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Abstract 

It becomes increasingly accepted that a shift is needed from the traditional target-based 

approach of drug development to an integrated perspective of drug action in biochemical 

systems. We here present an integrative analysis of the interactions between drugs and 

metabolism based on the concept of drug scope. The drug scope represents the set of 

metabolic compounds and reactions that are potentially affected by a drug. We constructed 

and analyzed the scopes of all US approved drugs having metabolic targets. Our analysis 

shows that the distribution of drug scopes is highly uneven, and that drugs can be classified 

into several categories based on their scopes. Some of them have small scopes corresponding 

to localized action, while others have large scopes corresponding to potential large-scale 

systemic action. These groups are well conserved throughout different topologies of the 

underlying metabolic network. They can furthermore be associated to specific drug therapeutic 

properties. 
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Introduction  

There is a growing perception that the traditional approach for drug development has not been 

as effective as could be expected [1]. Although investments by pharmaceutical companies 

have been growing continuously in the last decades, the number of newly approved drugs has 

not followed the same trend [2,3]. Currently the main trend in drug design and development 

follows the target-based approach. The drug target is generally a single gene or gene product 

which has been clearly identified as having an action on the disease. Disease treatment seeks 

to modulate this action without affecting other processes in the organism. However, many 

diseases are multifactorial, and the current approach fails to take such systemic aspects into 

account [4]. The complex interactions between numerous molecular processes and pathways 

involved in diseases imply that any treatment targeting a local element will create secondary 

effects on the entire system. The lack of an integrative investigation of drug action can lead to 

either positive or negative systemic effects being missed. In the first case, the treatment only 

provides limited and localized cure for the disease while failing to address large-scale causes. 

In the second case, new drugs are developed with harmful side effects that are only revealed 

at a late stage of clinical studies. This problem of drug attrition is a major concern for the 

pharmaceutical industry and an important source of financial costs. Additional problems can be 

caused by side-effects resulting from combinations of several drugs, arising from unexpected 

interactions which were not revealed by local analysis. 

To increase the productivity of drug development and the efficiency of new drugs, there is thus 

a strong need to move beyond the investigation of drug action from the point of view of direct 

targets only, and to take into account the full network of interactions connecting the targets 

with the rest of the system. Drug development needs to be approached not only in terms of a 

molecular biology process, but also as a systems biology process [5,6,7,8]. This awareness has 

recently led to the completion of major studies revealing the large-scale interactions between 

drugs, drug targets and diseases from a network-based perspective [9,10,11,12,13]. However, 

these approaches did not unveil yet how specific drugs interact in biochemical systems, and 

new methods are needed to gain an integrated perspective of the mechanisms of drug action 

in complex systems. 

To this aim, we here introduce a new view of drug-metabolism interactions based on the 

concept of drug scope. The concept of a scope was previously developed in metabolic networks 

[14]. It uses an expansion process based on the principle that, for any reaction to take place, 

all necessary substrates must be present and the products of these reactions may in turn be 

used by other reactions. Starting from a set of seed compounds, reactions whose substrates 

are available in the seed set are iteratively added, resulting in the generation of a series of 

expanding networks. When no further reaction can be added, the final network obtained is 



defined as the scope of the seeds. The scope represents the set of all compounds that can in 

principle be synthesized from the seeds. This concept was already proven valuable in revealing 

features of the evolution of metabolic systems, leading notably to demonstrating how the shift 

from anoxic to oxic environments transformed the architecture of metabolic networks and how 

the availability of oxygen allowed an increase in biological complexity [15]. Recently, it was 

shown that features of scopes could also be linked to chemical structures and biological 

functions of the seeds [16]. 

We here extend the scope paradigm to drug-metabolism interactions. Many drugs target genes 

or gene products that are involved in metabolic functions. When a metabolic reaction is 

targeted by a drug, the concentrations of its substrates and products are affected as a result of 

drug action. Other reactions which use the products of the initial reactions are in turn affected 

by these perturbations. By iterative expansion, the entire scope of the initial substrates and 

products can in principle be affected by the drug. Basing on this principle, we thus introduce 

the concept of a drug scope defined by the following: the scope of a drug is the scope resulting 

from the expansion of a set of seed compounds containing the substrates and products of all 

metabolic reactions targeted by that drug. 

The drug scope essentially represents the largest network of possible action of a drug in a 

metabolic system. In the following sections, we show how drug scopes reveal new features of 

the systemic modes of drug action through a detailed analysis of the scopes of 276 human 

approved drugs from the DrugBank database [17] having metabolic targets. As scopes depend 

on the topology of the metabolic network used in the expansion process, we analyzed the 

action of each drug in four different systems: a human vs. a reference metabolic network 

consisting of the union of all organisms, and for each of those a reversible vs. an irreversible 

topology. Further details on the construction of drug scopes are provided in the Methods 

section. Our results show that the distribution of scopes is highly uneven and that they can be 

classified into different categories. Some drugs have small scopes associated to localized 

action, while others have large scopes associated to potential widespread systemic action. 

These classes are relatively well conserved throughout the four systems. A network of drug 

scopes, where scopes are connected when their Jaccard distance is smaller than a given 

threshold, confirms these characteristics, and a k-core decomposition algorithm reveals several 

highly connected central components as well as peripheral subgraphs. We subsequently 

analyzed the correlations between drug scopes and therapeutic properties of drugs, and show 

that therapies are not distributed uniformly but can often associated to specific groups of 

scopes, correlated to similar k-cores. Drug scopes therefore offer a new avenue to analyze 

drug-metabolism interactions and may provide valuable assistance to the drug development 

and assessment process. 



