
6th International Conference on LCA in the Agri-Food Sector, Zurich, November 12–14, 2008

Proposing a life cycle land use impact calculation methodology

W.M.J. Achten1, E. Mathijs2, B. Muys1 
1 Katholieke Universiteit Leuven, Division Forest, Nature and Landscape, Celestijnenlaan 200 E Box 

2411, BE-3001 Leuven, Belgium, wouter.achten@ees.kuleuven.be 
2 Katholieke Universiteit Leuven, Division Agricultural and Food Economics, Willem de Croylaan 42 

Box 2424, BE- 3001 Leuven, Belgium

Keywords: biodiesel, exergy, LCA, Land use impact assessment

Abstract

The Life Cycle Assessment (LCA) community is yet to come to a consensus on a methodology to 
incorporate  land  use  in  LCA,  still  struggling  with  what  exactly  should  be  assessed  and  which 
indicators should be used. To solve this problem we start from concepts and models describing how 
ecosystems  function  and  sustain,  in  order  to  understand  how land  use  affects  them.  Earlier  our 
research group presented a methodology based on the ecosystem exergy concept. This concept as 
based on the hypothesis that ecosystems develop towards more effective degradation of exergy fluxes 

passing through the system and is derived from two axioms: the principles of (i) maximum exergy 

storage and the (ii) maximum exergy dissipation. This concept aiming at the area of protection natural 
environment is different from conventional exergy analysis in LCA focusing on natural resources. To 
prevent confusion, the ecosystem exergy concept is further referred to as the MAximum Storage and 
Dissipation concept (MASD concept). In this paper we present how this concept identifies end-point 
impacts, mid-point impacts and mid-point indicators. The identified end-point impacts to assess are 
Ecosystem Structural Quality (ESQ) and Ecosystem Functional Quality (EFQ). In order to quantify 
these  end-point  impacts  a  dynamic  multi-indicator  set  is  proposed  for  quantifying  the  mid-point 
impacts on soil fertility, biodiversity and biomass production (quantifying the ESQ) and soil structure, 
vegetation structure and on-site water balance (quantifying the EFQ). Further we present an impact 
calculation  method  suitable  for  different  environmental  assessment  tools  and  demonstrate  the 
incorporation of the methodology in LCA.

Introduction

Human activities have spatial needs for extraction of resources, forestry and agriculture, infrastructure 
and dwellings, industrial production processes and landfill. The use of land will often make the land 
unavailable for other uses, but may also change the quality of the land in terms of life support or 
potentiality for other land use . In an LCA context land use was therefore defined  as intensive human 
activities, aiming at exclusive use of land for certain purposes and adapting the properties of land 
areas in view of these purposes.

Land use and land use change are considered by the international community as a significant aspect of 
global change, which may induce climate change , desertification  and loss of biodiversity and life 
support functions .

Several methods have been developed for the assessment of environmental impacts generated by land 
use and land use change (e.g. monitoring procedures, standards with principles, criteria and indicators 

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

09
.2

34
0.

3 
: P

os
te

d 
10

 A
ug

 2
00

9

mailto:bart.muys@biw.kuleuven.be


6th International Conference on LCA in the Agri-Food Sector, Zurich, November 12–14, 2008

(PC&I),  environmental  impact  assessment  (EIA)  and  life  cycle  assessment  (LCA) (Baelemans  & 
Muys 1998)). These methods and tools still face specific and shared problems regarding the land use 
impact assessment. Among these problems the selection and definition of relevant and measurable 
indicators  seems one of  the  most  persistent  (Baelemans & Muys 1998).  Discussions  on land use 
impact in LCA community seem to reveal a lack of consensus on what exactly has to be assessed . 
According to the authors the reason for these problems lies in the lack of a solid theoretical concept 
which can serve as paradigm in which land use and land use change impacts can be evaluated and 
assessed.

In this paper we propose a method to assess land use impact on the natural  environment and life 
support  functions  (areas  of  protection).  We  propose  to  do  this  assessment  from  an  ecosystem 
perspective,  using  a  theoretical  concept  describing  how ecosystems  are  structured  and  how they 
function.  The  rationale  behind  this  starting  point  is,  that  we  can  only know how we damage an 
ecosystem by human induced land use if we understand how it works, lives and sustains. Based on the 
insight of this concept, we identify what exactly has to be assessed, translated in land use end-point 
impacts which should be assessed (also see  ).  Based on published land use cause effect chains we 
propose  a  universally  applicable  (mid-point)  indicator  set.  Since  the  links  between the mid-point 
impacts and the end-point impacts are based on the theoretical concept the mid-point indicators are 
also compatible with the theoretical concept. 

