 

the beam. First crossings were made on the immobile beam and, thereafter, on the rotating 

beam, whose velocity was progressively increased after four consecutive trials without fall. 

Equilibrium function was quantified by measuring the highest speed of beam rotation that did 

not induce a fall. This maximal rotation speed determined the maximal locomotor balance 

performance (Max P). Preoperative training on the rotating beam necessitated 6 to 10 training 

periods of 1 h per day, depending on the cats. Training was stopped when the cats’ Max P was 

reached and stabilized at its highest level, which was found to be remarkably similar from one 

cat to another.  

 

Cell counts and statistical analysis. The VN and the SZV were identified through Berman's 

stereotaxic atlases. BrdU-Ir was quantified for each VN (medial, inferior, lateral, and superior 

vestibular nuclei: MVN, IVN, LVN, and SVN, respectively) and for the SVZ. GFAP-Ir cells 

and GAD67-Ir neurons were analyzed in each VN on both sides (left/right: sham-operated 

cats; ipsilateral /contralateral: UVN-lesioned cats). The cell count was made with a Nikon 

microscope (Eclipse 80 i) equipped with a motorized X-Y-Z sensitive stage and a video 



 19

camera connected to a computerized image analysis system (Mercator; Explora Nova, La 

Rochelle, France). The total number of immunolabelled cells was estimated using the optical 

fractionator method20. For each labeling, the quantified sections were systematically selected 

with a size step of 480 μm along the anteroposterior axis. We counted only Ir-cells in focus 

within the height of the dissector (10 μm) and inside the limits of the counting frame without 

touching the forbidden lines. Accordingly, the statistical analysis was evaluated by ANOVA 

to test the effects of the group (NaCl or AraC), the side (deafferented vs intact), and the 

structure (MVN, IVN, LVN, SVN and SVZ) on BrdU-Ir, GFAP-Ir, and GAD67-Ir staining 

and to determine the interactions between these variables. ANOVA was followed by post-hoc 

analysis with the Scheffe test (stateview II, SAS software Inc., Cary, NC). 
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LEGENDS OF THE FIGURES 

 

Figure 1 Vestibular nerve section induced a strong increase in the number of BrdU-

immunoreactive cells in the deafferented VN. (a) Illustration of BrdU immunoreactivity in the 

medial vestibular nucleus (MVN) in a representative control cat and in three experimental 

animals infused with AraC or NaCl at different times after unilateral vestibular neurectomy 

(UVN). Note that vestibular nerve section induced a strong increase in the number of BrdU-

immunoreactive cells in the deafferented MVN under an early (UVN/NaCl D0-30) or a delayed 

AraC (UVN/AraC D20-50) infusion in the fourth ventricle. A lack of BrdU-Ir cells was 

observed in the MVN of both control cats and cats under an early infusion of AraC 

(UVN/AraC D0-30). (b) Quantitative evaluation of the effects of different conditions of AraC 

or NaCl infusions (early versus delayed) in the vestibular-neurectomized cats on BrdU-

immunoreactive cells in the deafferented vestibular nuclei. Data are mean values (± s.e.m.) of 

the number of BrdU-immunoreactive cells in the deafferented vestibular nuclei of control cats 

and unilateral-neurectomized cats infused with an early (UVN/NaCl D0-30 and UVN/AraC D0-

30) or a delayed (UVN/NaCl D20-50 and UVN/AraC D20-50) AraC or NaCl infusion in the 

fourth ventricle. Only values recorded on the lesioned side are illustrated. Data from both 

sides of control cats were pooled to provide a direct comparison with the subgroups of UVN 

cats. *P = 0.0001 versus control and UVN/AraC D0-30. (AraC: cytosine-ß-D 

arabinofuranoside; NaCl: sodium chloride; UVN: unilateral vestibular neurectomy; MVN: 

medial vestibular nucleus; IVN: inferior vestibular nucleus; LVN: lateral vestibular nucleus; 

SVN: superior vestibular nucleus; D: day). Scale bar: 50 µm and n = 4 animals per group. 

