
AN INTEGRATED IGCC-CSS DESIGN COURSE FOR GRADUATE STUDENTS IN PETROLEUM ENGINEERING

Gioia Falcone Behnam Jafarpour Maria Barrufet

Virtual Conference on Climate Change and CO2 Storage, 3rd December 2008

Summary

- Introduction to the course
- The design project
 - FutureGen field case
 - Workflow
- Lessons learnt & conclusions

Introduction to the course

- A new graduate course on CO₂ Capture and Uses was offered for the first time at Texas A&M, Pet. Eng., in Fall 2008.
- A multidisciplinary team of instructors from the Pet. Eng. & Chem. Eng. departments was assembled to ensure the appropriate expertise.
- The objective of the course is to let the students understand the need for / potential of Carbon Capture and Storage (CCS) & Enhanced Oil Recovery (EOR).

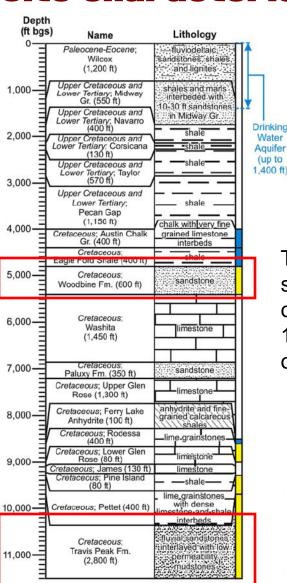
Course contents & multidisciplinary team

Topic

Instructor (Prof.)

•	Course Overview and Purpose	Robert Lane, Maria Barrufet
•	Geological Screening and Site Characterization	Walter Ayers
•	Separation Aspect and Cost-Efficiency Analysis	Carl Laird
•	Boosting, Transportation, and Injection	Gioia Falcone
•	Injectivity and Well Design	Hisham Nasr-El-Din
•	Use of CO2 for EOR	David Schechter
•	Modeling Tools and Techniques, Leakage Pathways	Behnam Jafarpour
•	Economic and Regulatory Aspects	Christine Economides

The design project


The course includes a term project - the students design a CCS system based on data available from the FutureGen project (www.futuregenalliance.org/). The following steps are included in the design project:

- 1. Site characterisation
- 2.CO₂ capture & separation
- 3.CO₂ boosting, transport and injection
- 4. Mass balance & numerical flow simulation
- 5. Risk, monitoring, regulations & economic evaluation

TEXAS A&M

Site characterisation - Brazos, Texas

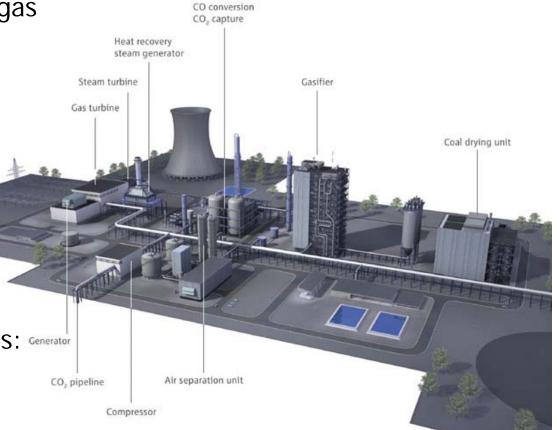
Parameter	Brazos Woodbine	Brazos Travis Peak
Depth to top of injection horizon (ft)	4800	9200
No. of wells	2	1
Flow split/well	45%	10%
Flow rate/well (lb/hr)	283,130	62,917
Max. injection pressure (psi)	3197	6114
Required injection pressure (psi)	2496	6114

The Woodbine formation is a 500-foot thick clean sandstone. For Lower Woodbine sandstones, porosity of 25%, with permeability of several hundreds md to 1,200 md. For Upper Woodbine sandstones, porosity of 25-30%, with permeability > 3,000 md.

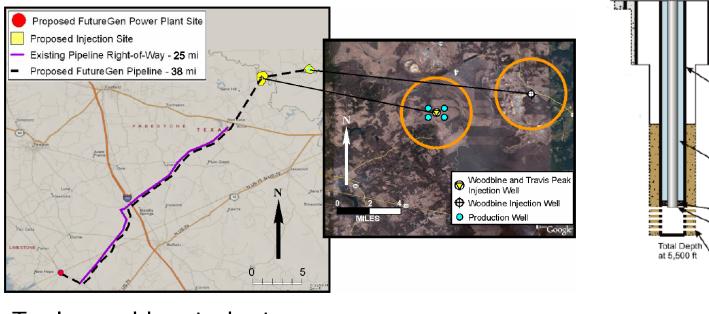
The Travis Peak formation, the optional secondary target sequestration formation, consists of 0.5 mile of stacked fluvial sandstones interbedded with low-permeability mudstones, comprising 800 to 900 feet of net sandstone, with porosity of 5-8%.