Background

Ecosystem theories can be divided in three groups: (i) succession models, (ii) resistance models and 

(iii) energy models.  These latter  combine the baseline of the succession models, which put most 
emphasis on internal control of the ecosystem, and the baseline of the resistance models, which put 
most emphasis on external control of the ecosystem. Energy models recognize the internal control of 
the self-organized complex system as a source of stability, but also considers the dependence of the 
ecosystem from external energy sources, which makes ecosystems stable only if they can sustain the 
bio-energetic control in case of external disturbances.

Among the energy models, the ecosystem exergy concept was introduced by Schneider & Kay (1994). 
According to them, ecosystems are open systems subject to continuous energy influxes. They tend to 
increase  their  internal  exergy  level,  in  order  to  evolve  as  far  as  possible  from  thermodynamic 
equilibrium.  Doing  so they develop  towards  more  effective  degradation  of  energy  fluxes  passing 

through the system. The concept is derived from two axioms: the principles of (i) maximum exergy 

storage and the (ii) maximum exergy dissipation . According to the maximum exergy storage principle 
an ecosystem on any site, with given abiotic features and local gene pool, would develop towards a 
state  of  highest  possible  exergy  storage  in  terms  of  biomass,  genetic  information  and  complex 
structural  networks  (Jorgensen & Mejer  1979; Bendoricchio & Jorgensen  1997).  The principal  of 
maximum dissipation means that for any site an ecosystem would tend towards maximum dissipation 
of the exergy influxes in form of radiation,  water,  nutrients,  air  and genetics .The content of  this 
ecosystem exergy concept is promising for further advances in land use impact. For a review on the 
ecosystem exergy concept see .

It is important to stress that this concept, which aims at evaluating the area of protection of the natural 
ecosystem is different from conventional exergy analysis in LCA , which aims at accounting the use of 
natural resources. More on this topic can be found in . In this paper we use the ecosystem exergy 
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concept to justify the identification of the end-point, mid-point impacts and the indicator set used for 
quantification. To prevent from confusion with conventional exergy analysis, the authors will further 
refer  to it  as MAximum Storage  and Dissipation concept  (MASD concept),  which stands for  the 
succession and evolutionary trends observed in ecosystems (in modelling terms called goal functions), 

namely: (i) maximization of exergy storage in biomass, genetic information and structural networks (= 

maximization of Ecosystem Structural Quality, ESQ) and (ii) maximization of exergy dissipation from 
radiative, material and genetic influxes (= maximization of Ecosystem Functional Quality, EFQ, i.e. 
the buffering capacity which sustains the control of the ecosystem over the fluxes passing through it 
and its stability despite disturbances). These goal functions are interdependent of each other. Higher 
ESQ will lead to higher EFQ, which in turn will lead to further increase of the ESQ.

Approach

What should be assessed?

There is no agreement so far in the LCA community on what exactly should be assessed in the land 
use impact assessment. Based on the ecosystem concept explained above and the definition of land use 
we identify the end-point impacts which should at least be assessed.

In the light of the MASD concept the land use definition of Lindeijer  et al. indicates that land use 
refers to human interventions bringing and keeping land at a certain Ecosystem Structural Quality 
(ESQ).  In  the  MASD concept  the  affected ESQ will  influence the  Ecosystem Functional  Quality 
(EFQ). Both goal functions are fundamental. Therefore we propose to assess the impacts on these two 
functions as being end-point impact of human land use interventions:

1. Impact on the Ecosystem Structural Quality (ESQ) (how does the human land use intervention 
influence the amount of living and dead biomass, the species composition and the complex 
ecosystem network structure?)

2. Impact  on  the  Ecosystem  Functional  Quality  (EFQ)  (how  does  the  human  land  use 
interventions  influence the  capacity  of  the  land to  keep control  over  solar  energy,  water, 
sediment and nutrients, to maintain and restore ESQ, and to buffer future disturbances?)

How to quantify the ESQ and EFQ indicators?

In order to quantify the ESQ and EFQ, relevant mid-point impacts of land use related interventions are 
selected, based on earlier published cause-effect chains  (the selection is given in Figure 1). The list of 
mid-point impacts is non-exhaustive but, according to us, necessary to be assessed. Notice that we 
restrict ourselves to the land use interventions as human activities.

