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Abstract 

Persisters are a small subpopulation of bacteria that survive lethal concentrations of 

antibiotic without antibiotic resistance genes. Isolation of persisters from normally 

dividing population is considered difficult due to their slow growth, low numbers and 

phenotypic shift i.e. when re-grown in antibiotic free medium, they revert to parent 

population. Inability to isolate persisters is a major hindrance in this field of research. 

‘Phenotypic shift’ of persisters observed previously is questioned here. Persisters, on the 

other hand, may exhibit a heritable phenotype and hence can be easily isolated from a 

normally dividing population by allowing their selective growth. Rather than a single 

subset, they comprise many distinct subgroups each exhibiting different growth rates, 

colony sizes, antibiotic tolerance and protein expression levels. Clearly, they are one of 

the sources of bacterial heterogeneity and noise in protein expression. Existence of 

persisters in normally dividing population can explain some of the unsolved puzzles like 

antibiotic tolerance, post-antibiotic effect and viable but non-culturable bacterial state. It 

is hypothesized that persisters are aging bacteria.  

Key words: Persisters, bacterial aging, post-antibiotic effect, small colony variants, 

antibiotic tolerance, viable but non-culturable bacteria 

Introduction 

Persisters were first described by Joseph Bigger in 1944 when he found that a 

culture of Staphylococcus spp. was not completely sterilized by a lethal concentration of 

ampicillin (5). Most of the bacteria were lysed by ampicillin, but a small subpopulation 
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somehow survived. When the surviving bacteria were grown in antibiotic free medium, 

they grew just like parent population which was again susceptible to ampicillin. These 

surviving bacteria or persisters either grew slowly or did not grow at all in the presence of 

antibiotics but reverted to normal growth on removal of antibiotics (3, 21). Since the 

persisters reverted to original population on removal of antibiotics, they were considered 

as dormant bacteria that avoided killing by antibacterial agents (21). This phenotypic 

switch is widely considered as a survival strategy of bacteria against antibiotics (21). Due 

to this phenotypic shift, it was difficult to isolate persisters from a normally dividing 

population (21). Hence most of the studies on persisters were done with E.coli mutant 

hipA, which was reported to produce high frequency of persisters (6, 20, 23, 24). 

Single persister cell was studied using microfluidic devices which identified at 

least two types of persisters (3). Type-1 persisters are formed in the stationary phase and 

thus constitute a pre-existing population of non-growing cells. However they revert to 

growing cells in antibiotic free medium with an extended time lag. On the other hand, 

type-II persisters do not originate from stationary phase but are continuously generated 

during the growth phase. Thus a wild type population consists of normal cells, type I and 

type II persisters (3). 

Persisters are not mutants nor induced by the antibiotics, but are preformed in a 

culture (3, 23). During the lag and early exponential phase of growth, persister formation 

is very low but their number increases during mid to late exponential phase of growth 

(19). By growing bacteria repeatedly at early exponential phase of growth, persisters can 

be eliminated completely (19). 
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Persisters may be responsible for the resistance of biofilms to antibiotics (8, 33). 

A biofilm is formed when bacteria grow on a surface and is enclosed in an exopolymer 

matrix. Biofilms are nototrious for racalcitrant infections and resistance to antibiotics (1, 

10) and is responsible for more than 65% of infections in the west (11). Isolation of 

persisters from a normally dividing population may help in understanding the 

pathogenesis of biofilm resistance to antibiotics. 

  Here it is reported that bacterial population consist of persisters that are tolerant to 

antibiotics. However, they show a heritable phenotype, rather than exhibiting a 

phenotypic shift. ‘Phenotypic shift’ of persisters reported earlier can be due to improper 

experimental settings. Persisters can be isolated from normally dividing population by 

utilizing the ‘concentration dependent killing’ property of aminoglycosides. Persisters 

thus isolated show many significant differences from those reported earlier apart from the 

lack of phenotypic shift. They comprise many subgroups which are formed during all 

phases of bacterial growth. Each subgroups exhibit their own characteristics properties 

including a difference in protein expression levels. The existence of persisters is 

suggested as one of the important source of bacterial heterogeneity and noise in protein 

expression. They can be aging bacteria and hence can be isolated from most bacterial 

cultures. 
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Materials and methods 

Bacterial strains, growth conditions, antibiotics and chemicals 

The bacterial strains used were E.Coli DH5α and BL-21(DE-3) cells (Invitrogen). 

Salmonella enterica serovar Typhimurium was a generous gift from Dr. Suman 

Mukhopadhyay, VA-MD Regional college of Veterinary Medicine. E.Coli DH5α with 

pET 14-B plasmid carrying GFP was a gift from Dr. Iqbal Hamza, University of 

Maryland, College Park. All antibiotics (kanamycin, ampicillin, tetracycline and nalidixic 

acid) were obtained from Sigma. Concentrations of stock solution of the antibiotics were 

kanamycin-10mg/ml, ampicillin- 50mg/ml, tetracycline- 5 mg/ml and nalidixic acid-15 

mg/ml.  

Luria-Bertani (LB) broth and LB agar base were used to culture the above cells. 

