Three Dimensional Quantitative Structure-Activity Relationships of
 Sulfonamides Binding Monoclonal Antibody by Comparative Molecular Field

Analysis
Zhanhui Wang ${ }^{1}$, Xingyuan Cao ${ }^{1}$, Zhenpeng Kai ${ }^{2}$, Ross C. Beier ${ }^{3}$, Congming Wu ${ }^{1}$, Haiyang Jiang ${ }^{1}$, Linli Cheng ${ }^{1}$, Jianzhong Shen ${ }^{1 *}$, Xinling Yang ${ }^{2}$
${ }^{1}$ College of Veterinary Medicine, China Agricultural University, Beijing 100094, People's Republic of China, and National Reference Laboratories for Veterinary Drug Residue, District Haidian, Beijing 100094, People's Republic of China.
${ }^{2}$ College of Science, China Agricultural University, Beijing, 100094, People’s Republic of China. ${ }^{3}$ Southern Plains Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, 2881 F \& B Road, College Station, Texas 77845-4988, *Corresponding author:
China Agricultural University, Beijing 100094
Phone: 8610-6273-2803
Fax: 8610-6273-1032
E-mail: wangzhanhui@cau.edu.cn

Abstract

The three-dimensional quantitative structure-activity relationship (3D-QSAR) model of sulfonamide analogs binding a monoclonal antibody (Mab ${ }_{S M R}$) produced against sulfamerazine, was carried out by comparative molecular field analysis (CoMFA). The affinities of MabsMr, expressed as $\log _{10} \mathrm{IC}_{50}$, for 17 sulfonamide analogs were determined by competitive fluorescence polarization immunoassay (FPIA). Removal of two outliers from the initial set of 17 sulfonamide analogs improved the predictability of the models. The 3D-QSAR model of 15 sulfonamides resulted in $q^{2}{ }_{c v}$ values of 0.600 , and r^{2} values of 0.995 , respectively. This novel study combining FPIA with CoMFA demonstrates that multidisciplinary research can be used as a useful tool to investigate antigen-antibody interactions and provide information required for design of novel haptens, which may result in new antibodies with properties already optimized by an antibodybased immunoassay.

INTRODUCTION

Sulfonamides are widely used to control a number of diseases in the animal industry and aquaculture, as well as used for animal growth-promotion. ${ }^{1}$ The presence of sulfonamide residues in foods of animal origin or the environment constitutes a potential hazard for humans due to the increasing incidence of microbial resistance and the risk of allergic reactions. The availability of reproducible, sensitive and rapid methods for screening sulfonamides in foodstuffs is essential. The antibody-based analytical methods, called immunoassays, have proven to be useful as simple, fast and sensitive tools for detecting and quantifying sulfonamides in a variety of matrices. ${ }^{2,3}$ The
antibody is key reagent in any format of immunoassay. However, the affinity and specificity of the generated antibodies often have un-uniform properties. The conventional process for antibody production, when carried out without careful theoretical considerations, primarily focuses on new hapten design and extensive screening protocols, is limited. There is considerable interest in understanding the structural basis of antibody-analyte complex interactions. A method that can provide useful information about the topological properties of a hapten can be very useful in producing an antibody with the desired affinity and specificity.

In this paper, the 3D-QSAR techniques based on CoMFA, were used to describe the quantitative binding affinities of sulfonamides towards $\mathrm{Mab}_{\text {sMr }}$. The methods are useful in determining the most important features of antigen-antibody binding, and therefore, provide insights into the wide-range of variations in affinity values among sulfonamide structural analogs. This work may develop knowledge of interactions that govern drug/antibody binding, and may help in the design of novel, enhanced antibodies by recombinant techniques. ${ }^{4}$

EXPERIMENTAL SECTION

Fluorescence Polarization Immunoassay. The tracer used in binding affinity determinations, fluorescein isothiocyanate (FITC) labelled sulfamethazine (SMZ-FITC), was synthesized and purified by thin layer chromatography (TLC). ${ }^{5}$ The binding affinity (IC_{50}) values of MabsMR with 17 sulfonamides were determined by a previously developed FPIA. ${ }^{5}$

CoMFA analysis. Minimum energy conformations of all 17 sulfonamide analogs were calculated using the Minimize module of Sybyl 7.0 following the same process previously used for fluoroquinolone modeling. ${ }^{6}$ For CoMFA calculations ${ }^{7}$, the alignment molecules were placed in a 3D-cubic lattice with a $2 \AA$ grid in x, y and z directions. The default sp3-hybridized carbon atom with +1 charge was selected as the probe atom for the calculation of the steric (Lennard-Jones 612 potential) and electrostatic fields (Coulombic potential) around the aligned molecules with a distance-dependent dielectric constant at all lattice points. Values of steric and electrostatic energy were truncated to $30 \mathrm{kcal}_{\mathrm{kcl}}{ }^{-1}$. PLS methodology was used for all 3D-QSAR analysis to determine the significance of the models. Quality of the final CoMFA models was measured by two statistical parameters: $q^{2}{ }_{c v}$ and r^{2}.