In a further step, the mid-point impacts have to be categorized to the end-point impacts (arrows in 
figure 1) and mid-point indicators have to be identified to quantify the mid-point impacts. This is an 
iterative process, since the content of the possible indicators determines the link between the mid-
point and end-point (e.g. based on the explanation of the MASD concept, it might be expected that 
‘vegetation structure’ should be categorized as ESQ, but the most suitable indicators quantifying the 
‘vegetation structure’, namely leaf area index and vertical space distribution actually say more about 

the dissipation than about storage, see further). Furthermore, we aim (i) at proposing a simple impact 

score  calculation  method  which  is  the  same  for  each  indicator  (see  further),  (ii)  at  using  easily 

available and/or  measurable  indicators  and (iii)  at  selecting mid-point  indicators  representing four 
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basic impact themes: soil, biodiversity, vegetation and water and that all themes contain indicators 
linked both to ESQ and EFQ.

Reference system land use change and land use occupation

The indicator values will give us a valuation of the ESQ and EFQ under a certain land use. An impact 
on ESQ and EFQ, caused by human induced land use change (LUCh), has to be measured against a 
reference system. The new installed land use (‘Project LU’), should only be burdened for the change it 
makes compared to the land use it directly pushed away or will directly push away (‘Former LU’), 
which, as such, should be the reference system (Figure 2). For land use occupation (LUOcc) impact, 
the potential natural vegetation (PNV) is taken as reference. Since ESQ and EFQ are site specific, we 
propose to calculate the burdens (e.g. ESQReference – ESQProjectLU) relative (%) to the maximum potential 
ESQ and EFQ (or the PNV) of that specific location (Figure 2). This reasoning will lead us further to 
an impact indicator calculation method (see further). 

Following  Lindeijer  (Lindeijer  2000)  the  impact  caused  by  land  use  change  and  by  land  use 
occupation is separated, because land use change can improve the land quality, compared with the 
situation before the change, but the land use occupation has still  impacts on the maximization of 
storage  and  dissipation  compared  to  absence of  human induced land  use.  However,  the  land  use 
occupation is seen as a quality difference between the maximal possible ESQ and EFQ (PNV) and the 
project ESQ and EBC.

Figure 1. Non-exhaustive overview of mid-point impacts of land use interventions. The arrows show 

the linkage of mid-point impacts with the end-point impacts.
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Figure 2. Simplified depiction of land quality of the new induced land use (Project LU), former land 

use (Former LU) and potential natural vegetation (PNV).

Incorporation in LCA

The indicator set and the calculation method will give an environmental impact. From a LCA point of 
view  these  impacts  should  be  reported  per  functional  unit  (FU)  in  order  to  be  able  to  compare 
scenarios and managements around the world . Therefore we present a general formula for land use 
impact (S) calculation. This formula has two components: impact indicator component (I) and a LCA 
component (F) (Eq. 1).

S = I × F Eq. 1

Results

Impact indicator component

Set of mid point indicators

In this section a set of indicators is proposed. This set can be considered flexible. For each mid-point 
impact aspect two indicators are proposed, except for biodiversity. According to specific situations, 
specific aims of the user, data availability, measurement feasibility, etc. the users can choose to use 
both  or  just  one.  Further,  there  is  still  scope  for  extra  possible  indicators  per  mid-point  aspect, 
according to users’ expertise.

Indicators quantifying ESQ

Soil fertility

For assessing impact on soil fertility two indicators are proposed: (i) cation exchange capacity (CEC) 

and (ii) base saturation (BS) of the topsoil (0-30 cm). CEC has a direct impact on the soil ability to 
support vegetation and therefore on the ability of the ecosystem to produce and store biomass . Loss of 
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BS is considered an impact because it decreases the ecosystem productive capacity and therefore its 
capacity to store biomass and genetic information . Both CEC and BS are directly affected negatively 
or  positively  by  management  practices  .  Both  CEC and  BS require  on-field  measurements  with 
standard chemical analysis of soil samples.

Biomass production

Any decrease of biomass due to harvest in any of its forms or by changes in site quality is assumed to 
cause  a  decrease  of  ecosystem  control  over  energy  (e.g.  radiation),  nutrients  and  water  flows  . 

Therefore the proposed indicators look at the (i) total above biomass (TAB) and (ii) free net primary 
production (fNPP). Net primary production (NPP) is controlled by physical, environmental and biotic 
factors (Garcia-Quinjano & Barros 2005). fNPP is the part of NPP which is not harvested but stays in 
the ecosystem to fulfil life support functions (Lindeijer 2000). fNPP data is available on a world-wide 
scale (Lindeijer 2000), TAB is best measured on the field.

Species diversity

Based on the same reasoning of data availability as Lindeijer (Lindeijer 2000) we opted for vascular 
plant species number as sole biodiversity indicator. This indicator required on-field measurements.