Chemicals used were Glycine, Tris (Fischer), acrylamide, temed, SDS, Ammonium per 

sulphate, bromophenol blue (Biorad), BCA protein assay reagents (PIERCE), Thiamine, 

thymidine (sigma) mercaptoethanol (Invitrogen 

Isolation of persisters using kanamycin 

For isolating pure cultures of persisters, 50µl of overnight culture of E.Coli DH5α 

was added to 3 ml of fresh LB medium containing kanamycin at concentrations of 10, 20, 

30, 40 and 50µg/ml and incubated at 37
0
C for 48-60 hours at 240 r.p.m. When the culture 

reached an O.D. of approximately 0.5, 200 µl was withdrawn and centrifuged to remove 

the supernatant containing antibiotics. The pellet was washed with fresh LB medium 

twice. After the second wash, approximately equal concentration of bacteria was added to 
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3ml of LB medium containing the same concentration of kanamycin and incubated as 

before. The whole procedure was repeated once again to ensure that persister culture was 

not contaminated by any normal cells. Growth rate of bacteria was determined from the 

O.D. measured at definite time periods using nanodrop ND-1000 spectrophotometer. The 

measurable range of O.D. by nanodrop spectrophotometer is 0.01- 0.2 which is almost 

equivalent to O.D. value of 0.1-2 in classical cuvette based systems, as per 

manufacturer’s manual. Hence, the O.D. value obtained in nanodrop spectrophotometer 

will be multiplied by a factor of 10 to make the reading equivalent to cuvette based 

system. 

For growth on agar, 50 µl of stationary phase culture was serially diluted 1 in 10 

times up to 10
-8
 concentration. 30µl from each dilution was plated on LB agar and 

incubated at 37
0
C for 48-60 hrs. Plates containing uniformly spread colonies were 

selected. Same method was followed for other antibiotics. Colonies on agar were then 

photographed using chemidoc system. 

For heritability test, 50µl of persisters isolated were centrifuged to remove the 

supernatant containing antibiotics and the pellet was washed with fresh LB medium 

without antibiotics twice. Approximately equal concentration of bacteria, determined 

from O.D. of culture, from each group of persisters were added to 3 ml of fresh LB 

medium without antibiotics and incubated. Growth rate was determined as above. They 

were plated onto agar as described previously. The whole procedure was repeated twice 

to test the heritability. 
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Persister differences between antibiotics 

50 µl of overnight culture of E.Coli DH5α was diluted to a concentration of 10
-4
to 

10
-5
 and plated on LB agar. A hole was punch at the centre of the agar using a sterile 

pipette. Kanamycin (10 mg/ml) was added to fill the hole and the plate was then 

incubated at 37
0
C for 48 hours. The same method was followed for ampicillin (50 

mg/ml), tetracycline (5mg/ml) and nalidixic acid (10 mg/ml). 

Initial inoculum size and time of exposure of antibiotic 

50, 100, 250, 500 and 1,000 µl of overnight culture  were added to fresh LB 

medium to make a final volume of 3 ml. 50µg of kanamycin was added to each and 

incubated as before. After 48 hours, approximately equal concentrations of bacteria 

(determined from O.D. values) were withdrawn, pelletted and washed with fresh LB 

twice and added to a final volume of 3 ml LB medium and incubated as before. Growth 

rate was determined as above. 

To study the effect of time of exposure of antibiotics, 50 µl of overnight culture 

was added to 3 ml LB medium containing 50 µg/ml of kanamycin and incubated at 37
0
as 

before. At designated time periods, samples containing approximately equal 

concentrations of bacteria (determined by O.D. values) were withdrawn and added to 

fresh LB medium without kanamycin to a final volume of 3 ml and incubated as before. 

Growth rate was determined as before. 
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Persisters are not induced by antibiotics 

50 µl of overnight stationary culture was added to 3 ml of LB medium and 

incubated as above. After reaching early exponential phase (O.D. approximately 0.5), 

100µl of the culture was withdrawn and added to fresh medium and incubated again at 

same conditions. This cycle was repeated 4 times. 100µl of the mid-exponential phase 

culture from each cycle was added to 3 ml of fresh medium containing kanamycin at 

different concentrations as before and incubated for 48 hours and measured the growth 

rate. The mid exponential culture from the fourth cycle was allowed to reach a stationary 

phase by incubating overnight. This overnight culture with approximately equal 

concentration of bacteria as above was added to 3 ml of fresh medium containing same 

concentrations of kanamycin as above and incubated as before. 

Auxotrophy of persisters 

50 µl of persisters (K-30 and K-40) isolated were added to LB medium containing 

thiamine (Sigma) and thymidine (Sigma) at concentrations of 1, 3, 5, 10 and 20 µg/ml by 

adding these chemicals to LB medium and incubated as above. Growth rate was 

determined as before. They were also plated to agar containing thiamine and thymidine at 

these concentrations to test for reversion to large colonies. 

Tolerance of persisters to different antibiotics 

Approximately equal concentration of bacterial cultures of normal and persister cells 

were treated with the same and higher concentration of kanamycin at which they were 
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isolated. Persisters were also treated with different concentrations of ampicillin and 

nalidixic acid. They were incubated for 48 hours as before. 