RESULTS AND DISCUSSION

Determination of IC ${ }_{50}$ Values Using FPIA.

The affinity of $\mathrm{Mab}_{\text {SMR }}$ for all sulfonamide analogs was expressed as IC_{50} values. ${ }^{5}$ The structures, IC_{50}, and $\log _{10} \mathrm{IC}_{50}$ values of all sulfonamides are summarized in Table 1. The only difference among the sulfonamide analogs lies in the diverse array of R-groups linked to the nitrogen at position 7 (Figure 1b, Table 1). Simple inspection of IC_{50} values reveals that the Rgroup is of primary importance for $\mathrm{Mab}_{\text {SMR }}$ binding to the sulfonamide analogs (Table 1). Since Mab $_{\text {sMR }}$ was produced to the sulfamerazine hapten, the sulfonamides with close structural similarity, such as sulfamethazine, demonstrated lower IC_{50} values than that of other analogs. Even the addition of a methyl group at position 3 on the pyrimidine ring, as seen in sulfamethazine,
reduced the affinity compared to sulfamerazine by about 3.5 -fold (Figure 1b, Table 1). The favorable $\mathrm{Mab}_{\text {SMR }}$ binding requirement for a methyl group at position 5 on the pyrimidine ring was illustrated by the IC_{50} value of sulfadiazine ($137 \mathrm{ng} \mathrm{mL}^{-1}$), which does not have a methyl group at position 5 and has a reduced affinity by 7.2 -fold compared to the hapten, sulfamerazine. The size influence of the groups at positions 3 and 5 on binding affinity can be observed by comparing the IC_{50} value of sulfamethazine to that of sulfadimethoxine (Table 1). It is interesting that the methoxy substituted analog, sulfameter, binds $\mathrm{Mab}_{\text {SMR }}$ with a 40 -fold lower affinity than sulfamerazine. However, the effect of the methoxy oxygen atom at position 4 of the pyrimidine ring on $\mathrm{Mab}_{\text {SMR }}$ binding is not understood. But the importance of the pyrimidine ring can be shown based on the affinity of Mabsmr for sulfamerazine $\left(\mathrm{IC}_{50}=19 \mathrm{ng} \mathrm{mL}^{-1}\right)$, which is 2-4 orders of magnitude higher than the affinity for other sulfonamide analogs where the pyrimidine ring was substituted with a different heterocyclic ring. Mab SMR has a higher binding affinity for sulfamerazine, sulfamethazine and sulfadiazine, all which contain a pyrimidine ring at position 7, and the inhibition curves of these three sulfonamides including sulfadimethoxine are shown in Figure 2.

It is well known that antigen-antibody formation is mainly dependent on molecular shape, defined by the geometry and low-energy interactions. ${ }^{8}$ In an effort to determine which structural and electronic effects were primarily important for $\mathrm{Mab}_{\text {SMR } \text {-sulfonamide binding, studies using }}$ advanced molecular modeling techniques were undertaken. The contribution of R-group structure to Mabsmr-sulfonamide complex formation was analyzed by using CoMFA.

CoMFA Analysis.

The CoMFA model was used to correlate variability in MabsMR binding affinities to variations in sulfonamide analog molecular structure. An improved CoMFA model (M4) was obtained with 15 sulfonamide analogs but without sulfanilamide and sulfaphenazole. The Model exhibited a satisfactory predictive ability with a cross-validate $q^{2}{ }_{c v}$ value of 0.600 , non-cross-validated r^{2} value of 0.995 and standard error of the estimate of 0.071 . The contributions of the steric and the electrostatic fields to binding affinity were 55.8% and 44.2%, respectively, by PLS analysis, indicating a strong relationship between the sulfonamide analogs structure and binding affinity. In the case of sulfonamide-MabsMR complexes, steric interactions dominated the contribution toward the observed binding variations. There is a very good agreement between the experimental and predicted values. Table 1 lists experimental binding affinities, predicted binding affinities and residual values (defined as the difference between experimental and predicted binding affinity) by CoMFA.

Figures 3 and 4 feature steric and electrostatic contour plots, respectively, of CoMFA that show where the changes in steric and electrostatic fields are associated with Mab ${ }_{\text {SMR }}$ binding to sulfonamide analogs. Greater values were correlated with more bulk near the green contours and with less bulk near the yellow contours (Figure 3); whereas, more positive charge was correlated with the blue contours, and more negative charge with the red contours (Figure 4). Some of the most noticeable features in Figure 3 are the presence of large green areas that indicate improved binding affinity with increased steric tolerance in the region of sulfamerazine near the NH_{2} group at position 17 and the NH group at position 7 (see Figure 1). However, even more attention was focused on the R-group (see Figure 1a), since all sulfonamide analogs had differences in the Rgroup. The green steric contours for CoMFA shown in Figure 3 localized near position 3 and 4 of the pyrimidine ring indicate that bulky substituents in this region of the R-group will enhance
binding affinity. However, the introduction of the methoxyl group in the pyrimidine ring at position 4 decreased the binding affinity as seen with sulfameter. This may be due to the effects of other fields like electrostatic, hydrophobic or hydrogen-bonding that may play an important role in the interactions of the sulfonamide analogs and Mab $_{\text {smr. }}$. Yellow-colored and green-colored regions near position 5 (the pyrimidine ring methyl), in respect to the proportion of the two colors, show that small groups at position 5 of the R-group increases binding affinity.

