Carbon Storage Integrating Experiments & Modelling to Quantify Trapping Capacity & Efficiency in the Subsurface

Saleh Al-Mansoori, Stefan Iglauer, Christopher Pentland, Ran Qi, Branko Bijeljic, Tara LaForce, Martin Blunt Imperial College London

MEASURING TRAPPING CAPACITY

This is a fundamental study of trapping of non-wetting fluids in porous media. When injecting CO₂ into an aquifer for carbon storage, the non-wetting phase (CO_2) is trapped due to capillary forces.

MOTIVATION

MODELLING TRAPPING EFFICIENCY

Design an injection strategy to maximise CO₂ storage capacity and efficiency on the field scale - incorporating experimental and pore scale modelling results. Streamline based simulator modified for this purpose.

Permeability field	Pressure solve	Saturation along SL

Capillary trapping is one of the quickest and most secure means to render CO₂ immobile.

Water, the wetting phase, displaces CO₂ and leaves behind disconnected ganglia of CO₂ in pores:

- rock matrix: green
- water: grey
- CO_2 : blue

Micro-CT image of capillary trapping

How much CO₂ is trapped? How does trapping vary with initial CO₂ saturation?

EXPERIMENTS

Horizontal and vertical core floods with analogue fluids.

Oil/water system - oil density similar to scCO₂ denisty. Gas/water system - gas viscosity similar to scCO₂ viscosity.

Sand-packed column injected with non-wetting fluid (oil dyed red).

Experimental Results showing the oil/water and gas/water trapping curves

Mobility ratio = 1.0 Mobility 0.1 Mobility ratio between chase brine and carbo dioxide/brine mixture during chase brine niection 0.01 0.2 0.3 0.4 0.6 0.7 0.8 0.9

The ratio of the mobility of injected brine and CO₂ to the formation brine as a function of the injected CO_2 -phase volume fraction, fgi.

The CO₂-phase fractional flow fg as a function of CO_2 (gas) saturation, Sg.

Once CO₂ injection ceases the reservoir is waterflooded. Due to the mobility contrast the waterflood front catches up with the CO₂. This process results in CO₂ being trapped on the pore scale as a residual phase.

SPE 10 reservoir model, 1,200,000 grid cells (60 x 220 x 85), 7.8 Mt CO₂ injected.

Two years after chase water injection

Trapping efficiency = 95%

In other words 95% of the injected **CO**₂ is rendered immobile through capillary trapping or dissolution.

Only 5% of injected CO₂ is reliant upon hydrodynamic trapping below an impermeable cap rock.

Our work on the design of an injection strategy implies that we can safely store carbon dioxide deep underground.

ACKNOWLEDGMENTS

We would like to acknowledge funding from Shell under the Grand Challenge on Clean Fossil Fuels and the funding from ADNOC (Abu Dhabi).