SDS polyacrylamide gel electrophoresis and western blotting 

pET-14B vector carrying GFP in E.Coli DH5α was transformed to BL21 (DE-3) 

cells by heat shock method. Persisters of BL21 (DE-3) cells were then isolated using 

kanamycin as before. Persisters thus isolated were grown in antibiotic free medium for 48 

hours as described before. When persisters grown in antibiotic free medium reached 

stationary phase, they were pelletted, resuspended in PBS and heated at 95°C for 10 

minutes. A small volume was used to determine total protein concentration by BCA 

protein assay (Pierce) with bovine serum albumin as standard and rest pelletted and 

stored at -20
0
C . For immunoblotting, stored pellets were heated at 95°C for 2 minutes in 

the presence of 1xSDS loading buffer containing DTT. Samples were run on 12% SDS–

PAGE and transferred onto nitrocellulose membrane (Biorad) using semi-dry apparatus 

(Biorad) at 9V for 45 minutes. Blots were blocked overnight using 5% non-fat dry milk 

and incubated with antibody against green fluorescent protein (Invitrogen) at a 

concentration of 1:5,000 for one and a half hours followed by incubation with secondary 

antibody(goat anti-rabbit conjugated with horse raddish peroxidase (biorad).Signal was 

detected using Amersham western blotting detection kit(GE healthcare)and blot 

quantified by chemidoc system. Protein bands were detected by Coomassie staining and 

molecular weight of proteins estimated using marker proteins (Kaleidoscope standards-

Biorad). 
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Immunofluorescence 

Intensity of GFP fluorescence in normal wild type and persisters of BL21 (DE-3) cells 

were visualized from the fluorescent images captured on Leica DMIRE2 microscope 

fitted with a Q-imaging camera using Simple PCI software.  

Statistical analysis 

Data presented are given in mean ± standard error of mean (s.e.m.). The n for each data 

set is given below each table. 

Results and discussion 

Isolation of persisters 

For the isolation of persisters, the ‘concentration dependent killing ‘property of 

kanamycin (12, 15, 36), an aminoglycoside that kills bacteria by inhibiting protein 

synthesis, is utilized here. Bacteria are killed by kanamycin in a growth rate dependent 

manner. At low concentration it kills fast dividing bacteria only, leaving the persisters 

which are slow growers. At high concentrations, slow growing cells also become 

succeptible, but again in a concentration dependent manner. This property of the 

antibiotic is utilized here to separate bacteria with different growth rates. The different 

groups of persisters will be designated as K-10, K-20, K-30 etc. depending on the 

concentration of kanamycin in µg/ml used for isolation of persisters. Among the 

persisters, K-10 had the highest growth rate and K-50, the least (Table.1). At kanamycin 

concentration of 60µg/ml, no growth could be detected. Since persisters divide slowly, 
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they take more time to reach turbidity which is evident from the optical density (O.D.) 

readings of spectrophotometer. Extreme persisters like K-40 or K-50 never reach 

turbidity. They reached stationary phase before growing to turbidity. Above pattern of 

growth was observed with both Escherichia coli DH5-α and BL21 (DE-3) cells. With 

Salmonella enteritica serovar Typhimurium LT2, growth pattern was similar except that 

there was no growth of bacterium at kanamycin concentration above 30µg/ml (Table.1). 

When plated on agar, they exhibited properties consistent with growth in liquid 

medium (Fig.1.A, B and C). The time taken for colonies to appear on agar increased with 

higher kanamycin concentrations. K-40 required 40-48 hours to form visible colonies on 

agar. There was clear difference in the size of colonies which decreased proportionally 

with higher concentration of antibiotic. Again in consistent with growth in liquid 

medium, the size of colonies of K-30 and K-40 did not increase much even after many 

days of incubation. 

Two factors are important in the isolation of persisters without ‘contamination’ by 

normal fast dividing wild type bacteria. 1. low initial inoculum size and 2. prolonged time 

of exposure to antibiotics (Table.3). As initial inoculum size increases, the chances for 

bacteria to escape killing is more. The presence of a few normal cells that escape killing 

can completely change the picture as they have a definite growth advantage over 

persisters; hence it is important that all susceptible bacteria must be killed, leaving only 

the persisters. This can be ensured by repeatedly treating persisters at exponential phase 

of growth with the same concentration of kanamycin used to isolate them. 50µl of 

stationary phase bacterial culture was used for isolation of persisters which was the ideal 
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inocculum size for E.coli and S.enteritica. Similarly, an extended time period is also 

necessary to avoid ‘contamination’ by normal cells and to allow sufficient time for 

growth of persisters. A short exposure time below 9h did not kill all susceptible bacteria.  

It is important to know whether the growth characteristics exhibited by different 

persisters are induced by the antibiotic itself. Earlier, it was reported that persisters are 

not induced by antibiotics (19). However it was also assumed that persisters comprise a 

single subpopulation which starts to appear in the early exponential phase, followed by a 

sharp increase in mid-exponential phase and reaches maximum in stationary phase 

forming approximately 1% of the total population. The experiment was repeated since a 

number of subgroups of persisters were isolated rather than a single subset. For this 

purpose,the procedure by Keren et.al (19) was followed with some modifications as 

described in methods section. By repeatedly growing bacteria at early-exponential phase 

of the cycle, bacteria with high growth rates were selected while slow growing ones were 

gradually diluted out. As the number of cycles increased, there was a gradual reduction in 

the number of persisters (Table.5). By the fourth cycle K-30, K-40 and K-50 were almost 

completely eliminated, but K-10 and K-20 still remained. However, all persisters 

reappeared in cultures from the fourth cycle incubated overnight. This experiment 

demonstrates that persisters are normally present in a bacterial population and they are 

not induced by antibiotics. Similarly, they comprise a number of subgroups and are 

formed during all phases of bacterial growth. In fact, stage of bacterial growth does not 

influence the formation of persisters. It depends only on the rate of growth of individual 

persister groups. Though all persister groups are present in a normal population, all of 

them cannot be detected in agar unless they are selected by eliminating fast dividing 
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bacteria. They have definite growth disadvantage in the presence of normal wild type 

bacteria due to their slow growth and low numbers. Thus, extreme persisters like K-40 or 

K-50 can be included under viable but non-culturable bacteria (VNBC), bacteria that 

remain viable but cannot be cultured under normal circumstances (7, 25, 26).  

