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Abstract

If geo-sequestration of CO2 is to be employed as a key emissions reduction 
method in the global effort to mitigate climate change, simple yet robust 
screening of the risks of disposal in brine aquifers will be needed. There has 
been significant development of simple analytical and semi-analytical 
techniques to support screening analysis and performance assessment for 
potential carbon sequestration sites. These techniques have generally been 
used to estimate the size of CO2 plumes for the purpose of leakage rate 
estimation. A common assumption has been that both the fluids and the 
geological formation are incompressible. Consequently, calculation of 
pressure distribution requires the specification of an arbitrary radius of 
influence.

In this talk, a new similarity solution is derived using the method of matched 
asymptotic expansions. By allowing for slight compressibility in the fluids and 
formation, the solution improves on previous work by not requiring the 
specification of an arbitrary radius of influence. A large-time approximation of 
the solution is then extended to account for non-Darcy inertial effects using 
the Forchheimer equation. Both solutions are verified by comparison with 
finite difference solutions. The results show that inertial losses will often be 
comparable, and sometimes greater than, the viscous Darcy-like losses 
associated with the brine displacement, although this is strongly dependent 
on formation porosity and permeability.
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Introduction

Currently there is a great interest in geo-sequestration of CO2..

This involves capturing CO2 at the point of generation, compressing it to a 
supercritical fluid, and then sequestering it at depth within a suitable 
permeable geological formation.

There has been significant development of simple analytical and semi-
analytical techniques to support screening analysis and performance 
assessment for potential carbon sequestration sites.

These have generally been used to estimate the size of CO2 plumes for the 
purpose of leakage rate estimation.

A common assumption is that both the fluids and formation are 
incompressible.

Consequently, calculation of pressure distribution requires the specification of 
an arbitrary radius of influence.

In this presentation we improve on previous work by allowing for slight 
compressibility in the fluids and formation and accounting for inertial effects by 
applying the Forchheimer equation.

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

08
.2

63
4.

1 
: P

os
te

d 
10

 D
ec

 2
00

8



Key assumptions

Following Nordbotten et al. (2005) we 
consider a fluid pressure, p [ML-1T-2] 
that includes an assumption of 
negligible capillary pressure, and 
which applies over the entire thickness 
of a confined porous formation of 
vertical extent H [L]. 

The CO2 and brine are assumed to be 
separated by a sharp interface, 
located at an elevation h [L] above the 
base of the formation. 

The CO2 zone is fully saturated with 
CO2 whilst the brine zone is fully 
saturated with brine.

h(r, t)

H

CO2

Brine

rw
r

M0

h(r, t)

H

CO2

Brine

rw
r

M0

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

08
.2

63
4.

1 
: P

os
te

d 
10

 D
ec

 2
00

8



Boundary value problem
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The Forchheimer equation
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Inertial effects are incorporated through the 
Forchheimer equation.
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Key parameters
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Solution strategy for β = 0

Assuming no inertia (i.e. β = 0) and an infinitesimal well 
(i.e.    rw→ 0) then allows application of the Boltzmann 
transform (x = r2 / t).

The problem then reduces to two coupled ordinary 
differential equations.

Expanding the dependent variables about α and assuming 
α<<1 then leads to two simplified and solvable problems. 
One for the near-field and for far-field.

These are then joined using the method of matched 
asymptotic expansion.
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The small α approximation
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The pressure buildup (new result)

The CO2-brine interface (after Noordbotten et al., 2006)

CO2 only

2-phase region

brine region
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Viscosity and density

Parameter Deep and warm Shallow and cold

μo (Pa.s) 0.395 × 10-4 0.577 × 10-4

μw (Pa.s) 2.535 × 10-4 11.875 × 10-4

ρo (kg/m3) 479 741

ρw (kg/m3) 1045 1121

Fluid properties of CO2 and brine phases, representing the range 
of subsurface conditions (temperature and pressure) found in 
continental sedimentary basins (after Gasda et al., 2008).
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Finite difference (α = 101)

Finite difference (α = 100)

Finite difference (α = 10−1)

Finite difference (α = 10−2)

Finite difference (α ≤ 10−3)
small α approximation

The CO2-brine interface

Deep and warm sediments
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Pressure buildup

Deep and warm sediments

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

08
.2

63
4.

1 
: P

os
te

d 
10

 D
ec

 2
00

8



Solution strategy for β > 0

In the far-field, flow velocities are greatly 
reduced and therefore the system 
behaves similar to when β = 0.

In fact the far-field is characterised by the 
previous equation.

There is an inner region where the system 
is effectively at steady state.

Matching the asymptotic expansions leads 
to the large-time approximation
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Finite difference (β = 0)
Large time approximation

Pressure buildup

Deep and warm sediments with α = 10-3
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Pressure losses
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The large time approximation for pressure buildup can be 
rearranged to get

Viscous pressure loss in brine
(i.e. Cooper and Jacob, 1946)

L1 - Viscous pressure loss in CO2

L2 - Inertial pressure loss in CO2
(similar to Wu, 2002)
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For cold and shallow sediments
k (m2) φ α Viscous loss Inertial loss (i.e. β)

1E-12 0.10 9.52E-06 70.2 41.9

1E-14 0.10 9.52E-04 25.1 4.2

1E-12 0.20 9.52E-06 70.2 0.9

1E-14 0.20 9.52E-04 25.1 0.1

Possible scenarios

Zhou et al. (2008) consider a typical scenario:

• Mass injection rate, M0 = 120 kg/s

• Rock compressibility, cr = 4.50E-10 Pa-1

• Brine compressibility, cw = 3.50E-10 Pa-1

• Aquifer thickness, H = 125 m

• Well radius, rw = 0.1 m

For deep and warm sediments
k (m2) φ α L1 (viscous loss) L2 (inertial loss, i.e. β)

1E-12 0.10 1.01E-05 24.0 61.2

1E-14 0.10 1.01E-03 11.6 6.1

1E-12 0.20 1.01E-05 24.0 1.4

1E-14 0.20 1.01E-03 11.6 0.1
Strong dependence on porosity is due to the Geertsma (1974) correlation, b = 0.005φ-5.5k-0.5
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Summary and conclusions

New analytical solutions have been presented to estimate pressure buildup
during CO2 injection in brine aquifers.

These improve on previous work by accounting for compressibility and inertial 
effects.

It was found that for large times the pressure contribution due to viscous and 
inertial losses in the CO2 plume become constant.

Furthermore, it was found that inertial losses are likely to be comparable and 
sometimes greater than those associated with the two-phase displacement.

The new solutions are easy to code up in spreadsheet software and should 
greatly aid fast and cost-effective screening to quickly identify sites suitable for 
the injection procedure.

Look out for:
• S. A. Mathias, A. P. Butler, H. Zhan (2008) Approximate solutions for Forchheimer

flow to a well. ASCE Journal of Hydraulic Engineering 134(9): 1318-1325.
doi:10.1061/(ASCE)0733-9429(2008)134:9(1318)

• S. A. Mathias, P. E. Hardisty, M. R. Trudell, R. W. Zimmerman (2008) Approximate 
solutions for pressure buildup during CO2 injection in brine aquifers. Transport in 
Porous Media. doi:10.1007/s11242-008-9316-7
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