The electrostatic field of the CoMFA model is shown in Figure 4 with sulfamerazine as a reference. The large blue area above the molecule from position 13 to position 18 represents where a positive Gasteiger-Hückel charge is favored (see Figure 1b). Red-colored regions near positions 3 and 5 show that suitable electronegative groups in these areas of the R-group are favored to bind Mabsmr. This interpretation is born out by the greater binding affinity of sulfadimethoxine, having methoxy groups at positions 3 and 5, compared with sulfameter, sulfamethoxypyridazine, or sulfachloropyridazine, which are substituted with an electronegative atom at position 4.

CONCLUSIONS

This paper provides a QSAR of CoMFA, studies on 17 sulfonamide analogs binding Mab $_{\text {SMR }}$ produced to sulfamerazine. The developed CoMFA models had excellent agreement with 15 of the 17 sulfonamides studied. Results from this multidisciplinary research can also provide insights into key structural elements required to design new haptens for development of more desirable antibodies.

ACKNOWLEDGMENTS

The Authors thank Jordan R. Beier for technical assistance. This work is supported by the grants from State Key Program of National Natural Science of China (No.30830082), Beijing Excellent Doctoral Dissertation Fund (YB20081001902), and state project 863 (2008AA10Z4234).

References

(1) Raviolo, M. A.; Rambla-Alegre, M.; Clausell-Tormos, J.; Capella-Peiró, M.-E.; CardaBroch, S.; Esteve-Romero, J. Anal. Chim. Acta 2007, 593, 152-156.
(2) Crabbe, P.; Van Peteghem, C. J. Food Prot. 2002, 65, 820-827.
(3) Wang, S.; Zhang, H. Y.; Wang, L.; Duan, Z. J.; Kennedy, I. Food Addit. Contam. 2006, 23, 362-384.
(4) Paula, S.; Tabet, M. R.; Keenan, S. M.; Welsh, W. J.; Ball, W. J., Jr. J. Mol. Biol. 2003, 325, 515-530.
(5) Wang, Z.; Zhang, S.; Ding, S.; Eremin, S. A.; Shen, J. Food Addit. Contam. 2008, 25, 574-582.
(6) Wang, Z.; Zhu, Y.; Ding, S.; He, F.; Beier, R. C.; Li, J.; Jiang, H.; Feng, C.; Wan, Y.; Zhang, S.; Kai, Z.; Yang, X.; Shen, J. Anal. Chem. 2007, 79, 4471-4483.
(7) Wang, Y.; Han, K.-L.; Yang, S.-L.; Yang, L. J. Mol. Struct. (Theochem) 2004, 710, 215221.
(8) Sugawara, Y.; Gee, S. J.; Sanborn, J. R.; Gilman, S. D.; Hammock, B. D. Anal. Chem. 1998, 70, 1092-1099.

Figure 1 Schematic a) backbone of sulfonamides and b) pharmacophore of sulfamerazine.

Figure 2 Representative examples of competition ELISA determination of the binding specificities of Mab. The calibration curves show the ability of sulfamerazine, sulfamethazine, sulfadiazine and sulfadimethoxine to inhibit SMZ-FITC binding to Mab. Each point is the average of three determinations.

Figure 3 CoMFA contour plots of steric field contributions of sulfonamides binding to Mab. Green contours indicate regions where bulky groups increase antibody affinity, and yellow contours indicate regions where bulky groups decrease antibody affinity.

Figure 4 CoMFA contour plots of electrostatic field contributions of sulfonamides binding to Mab.
Blue contours indicate regions where positive charged groups increase antibody affinity, and red contours indicate regions where negatively charged groups increase antibody affinity.
Table 1. Experimental and Predicted Sulfonamides Binding Affinity to Mab
${ }^{\text {a }}$ The abbreviations are as follows: Sulfamerazine (SMR), sulfamethazine (SMZ), sulfadiazine (SDZ), sulfadimethoxine (SDM), sulfameter (SME), sulfathiazole (STZ), sulfamethoxypyridazine (SMP), sulfamoxole (SMO), sulfapyridine (SPY), sulfaquinoxaline (SQX), sulfachloropyridazine (SCP), sulfamethizole (SMT), sulfamethoxazole (SMX), sulfamonomethoxine (SMM), sulfisoxazole (SFX), sulfaphenazole (SPA), and sulfanilamide (SAM).