Heritability of persisters 

  As the persisters showed visible differences of growth pattern in liquid and solid 

medium, the heritability of the persisters was tested by growing them in antibiotic free 

medium. Persisters grown in LB medium without antibiotics showed the same pattern of 

growth rate as the parent persister population even though the growth of persisters were 

faster when compared to their growth in presence of antibiotic (Table.1). This faster 

growth rate is due to the higher initial inoculum size of persisters. In solid medium, there 

were differences in the total time taken to form visible colonies, colony sizes and the 

growth rate of colonies (Table.1 and Fig.1.D and E). Similarly when largest colony from 

each group were picked and grown in antibiotic free medium for 48 hours followed by 

plating on agar, the same pattern was again observed. This was true at least for three 

generations. A small colony was never seen to revert back to a larger one. 

Phenotypic shift by bacteria 

Since persisters were reported to exhibit a phenotypic shift, the phenomenon need 

to be  studied more precisely. For this purpose, bacteria were grown in a medium 

containing lethal concentrations of antibiotics as well as other stressors like low pH and 

high pH. It was observed that at lethal concentrations of any of these stressors, most of 
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the bacteria were killed and there was no visible growth (Table.4 and Table.2) However, 

when the bacteria were transferred to medium without the stressors, they showed 

luxuriant growth just as normal cells. These bacteria were not mutants as they were again 

susceptible to the same concentration of stressors previously used. This experiment 

showed that ‘phenotypic shift’ reported is not a property seen with antibiotics alone, but 

rather with any stressors. It can be assumed that, due to the lysis of majority of the 

bacteria by lethal concentrations of antibiotics, growth medium might be accumulating 

materials (probably some quorum sensing molecules) released from those lysed bacteria 

which inhibit the growth of others and transiently protect them from the action of 

antibiotics. To test this hypothesis, bacteria were grown in the presence of lethal 

concentrations of ampicillin (15µg/ml). Once most of the bacteria were killed and there 

was no visible growth, they were pelletted, washed twice and then grown in fresh 

medium and also in medium containing the same concentration of ampicillin (15µg/ml) 

previously used to kill them and incubated for another round. While turbidity was noticed 

in ampicillin-free medium after overnight incubation, no growth was detected in medium 

containing ampicillin. It was evident that all bacteria were killed by the second round of 

ampicillin treatment since no growth was detected after re-incubation following removal 

of ampicillin (data not shown). If bacteria were exhibiting a ‘true phenotypic shift’, they 

would have escaped the bactericidal action of ampicillin for the second round also, since 

they were growing under the same conditions of growth as the first round. This 

experiment may also explain why more number of bacteria survives when a high initial 

inoculum size is used. With high inoculum size, the amount of materials released by 
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lysed bacteria is also higher which may inhibit the growth of more number of bacteria 

resulting in more survivors. 

Most of the experiments demonstrating phenotypic shift were done after 

incubating bacteria for a short period of time (19). For ampicillin and other antibiotics 

which exhibit a ‘time dependent killing property’ it is highly important to incubate 

bacteria for longer time. It is well documented that for such antibiotics, the time of 

incubation is more critical than concentration of antibiotics (12, 40, 41). This is very 

important since a short incubation cannot kill all susceptible bacteria and hence re-

inoculation may show a ‘false phenotypic shift’. (Even for kanamycin, a ‘concentration 

dependent killing’ antibiotic, all susceptible bacteria are not killed by incubating for a 

short period (Table.3.). Moreover, earlier experiments with persisters were using high 

initial inoculum size by growing bacteria to exponential phase (19). As noted earlier, a 

high inoculum size could also give false results since the survival of some normal cells is 

sufficient to give false phenotypic shift (Table.3.). Similarly, a very high concentration of 

antibiotics above MIC can result in a ‘paradoxical effect’ wherein significant number of 

bacteria escapes killing by antibiotics (42, 43) due to mechanisms that are not clear. 

Previously it was demonstrated that maximal killing of bacteria occurs over a narrow 

range of antibiotic concentrations above MIC and the number of survivors increase with 

higher concentrations above this value (42, 43). Since some of the experiments with 

persisters might have used high concentrations of ampicillin above MIC (3, 19), the 

chance of giving a ‘false phenotypic shift’ is higher.  
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Mechanism of persister formation is largely unknown. It was shown that cells 

over-expressing HipA, RelE and other toxin-antitoxin (TA) modules resulted in 

formation of high frequency of persisters and hence these proteins were implicated in the 

persister formation (21). These proteins may increase the persister population by slowing 

down or stopping the cell division and thus evade the action of antibiotics (21). However, 

Vazquez-Laslop et.al (2006) questioned the specific roles of HipA and RelE in the 

formation of persisters. They found that proteins such as DnaJ and PmrC that are 

unrelated to TA modules can also result in high frequency of persisters when they are 

over-expressed in cells. They concluded that when cells are expressing proteins to the 

toxic levels, frequency of persisters increase regardless of the kind of proteins. 

Based on the above findings, it is assumed that phenotypic shift of persisters 

observed earlier may be due to faulty experimental settings. 