Indicators quantifying EFQ

Soil structure

Impacts on soil structure can be assessed by: (i) soil organic matter (SOM) of the topsoil (0-30 cm) 

and (ii) soil compaction. SOM is an good indicator of the dynamic nature of soils  and for the physical 
and chemical filter and buffer capacity (Milà i Canals 2003). Soil compaction reduces the volume of 
air in the soil and reduce infiltration rate and as such can have negative impacts on root development 
and biomass production  and increased surface runoff . In Fig. 1 the soil structure impact aspect is 
characterized as impact on EBC, Therefore infiltration rate is used as soil compaction indicator (I) 
(see further). This indicator will highlight changes in the capacity of the ecosystem to buffer water and 
sediment flows. SOM is easily available  while I is best measured in the field.

Vegetation structure

Characterized to EBC, the proposed indicators are (i) leaf area index (LAI) and (ii) vertical space 
distribution. LAI is a reliable indicator of a systems absorption capacity of solar radiation , systems 
reduction  potential  of  kinetic  energy  from  raindrops   and  systems  interception  and  retention  of 
rainwater  .  Vertical  space distribution,  calculated  by dividing  the  canopy height  of  the  dominant 
stratum of the land use (H) by the number of vertical strata in the land use (S), gives an idea about the 
vertical  structure of the vegetation interface buffering solar  radiation, rainfall,  wind, among others 
flows.  For the same height of the dominant layer in the vertical structure, a lower number of layers 
would decrease  the  optimal or  maximum buffer  capacity  of  the  ecosystem .  A LAI global  1  km 
geodataset is available at the Land Processes Distributed Active Archive Centre (LP DAAC, USA) 
(https://lpdaac.usgs.gov/), but can also be measured in the field by hemispheric photography. Vertical 
space distribution is best measured in the field.

On-site water balance

Here  evapotranspiration  and soil  cover  are  proposed.  Loss of  evapotranspiration  level  indicates  a 
decrease of health and productivity of the ecosystem and a loss of control over energy, water and 
material flows . Note that this is only used as on-site indicator. Off-site effects (on aquatic systems) of 
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changing ET are not considered (see discussion). Soil cover (0-30 cm above ground level) is seen as 
an indicator of buffer capacity for raindrop impact and superficial erosion (Morgan 1995). Data on 
both of these indicators are available in geodatasets of LP DAAC, USA. Soil cover is also measurable 
on-field.

Impact calculation

The impact indicator scores (IS) are the summation of the relative impacts of the different land use 
activities of which a certain project or production process consists multiplied by the relative area of 
the activity (Ai) (i.e. area of the activity under evaluation over the total area use of the project (At)). 
The relative impacts are the difference between the observed indicator value and the indicator value 
for the reference system (for the impact calculation of the land use change the reference system is the 
former land use, for impact of the land use occupation the reference system is the PNV), normalized 
by the indicator value of the potential natural vegetation (PNV) in the region. To express the product 
in percentage it is multiplied by 100 (Eq. 2).

[ ]
∑ 




 −
=

i PVN

iprojref

t

i

Value

ValueValue

A

A
IS 100** ,

Eq. 2

with  Ai is the area of the specific activity under evaluation,  At is the total area of the project site, 

Valueproj,i is  the  value for  the selected indicator  for  the  project  area  of  the  specific activity  under 

evaluation and Valueref is the value of the selected indicator for the reference system (i.e. former land 
use for land use change and PNV for land use occupation).

Table  1  gives  an  overview  of  the  proposed  indicators  per  mid-point  impact  aspect  and  the 
corresponding score calculation for land use change and land use occupation. Indicators and formula 
are chosen in such way that negative environmental impacts give a positive indicator score.

Based  on  these  impact  indicator  calculations  the  impact  indicator  component  for  structural  and 
functional land quality change due to land use occupation can be calculated.

3
BpBdSf

ESQ

ISISIS
I

++
= −α Eq. 3

3
WbVsSs

EFQ

ISISIS
I

++
= Eq. 4

with  I the impact indicator  component and  xIS the average indicator  score for  mid-point impact 

aspect  x  (Sf  = Soil  fertility;  -Bd =  On site  biodiversity;  Bp = Biomass  production;  Ss  =  Soilα  
structure; Vs = Vegetation structure and Wb = On site water balance) (Table 1). Eq. 3 and 4 will result 
in relative impacts on the land system structure and land system functioning expressed in percentages.

LCA component

The LCA component (F) is necessary to present the impacts per FU. We propose to use the following 
F (Eq. 5) for both LUCh and LUOcc.