 

Figure 2 The subventricular zone (SVZ) is known as a zone of continuous neurogenesis. (a) 

Illustration of BrdU immunoreactivity in the SVZ in a representative control cat and in three 
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experimental cats infused with AraC or NaCl at different times after unilateral vestibular 

neurectomy. Note that vestibular nerve section had no effect on the number of BrdU-

immunoreactive cells in the subventricular zone whatever the experimental groups. (b) 

Quantitative evaluation of the effects of different conditions of AraC or NaCl infusions (early 

versus delayed) in the vestibular-neurectomized cats on BrdU-immunoreactive cells in the 

subventricular zone. Data are mean values (± s.e.m.) of the number of BrdU-immunoreactive 

cells in the subventricular zone of the different groups of cats. (AraC: cytosine-ß-D 

arabinofuranoside; NaCl: sodium chloride; UVN: unilateral vestibular neurectomy; D: day). 

Scale bar: 50 µm and n = 4 animals per group. 

 

Figure 3 Nerve section give rise to a strong glial cell reaction in the vicinity of the lesion. (a) 

Illustration of glial fibrillary acidic protein (GFAP) immunoreactivity in the medial vestibular 

nucleus (MVN) in a representative control cat and in three experimental animals infused with 

AraC or NaCl at different times after unilateral vestibular neurectomy. Vestibular nerve 

section induced a strong increase in the number of GFAP-immunoreactive cells in the 

deafferented MVN in all groups submitted to UVN. (b) Quantitative evaluation of the effects 

of different conditions of AraC or NaCl infusions (early versus delayed) in the vestibular-

neurectomized cats on GFAP-immunoreactive cells in the deafferented vestibular nuclei. Data 

are mean values (± s.e.m.) of the number of GFAP-immunoreactive cells in the deafferented 

vestibular nuclei of control cats and unilateral-neurectomized cats infused with an early (D0-

30) or a delayed (D20-50) AraC or NaCl infusion in the fourth ventricle. Only values recorded 

on the lesioned side are illustrated. Data from both sides of control cats were pooled to 

provide a direct comparison with the subgroups of UVN cats. *P = 0.0001 versus control; +P 

= 0.0001 versus UVN/AraC D0-30. (AraC: cytosine-ß-D arabinofuranoside; NaCl: sodium 

chloride; UVN: unilateral vestibular neurectomy; MVN: medial vestibular nucleus; IVN: 
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inferior vestibular nucleus; LVN: lateral vestibular nucleus; SVN: superior vestibular nucleus; 

D: day). Scale bar: 50 µm and n = 4 animals per group. 

 

Figure 4 Confocal analysis of newly generated glial fibrillary acidic protein (GFAP)-

immunoreactive (Ir) cells and glutamate decarboxylase (GAD)-67-immunoreactive (Ir) 

neurons in the deafferented MVN of cats infused with NaCl (a, b, c, g, h, i) or cytosine-ß-D 

arabinofuranoside (AraC) (d, e, f, j, k, l) in the fourth ventricle from day 0 to day 30 after 

unilateral vestibular neurectomy. The 5-bromo-2’deoxyuridine (BrdU)-immunoreactive nuclei 

are in red (b, c, h, i) and the other markers of differentiation in green: GFAP (a, c, d, f) and 

GAD67 (g, i, j, l). Note that cats infused with AraC immediately after vestibular lesion and 

then during thirty days showed a total blockage of newly generated GAD-Ir neurons (l) and 

GFAP-Ir cells (f). Scale bar represent 50 µm and n = 4 animals per group. 

 

Figure 5 GAD67-immunoreactive neurons are expressed in all the vestibular nuclei. (a) 

Illustration of GAD67 immunoreactivity in the medial vestibular nucleus (MVN) in a 

representative control cat and in three experimental animals infused with AraC or NaCl at 

different times after unilateral vestibular neurectomy. Note that vestibular nerve section 

induced a significant increase in the number of GAD67-immunoreactive neurons in the 

deafferented MVN in all groups submitted to UVN. (b) Quantitative evaluation of the effects 

of different conditions of AraC or NaCl infusions (early versus delayed) in the vestibular-

neurectomized cats on GAD67-immunoreactive neurons in the deafferented vestibular nuclei. 