Persister formation by other antibiotics 

  The procedure used to isolate persisters using kanamycin was repeated with 

tetracycline, ampicillin and nalidixic acid. A growth pattern similar to kanamycin could 

not be seen with any of these antibiotics (Table.2). With high concentration of 

tetracycline, O.D. did not change much after a period of time indicating that there was no 

bacterial growth. With lower concentrations, medium showed turbidity. When bacteria 

were plated on agar, they grew like normal cells and the size of the colonies were similar 

to that of control (data not shown). This was not surprising as tetracycline is 

bacteriostatic and hence bacteria that remained after tetracycline treatment could revert to 

normal population once the antibiotic was removed. With ampicillin and nalidixic acid, a 
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lot of bacterial lysis was seen in liquid medium within 3 hours of incubation. At low 

antibiotic concentrations, the surviving bacteria resumed growth and reached turbidity. 

However at high concentrations, there were no signs of growth. When surviving cells 

were incubated in fresh medium without antibiotics, the effect was all or none 

phenomenon i.e. either they grew to turbidity or they did not grow at all. On agar also, 

either there were no colonies or normal large colonies with occasional smaller ones were 

detected (data not shown). This indicates that the bacteria that survived ampicillin or 

nalidixic acid treatment cannot be distinguished from the normal cells which are 

consistent with the findings of Keren et.al (19).  The difference between kanamycin and 

persisters of other antibiotics was also evident from the zone of inhibition by antibiotics 

(Fig.2. A and B). The area immediately outside the zone of inhibition by kanamycin 

consisted of only small colonies and the size of colonies gradually increased as antibiotic 

concentration reduced. With ampicillin, tetracycline and nalidixic acid, the zone of 

inhibition consisted of both large and small colonies (Fig.1.B shows persisters of 

ampicillin. Same pattern was seen with tetracycline and nalidixic acid). Our studies 

indicate that among the four antibiotics, only kanamycin can produce a pure culture of 

persisters .Hence persisters isolated by kanamycin exhibit a heritable phenotype which 

was not observed with persisters isolated with other antibiotics. Since other antibiotics 

cannot select a pure culture of persisters, ‘phenotypic shift’ exhibited by these persisters 

was only due to the presence of some normal fast dividing cells. The selection of 

persisters and their slow growth can partly explain the long post-antibiotic effect (period 

of time after removal of antibiotics when bacterial growth is not observed) exhibited by 
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aminoglycosides (16, 18). In vitro post-antibiotic effect of kanamycin against E.coli 

DH5-α can be much longer, provided a pure culture of extreme persisters only remain.   

Tolerance of persisters to antibiotics 

Persisters are reported to be responsible for recalcitrant infections and can tolerate 

high antibiotic concentrations (21).The ability of different persister groups to tolerate 

higher kanamycin concentration was tested by treating each group of the persisters. Each 

group of the persisters were treated with the same concentration of kanamycin at which 

they were isolated and with higher concentrations. Persisters showed increased tolerance 

to kanamycin which is evident from the high MIC value (Table.6). All persisters were 

completely tolerant to the concentration at which they were isolated i.e. there was no 

significant difference between the growth rate of K-40 grown in antibiotic free medium 

and those grown in kanamycin concentration of 40µg/ml (data not shown). However, 

with increasing concentrations, they became more and more sensitive. Depending on the 

type of persisters, an increased MIC up to 2-7 folds was noticed. 

Antibiotic tolerance exhibited by persisters may be clinically significant because a 

sub lethal concentration of an aminoglycoside can result in the selection of persisters 

which may cause a latent infection later and will be difficult to eradicate since a high 

concentration of antibiotic need to be used. In this aspect, persisters are similar to small 

colony variants (scv), variants of bacteria that grow slowly, form small colonies and are 

tolerant to antibiotics especially aminoglycosides (28, 29). Most of the scvs reported are 

mutants of Staphylococcus aureus isolated from clinical infections and are auxotrophic to 

hemin, thiamine or thymidine (28, 37, 38). E.coli lack the ability to take up hemin (31, 
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32) and the persisters of E.coli did not revert at any of the five different concentrations of 

thiamine or thymidine (data not shown). Moreover, persisters comprise a number of 

distinct subgroups with different growth characteristics which is against the possibility of 

them being mutants as the mutants reported earlier are single subpopulations. 

Aminoglycoside tolerance exhibited by majority of scvs is due to defects in electron 

transport resulting in reduced transmembrane potential that donot favor the uptake of 

aminoglycosides (28). Aminoglycoside uptake and its killing rate are directly dependent 

on transmembrane potential (13). Whereas scvs may arise from genetic mutations (28), 

persisters may have defects in electron transport without carrying mutations in electron 

transport chain pathway. SCVs that are auxotrophic for a number of agents other than 

hemin, thiamine or thymidine as well as stable scvs not auxotrophic to any of these 

agents are also reported (28). Since persisters form colonies of all sizes and were noticed 

with all bacterial cultures tested (Table.1., Fig.1, Fig.2.A.) and showed no reversion on 

addition of thiamine or thymidine, it can be assumed that they are naturally occurring 

forms.  Moreover, after eliminating extreme persisters by repeatedly growing them in 

early exponential phase, all of them reappeared after overnight incubation (Table.5). This 

raises the possibility that they arise from natural process rather than from mutations and 

that these stable scvs may be different from the mutants reported earlier. It is not 

documented whether electron transport defective scvs also form colonies of various sizes. 