FU

areatime
F

)( ∗= Eq. 5
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Where  FU is  the functional  unit  of  the project  or  production  process  and (time*area) is  the area 

needed to produce a FU for a specific period of time.

Discussion

This paper  mainly aims to provide another  approach to solve some general  problems in land use 
impact  assessment.  Starting  from  a  concept  (MASD)  which  explains  how,  through  ecosystem 
functions,  an ecosystem works,  lives and survives,  we identified meaningful  end-point impacts of 
human land use impacts.  In the light of the MASD concept cause effect chains and possible mid-point 
indicators from literature were interpreted, leading to a balanced selection of a set of easily available 
or measurable mid-point indicators. Our proposal contains a dynamic use of our indicator set, where 
the user can argument to use only a minimum set of six indicators or to add specific indicators. The 
fact that for each mid-point impact, except soil fertility, data is available for at least one indicator, 
strengthens the dynamic and workable nature of this indicator set. The fact that averages of the mid 
point indicators are used downstream the calculation, overlap between the two selected indicators is 
not a problem Furthermore this indicator set gives a balanced look on basic impact themes: soil, water, 
vegetation and biodiversity. 

Starting the approach from a general founding paradigm makes the proposed end-point impacts and 
indicator set applicable in different kinds of assessment tools, including LCA, as described in this 
paper (see LCA component).

The calculation of the land use change and occupation impact between the respective reference land 
use and the project land use relative to the local PNV results in a non site-specific impact (%). As the 
impact is actually scaled against the maximum possible, the impact does not contain impacts of land 
use changes or occupations prior to the land use of interest of the LCA study.

Although this proposal contains improvements of earlier work  there is still scope for improvement. (i) 
Currently off-site impacts are not considered. There is a clear need for addressing off-site effects on 

biodiversity and water balance (but see ). (ii) The aggregation of the mid-point impacts into the end-
point impacts is done using equal weighting. This is because of lack of information on the respective 
importance of the different variables in the ecosystem goal functions. N
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Table 1. Proposed indicators per mid-point impact aspect and impact score calculation for land use change and 

land use occupation

Mid-point Indicator(s) LUCh LUOcc

Soil 
fertility

Cation exchange 
capacity (CEC)

SfIS
( )

100**
,∑ 




 −

i PNV

iprojref

t

i

CEC

CECCEC

A

A ( )
100** ,∑ 




 −

i PNV

iprojPNV

t

i

CEC

CECCEC

A

A

Base saturation 
(BS)

SfIS
( )

100** ,∑ 




 −

i PNV

iprojref

t

i

BS

BSBS

A

A ( )
100** ,∑ 




 −

i PNV

iprojPNV

t

i

BS

BSBS

A

A

Soil 
structure

Soil organic matter 
(SOM) SsIS

( )
100**

,∑ 




 −

i PNV

iprojref

t

i

SOM

SOMSOM

A

A ( )
100** ,∑ 




 −

i PNV

iprojPNV

t

i

SOM

SOMSOM

A

A

Soil compaction 
(Infiltration rate, I)

SsIS
( )

∑ 




 −

i PNV

iprojref

t

i

I

II

A

A
100**

, ( )
∑ 




 −

i PNV

iprojPNV

t

i

I

II

A

A
100** ,

Biomass 
production

Free net primary 
production (fNPP)

BpIS
( )

100**
,∑ 




 −

i PNV

iprojref

t

i

fNPP

fNPPfNPP

A

A ( )
100** ,∑ 




 −

i PNV

iprojPNV

t

i

fNPP

fNPPfNPP

A

A

Total aboveground 
biomass (TAB)

BpIS
( )

100** ,






 −
∑

PNV

iprojref

t

i

i TAB

TABTAB

A

A ( )
100** ,






 −
∑

PNV

iprojPNV

t

i

i TAB

TABTAB

A

A

Vegetation 
structure

Leaf area index 
(LAI)

VsIS
( )

100**
,∑ 




 −

i PNV

iprojref

t

i

LAI

LAILAI

A

A ( )
100** ,∑ 




 −

i PNV

iprojPNV

t

i

LAI

LAILAI

A

A

Vertical space 
distribution (ratio 
of canopy height of 
the dominant strata 
(H) devided by 
number of strata 
(St))
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In addition to the link with the FU (LCA component), there is scope to include a temporal dimension 
in Eq. 1. This is particularly interesting in case of an impact fluctuating over time and consists of 
integrating the impact over time. This implies knowledge of how an impacting factor would intervene 
in the long term dynamics of an ecosystem. Therefore, calculation of this component will depend on 
the state of knowledge and on data availability. 
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