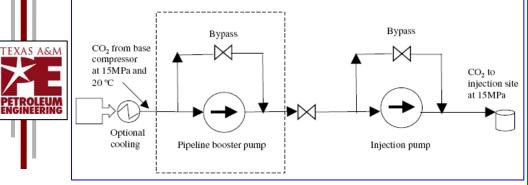
CO2 capture and separation

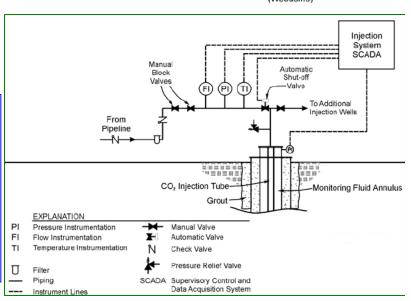
 Post-combustion fuel gas separation


 Physical and chemical absorption

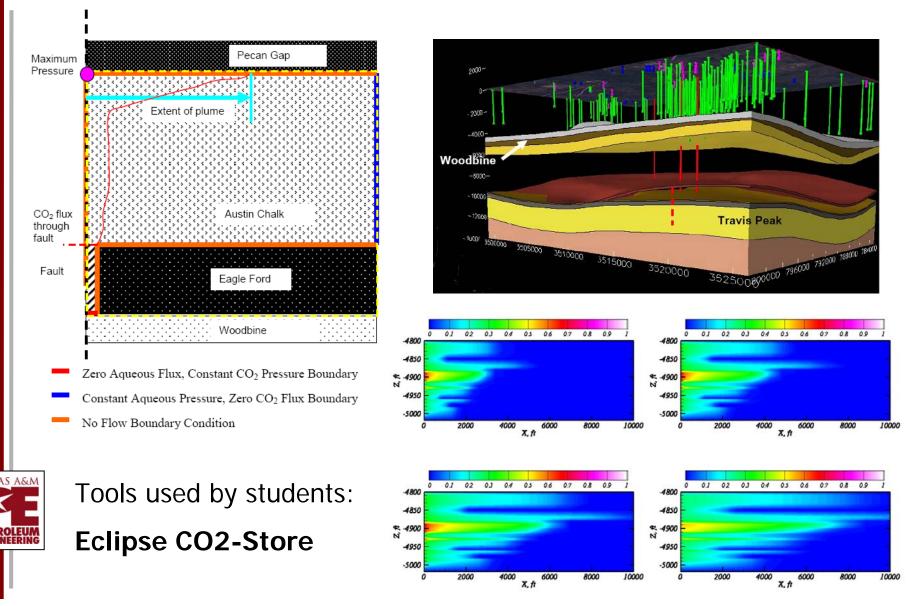
Capture efficiency


• Tools used by students: Generator


CO₂ boosting, transportation & injection



~13-3/8 in., 54.5 lb/ft, J-55 conductor casing set at 100 ft in 17-1/2 9-5/8 in., 36 lb/ft, J-55, surface casing set at 1,500 ft in 12-1/4 in, hole. cemented to surface 7 in., 26 lb/ft, N-80, Injection Casing set at 5,500 ft in 8-1/2 in, hole, cemented to 2,900 ft with acid-resistant cement Annular Fluid: 9.0 lb/gal inhibited NaCI brine or similar. Injection Packer at 4,800 ft 4-1/2 in., 12.75 lb/ft, N-80 Injection Tubing set at 4,850 ft. Perforations; 4.850-5.400 ft (Woodbine)

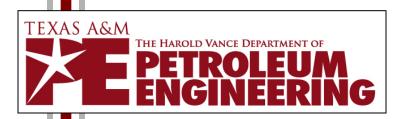

Tools used by students:

Hand calculations, PROSPER/GAP

Mass balance & numerical flow simulation

(FutureGen Allience, May 2007)

Gas saturation profiles at 5, 10, 20 and 50 yrs (Woodbine)


Conclusions

- With this new course, engineering students are offered a unique opportunity to learn about integrated IGCC-CCS systems.
- Conventional Pet. Eng. & Chem. Eng. skills and techniques fully complement an integrated approach to the contemporary energy scenario.
- A design project based on a real field case is ideal for scholarly purposes – we plan on using more field data as they become available.

AN INTEGRATED IGCC-CSS DESIGN COURSE FOR GRADUATE STUDENTS IN PETROLEUM ENGINEERING

Gioia Falcone Behnam Jafarpour Maria Barrufet

Virtual Conference on Climate Change and CO2 Storage, 3rd December 2008