In such cases, the term ‘small colony variants’ itself become a misnomer as these variants 

can produce larger colonies also (the colony size of K-10 was indistinguishable from 

control after 36-40 hours). 
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 Aging can reduce the transmembrane potential since the expression of electron 

transport chain pathway decreases with age and is common to humans, mouse and fly 

(39). Whether this is true for bacteria is not known. However, bacteria which were 

considered to be functionally immortal may also undergo aging and death (2, 34, 44). 

Stewart et.al (34) studied the replicative senescence of E.coli and found that bacteria 

divide asymmetrically. They observed a rate of decline of growth by 1% in cells that 

inherited old poles. The cells growing slower were the ones that have more often 

inherited old poles. Since persisters are not mutants and comprise many subgroups that 

can be isolated from all cultures used and  show a gradual reduction in growth rate and 

colony sizes which cannot be reverted back, it is hypothesized that the persisters are 

bacteria at different stages of aging which become tolerant to aminoglycosides due to 

reduced uptake of the antibiotic resulting from a lower expression of electron transport 

chain pathway (Fig.3.B. show some differences in the protein expression profile of 

control and persisters).  

As per the model for bacterial aging proposed by Ackermann et al. (2), Stewart 

et.al (34) and Liu (44), when a bacterium divides, the mother cell becomes older whereas 

the daughter cell is a rejuvenated young offspring which has a growth rate similar to 

normal cells (Fig.4, model 2). However, the model proposed here is different (Fig.4, 

model 3) because, on bacterial reproduction, the mother cell becomes older whereas the 

daughter cell do not become a rejuvenated offspring but rather has the same age as the 

mother cell. The reason why the rejuvenated offspring hypothesis is not supported is that 

persisters never attain the growth rate of normal cells even after they were passaged for 
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3-4 times. Rather they maintained their own growth rate which was slower than the 

normal cells. 

To test whether kanamycin tolerant persisters also exhibit tolerance to other 

antibiotics, persisters isolated using kanamycin`were treated with different concentrations 

of ampicillin and nalidixic acid. While there was no significant difference between 

control, K-10 and K-20 group as far as MIC was considered, K-30 and K-40 did show 

increased MIC up to 2-3 folds (Table.6). The result demonstrates that persisters isolated 

by kanamycin may offer some tolerance to other antibiotics also, but not to the extent 

reported earlier (22).  

Persisters generate noise in protein expression 

Individual cells of a genetically identical homogenous population of bacteria may 

show different protein expression levels referred to as noise in protein expression (4, 14, 

27, 30). Noise can be extrinsic when protein expression levels differ between individual 

cells of a genetically identical homogenous population or intrinsic when the differences 

arise due to inherent stochasticity of individual cells with proteins produced in random 

bursts (9, 35). Sources of noise can be multiple such as variation in cell cycle stage, 

aging, epigenetic regulation, unequal segregation of mitochondria during cell division, 

fluctuations in upstream signalling, subtle differences in surrounding environments etc 

(17, 35). To determine whether persisters are responsible for generation of noise, the 

expression levels of green fluorescent protein (GFP), an unnecessary protein for the 

bacteria, in normal cells and in persisters was measured. BL21 (DE-3) cells with plasmid 

containing gene for GFP and which have high basal level of GFP expression was used for 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
09

.1
41

1.
2 

: P
os

te
d 

6 
A

pr
 2

00
9



this purpose. Since the presence of stressors like antibiotics, especially kanamycin that 

inhibits protein synthesis may affect protein expression, GFP expression was measured in 

persisters grown in antibiotic free medium. For this purpose, persisters of BL21 (DE-3) 

cells were isolated first, followed by washing to remove the antibiotics and further 

incubation in fresh medium without antibiotic. This was repeated once again to eliminate 

any effects of antibiotic in protein expression. GFP expression by persisters was then 

determined by western blot which showed a decreasing gradient with persisters isolated 

using higher kanamycin concentrations (Fig.3.A). It is predictable that there will be 

innumerable number of subgroups with subtle differences in protein expression levels. 

The difference in the protein expression is not due to stochastic variation but results from 

the existence of distinct persister populations. The noise was also evident from 

immunofluorescence (Fig.3.C). The intensity of fluorescence by GFP decreased as its 

expression was reduced which was consistent with western blot results. However, an 

entire range of intensity was not obtained as in western blot. No difference in intensity 

was noticed between K-10 and K-20 and also between K-30 and K-40. The difference in 

protein expression was also visible from the intensity of fluorescence of colonies in solid 

medium (data not shown). While control gave the strongest intensity, K-40 showed only 

very low intensity. Again, a decreasing gradient of fluorescence was noticed as in 

western blot. 

Significance of persisters 

Persisters are slow growing bacteria present in normally dividing bacterial 

population which are neither mutant nor induced by antibiotics. ‘Phenotypic shift’of 
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persisters reported earlier can be due to faulty experimental set up resulting from 

suboptimal conditions of bacterial killing. Persisters can be aging bacteria and can be 

selected by aminoglycosides due to the peculiar property of aminoglycoside uptake by 

bacteria which depends on the transmembrane potential. They comprise a number of 

subgroups and are one of the sources of bacterial heterogeneity and noise in protein 

expression. Even though persisters generate phenotypic heterogeneity, they may not offer 

an appreciable survival advantage to the population as they do not revert to normal parent 

population. Persisters may be aging bacteria with reduced levels of protein expression 

and thus may provide an excellent model for bacterial aging. The hypothesis that a ‘true 