Data are mean values (± s.e.m.) of the number of GAD67-immunoreactive neurons in the 

deafferented vestibular nuclei of control cats and unilateral-neurectomized cats infused with 

an early (D0-30) or a delayed (D20-50) AraC or NaCl infusion in the fourth ventricle. Only 

values recorded on the lesioned side are illustrated. Data from both sides of control cats were 



 27

pooled to provide a direct comparison with the subgroups of UVN cats. *P = 0.0001 versus 

control; +P = 0.0001 versus UVN/AraC D0-30. (AraC: cytosine-ß-D arabinofuranoside; NaCl: 

sodium chloride; UVN: unilateral vestibular neurectomy; MVN: medial vestibular nucleus; 

IVN: inferior vestibular nucleus; LVN: lateral vestibular nucleus; SVN: superior vestibular 

nucleus; D: day). Scale bar: 50 µm and n = 4 animals per group. 

 

Figure 6 (a) Curves illustrating the time course (on the abscissae) of disappearance of 

horizontal spontaneous nystagmus (HSN) frequency (on the ordinates) for each group of 

UVN cats infused with AraC or NaCl at different postoperative times. Each data point 

represents the mean number of HSN quick phase movements in 10 s for 4 animals (five 

repeated measures per animal per sampling). Error bars represent s.e.m. (b) Curves indicating 

the mean postoperative development of the support surface in the four groups of cats. These 

values are delimited by the four legs of the cats standing erect without walking and are 

measured in cm². Data recorded after vestibular lesion were related to individual references 

and normalized with respect to the preoperative values referred to unity (1 being close to 50 

cm²). Standard errors of the mean are reported as vertical lines. ). Note the strong delay in 

time recovery when AraC is infused just after UVN (UVN/AraC D0-30) as compared to the 

other groups (86 days instead of 50 days). (c) The maximal performance (Max P in 

percentage) is defined as the highest beam rotation speed that did not lead to a fall on four 

consecutive crossings and is plotted as a function of the number of experimental training 

sessions in all the groups of cats. These curves illustrate the training time course for each 

group of cats before unilateral vestibular neurectomy. The training time course of the non-

lesioned AraC group was not affected by the AraC infusion. Standard errors of the mean are 

reported as vertical lines. (d) Mean recovery curves illustrating maximal performance of the 

cat on the rotating beam, expressed in percent of the preoperative maximal performance (on 
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the ordinates) as a function of the postoperative time in days (on the abscissae). Note the 

strong delay in time recovery when AraC is infused just after UVN (UVN/AraC D0-30) as 

compared to the other groups (146 days instead of 46 days). Standard errors of the mean are 

reported as vertical lines.  

 

Figure 7 Study design: protocol elaborated for studying the effects of the rotating beam 

conditioning, the unilateral vestibular neurectomy, and the AraC or NaCl infusions on BrdU-

immunoreactive cells in the vestibular nuclei and the subventricular zone and on GFAP-

labeled and GAD67-labeled cells in the deafferented vestibular nuclei. (C: cellular study; B: 

behavioral study; UVN: unilateral vestibular neurectomy; AraC: cytosine-β-D 

arabinofuranoside). 

 

Table 1 Combination and sequential processing of primary and secondary antibodies used 

for immunohistochemical and immunofluorescent stainings of BrdU, GFAP, or GAD67. 
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Non-lesioned conditioned (C&B: n = 2) 

Conditioning period 



 

 

Marker  Primary antibody Secondary antibody Technique/coloration 

BrdU Mouse 1 /100, Dako Horse 1/200, Vector DAB – brown 

GFAP Rabbit 1/20, Chemicon Goat 1/200, Vector DAB – brown 

GAD67 Mouse 1/100, Dako Horse 1/200, Vector DAB – brown 

BrdU Rat 1/100, Oxford Biot Rabbit 1/200, Interchim Alexa 594 - red 

GFAP Rabbit 1/200, Chemicon Goat 1/200, Interchim Alexa 488 - green 

GAD67 Mouse 1/100, Dako Rabbit 1/200, Interchim Alexa 488 - green 
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