VBNC’ state results from bacterial senescence is also supported here. Existence of many 

subgroups of persisters with different growth rates, colony sizes, antibiotic tolerance and 

protein expression levels warrant revision on some of the fundamental concepts in 

microbiology including colony forming units, stationary phase physiology, VBNC, post-

antibiotic effect and aging.  
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Table.1. Growth characteristics of persisters isolated by by kanamycin 

O.D. of bacterial culture Bacterial 

strain 

KAN*  

(ug/ml) In presence of antibiotics On removal of antibiotics
§
 

 9h 24h 48h 9h 24h 48h 

Colony 

growth (h)
∆
 

0 t t t t t t >15 

10 0.23±0.02 t t 1.04±0.09 t t >15 

20 >0.1 0.82±0.08 t 0.43±0.04 t t 17±1.2 

30 >0.1 0.14±0.02 0.53±0.05 0.16±0.02 0.74±0.05 0.82±0.06 24±1.3 

40 >0.1 >0.1 0.18±0.02 >0.1 0.1±0.02 0.25±0.03 48±1.7 

50 >0.1 >0.1 0.16±0.01 >0.1 0.1±0.01 0.2±0.02 53±5.6 

E.coli  

DH-5α 

60 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 - 

0 t t t t t t >15 

10 >0.1 t t t t t >15 

20 >0.1 0.36±0.03 0.77±0.07 0.21±0.04 1.03±0.08 1.31±0.14 25±2.4 

30 >0.1 >0.1 0.12±0.01 >0.1 >0.1 0.15±0.01 32±3.6 

S.enteritica 

40 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 - 

 

Results are shown as mean ± s.e.m.; n=3 for E.coli DH-5α; n=2 for  S.enteritica 

 t – turbid  

*Concentration of kanamycin (ug/ml) used for isolation of persisters 

§ 
persisters isolated were washed twice and incubated in fresh LB medium for 48 hours. This 

procedure was repeated again 

∆
Time taken to form visible colonies after antibiotic-free persister cultures were plated on agar. 
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Table.2. Growth characteristics of persisters of E.coli DH-5α isolated by 

different antibiotics 

O.D. of bacterial culture Antibiotic*

 

Concn 

(ug/ml) In presence of antibiotics On removal of antibiotics
§
 

Colony 

growth (h)
∆
 

  9h 12h 24h 9h 12h 24h  

0 t t t t t - >15 

5 0.43±0.08 0.4±0.08 0.38±0.05 t t - >15 

10 0.23±0.02 0.2±0.01 0.21±0.02 0.83±0.1 t - >15 

15 0.13±0.02 0.11±0.01 0.12±0.02 0.57±0.05 t - >15 

TET 

20 0.1±0.01 0.1±0.01 0.1±0.01 0.17±0.01 t - >15 

0 t t t t t t >15 

2 0.33±0.03(L) t(L) t(L) t t t >15 

4 0.26±0.02(L)  0.74±0.12  t(L) t t t >15 

6 L 0.5±0.06  t(L) t t t >15 

8 L L t(L) t t t >15 

10 L L t(L) t t t >15 

12 L L L 1.08±0.15 t t >15 

16 L L L 0.34±0.04 t t >15 

20 L L L >0.1 >0.1 >0.1 - 

AMP 

25 L L L >0.1 >0.1 >0.1 - 

0 t t t t t - >15 

5 0.28±0.05(L)  t(L) t(L) t t - >15 

10 0.16±0.03(L)  t(L) t(L) t t - >15 

15 L L 0.22±0.03(L)  t t - >15 

20 L L L 0.37±0.05 t - >15 

NAL 

25 L L L 0.44±0.08 t - >15 
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Results are shown as mean ± s.e.m.; n=3 for all antibiotics. 

t – turbid ; L – lysis ; t(L) – turbid with lysis 

* TET-tetracycline; AMP-ampicillin; NAL-nalidixic acid 

§ 
persisters isolated were washed twice and incubated in fresh LB medium for 48 hours.  

∆
Time taken to form visible colonies after antibiotic-free persister cultures were plated on agar. 
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Table.3. Effect of inoculum size and exposure time on persister isolation  

 

Initial inoculum size Total time of exposure to antibiotics 

Spectrophotometer readings (O.D.) Initial 

inoculum 

size(µl)
§
 

With kanamycin (50 

µg/ml) 

After removal of 

kanamycin 

exposure time to 

kanamycin 

(50 µg/ml) 

O.D. after removal 

of kanamycin 

 24h 48h 24 h 48h  24 h 48 h 

50 >0.1 0.18±0.01 >0.1 0.25±0.02 1.5h t t 

100 >0.1 0.22±0.01 >0.1 0.23±0.02 3h t t 

250 0.74±0.12(L) t(L) t t 6h t t 

500 t(L) t(L) t t 9h t t 

1000 t(L) t(L) t t 24h >0.1 0.22±0.02 

     48h >0.1 0.24±0.01 

 

Results are shown as mean ± s.e.m.; n =3  

t – turbid 

L – lysis 

t(L) – turbid with lysis 

§ 
overnight culture of E.coli DH-5α 
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Table.4. Effect of pH on growth characteritics of E.coli persisters 

O.D. of bacterial culture after 6 h of incubation Conditions of 

growth
§
 

pH 

In the presence of stressors On removal of stressors 

Optimal pH 7.2 t t 

5.1 >0.1 t 

4.6 >0.1 t Acidic pH 

3.5 >0.1 >0.1 

8.2 >0.1 t 

8.8 >0.1 t Alkaline pH 

10.6 >0.1 >0.1 

 

Results are shown as mean ± s.e.m.; n =2  

§
Overnight culture of 50 µl was used for incubation 
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Table.5. Elemination of persisters and their re-growth.§ 

 

Kanamycin 

(µg/ml) 
control cycle 1 cycle 2 cycle 3 cycle 4 

stationary phase 

of cycle 4 

0 t t t t t t 

10 t t t t t t 

20 t 1.8±0.3 1.4±0.2 1.18±0.2 0.83±0.07 t 

30 0.66±0.06 0.54±0.08 0.33±0.07 0.1±0.02 >0.1 1.1±0.27 

40 0.22±0.03 0.22±0.03 0.11±0.03 >0.1 >0.1 0.44±0.08 

50 0.12±0.01 0.13±0.01 >0.1 >0.1 >0.1 0.19±0.04 

60 >0.1 >0.1 >0.1 >0.1 >0.1 0.12±0.05 

 

Results are shown as mean ± s.e.m.; n =3 

t – turbid 

§ 
Early exponential phase culture of E.coli was incubated, diluted in fresh medium and 

reinocculated for four cycles. Bacterial culture from each cycle was treated with kanamycin at 

varying concentrations and incubated for 48 hours. The exponential phase culture from the fourth 

cycle was allowed to reach stationary phase by incubating overnight which was then treated with 

same concentrations of kanamycin. 
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Table.6. Tolerance of persisters to antibiotics 

Minimum inhibitory concentration
§
 

Type of cell 

Kanamycin (µg/ml) Ampicillin (µg/ml) Nalidixic acid(µg/ml) 

con 53.3 ± 3.3 10.67± 0.7 14.3 ± 0.3 

K-10 110 ± 5.8 10.4±0.5 14.7 ± 0.7 

K-20 170 ± 14.6 11.3 ± 1.3 14.6 ± 0.3 

K-30 283.3 ± 8.8 23.3 ± 1.7 24.7 ± 2 

K-40 346.7 ± 26.1 28.7 ± 1.7 32.7 ± 5.5 

 

Results are shown as mean ± s.e.m.; n =3 

§
 Minimum concentration of antibiotic that inhibited the visible growth of test organism after 48 

hours of incubation. MIC is usually determined after overnight incubation. Since persisters require 

more time for growth, MIC of all antibiotics was determined after 48 hours of incubation. 
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Figure legends 

Fig.1. Persisters comprise many subpopulations having different growth rates. A. 

Colonies of DH5-α normal cells and persisters isolated by kanamycin after 18 

hours following agar plating. No colonies were formed by K-30 and K-40 at 18 

hours. Upper left- control, upper right- K-10 and down- K-20. B. colonies of 

control, K-10, K-20 and K-30 after 24 hours. Upper left- control, upper right- K-10, 

lower left- K-20 and lower right- K-30. C. Colonies of K-40 after 50 hours. D. 

Colonies of control, K-10, K-20 and K-30 grown in antibiotic-free medium after 26 

hours following agar plating. Upper left-control, upper right- K-10, lower left- K-20 

and lower right- K-30. E. colonies of K-40 grown in antibiotic-free medium after 2 

days. F. colonies of K-40 after incubation for 21 days followed by plating on agar.   

 

Fig.2. Aminoglycosides select persisters with different growth rates. A. Area at 

the zone of inhibition after kanamycin treatment consists of only small colonies. 

Larger colonies are seen radiating out as the antibiotic concentration decreases. 

B. Persisters remaining after ampicillin treatment. The zone of inhibition is abrupt 

and has both large and small colonies. 

 

Figure.3. Persisters generate noise in protein expression. A. Western blot 

showing GFP expression by normal and persisters of BL21 (DE-3) cells. Lane 1 

protein marker, lane 2-control, lane 3- K-10, lane 4-K-20, Lane 5- K-30 and lane 

6-K-40. B. Protein fractions of BL21 (DE-3) normal and persisters resolved on 

12% SDS-PAGE and visualized by Coomassie staining. Lane1- protein marker, 
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lane 2- control, lane 3- K-10, lane 4- K-20, Lane 5- K-30 and lane 6- K-40. C. 

Intensity of GFP fluorescence in normal, K-20 and K-40 persisters of BL21 (DE-

3) by fluorescence microscopy. 

 

Figure.4. Models of bacterial aging. Model.1 assumes that bacteria are 

functionally immortal and there is no aging in bacteria. Here ‘X’ is considered as 

the starting age of bacterium. Model.2. As per this model, bacteria undergoes 

aging. When bacterium reproduces, the mother cell becomes older and shows 

slower growth rate but the daughter cell is a rejuvenated offspring which has the 

same growth rate as normal cell. In this case, bacterial lineage is never lost. Due 

to the production of rejuvenated offspring, a culture of aging bacteria will 

eventually have the fast growth rate as normal cells. Model.3. proposes that as a 

bacterium reproduces, mother cell becomes older whereas daughter cell 

maintains the same age as the mother. Here also there is no loss of bacterial 

lineage. However, a culture of aging bacteria can never attain the same growth 

rate as normal since the daughter cell is not a rejuvenated fast growing offspring. 

This model is supported by the findings on persisters here. Model.4. As a 

bacterium divides, both mother and daughter cells becomes older. Here there will 

be a complete loss of bacterial lineage after a number of divisions. Even though 

this model is not supported here, it can not rejected based on the results on 

persisters. 
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Figure.1. 
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Figure.2. 
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Figure.3. 
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Figure 4 
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