Results 

Drug scopes are highly uneven 

The first step in characterizing the properties of drug scopes consisted in analyzing the 

distribution of their sizes. In many cases multiple drugs have the same targets and these 

drugs automatically have the same scope. To avoid identical scopes to be counted several 

times, we beforehand selected a subset of scopes where only one representative of each group 

of identical scopes was kept, resulting in a group of 97 scopes which are all different. The 

distributions of sizes of these scopes are shown in Figure 1 for each of the four metabolic 

networks. 

Histograms reveal a highly heterogeneous distribution. Scope sizes are not distributed evenly, 

nor do they show any kind of regular distribution law. On the contrary, sizes are often 

concentrated around particular values: for example, in the reference reversible network there 

are 48 scopes of size comprised between 1920 and 1940. The presence of such peaks can be 

attributed to particular metabolites. It is known that the inclusion of ubiquitous metabolites 

has a strong influence on the size of scopes [18]. The most frequent of them is ATP, which 

together with water and oxygen generate a scope of 1929 compounds. The previously 

mentioned peak is thus clearly attributable to the presence of ATP. Nevertheless, it is 

remarkable that scopes do not exhibit larger variations around peaks. This observation 

suggests that drugs scopes can be separated into distinct and relatively homogeneous groups, 

where internal variations are small. 

The frequencies of occurrence of chemical compounds and reactions in drug scopes are plotted 

in Figures 2 and 3 respectively. These distributions are very irregular and do not follow any 

classical law either. Peaks can be observed at some values, separated by intervals of zero 

frequency. Such distributions can be explained by the fact that scopes tend to grow through 

the incorporation of groups of metabolites, ubiquitous metabolites bringing large numbers of 

other metabolites with them. The sharp peaks observed at some high values, particularly for 

the reference network, are a further indication that groups of very similar scopes exist. Each of 

these peaks corresponds to a group of scopes containing many of the same compounds and 

reactions. It was thus desirable to use clustering methods to reveal such groups of drugs. 

Scopes reveal four main categories of systemic drug action 

We clustered drug scopes using the Jaccard distance as a measure of dissimilarity between 

scopes (see Methods). In the reference reversible network, four clusters of drug scopes were 

obtained, whose main properties are listed in Table 1. In order to highlight the main features 



and differences between these clusters, we constructed the consensus scope of each cluster. 

The consensus scope is the set of compounds present in at least 50% of all scopes of a cluster 

(see Methods). Consensus scopes of the four clusters are plotted over a genome scale 

metabolic map in Figure 4. 

Clear differences can be observed between these four drug clusters. Cluster I is composed of 

drugs whose scope is very small. These scopes only slightly differ from the minimal scope 

induced by water and oxygen alone. When only water and oxygen are used as seeds and 

cofactors are allowed, a minimal scope of 12 compounds is obtained. The average size of 

scopes in cluster I is 15, and the size of their consensus scope is 12. These scopes thus mainly 

consist of the minimal scope with the addition of a handful of other compounds. These 

additional compounds are isolated and poorly connected to the rest of the metabolic network, 

as they do not further increase the size of the scope. Drugs belonging to cluster I are therefore 

only able to affect a limited and specific part the metabolic network. Their action is not allowed 

to propagate beyond the intended target and should be mainly local. 

Cluster III contains the same minimal component induced by water and oxygen, but 

additionally contains a larger component centered on arachidonic acid metabolism. This 

component, which can be seen at the left-hand side of the genome scale metabolic map 

(Figure 4), is absent from the three other clusters. Interactions of certain drugs with 

arachidonate metabolism have long been known and this pathway is particularly important in 

anti-inflammatory treatments [19,20]. 

Clusters II and IV on the contrary contain large scopes spreading through many parts of the 

metabolic network. Drugs belonging to these clusters can therefore in principle affect a wide 

area of metabolism and potentially have widespread systemic effects. Such dramatic increase 

in the size of scopes can be achieved by the inclusion of particular metabolites. For example, 

Raymond and Segrè [15] showed that the availability of oxygen leads to a major expansion of 

the size and complexity of metabolic systems. Although oxygen and water where assumed to 

be always available in our analysis, similar increases can be achieved by the inclusion of other 

metabolites. The most important of them is ATP, which explains the distinction between cluster 

II and IV: ATP is present in all scopes of cluster II but absent from the scopes of cluster IV. It 

is worth noticing that ATP does not have the largest scope of all metabolites though: this 

position is held by adenosine 5'-phosphosulfate [18], which is only present in a small number 

of scopes of cluster II (16 out of 163). The size of a compound’s scope alone is thus not a 

determining factor for its recurrent occurrence in drug scopes. Pyruvate plays a major role too 

in separating different clusters, as it is present in clusters II and IV, but absent from clusters I 

and III. 



Drug categories are conserved in different networks 

The scope construction process fundamentally depends on the topology of the underlying 

metabolic network. We therefore conducted the same analysis in four different networks: a 

reference network consisting of the union of all organisms vs. a human metabolic network, and 

in each of those a reversible vs. an irreversible topology (see Methods). Clustering of drug 

scopes in these other networks resulted in more clusters being found than in the reference 

reversible network (Tables 2, 3, 4). However, most of these new clusters are very small, 

containing only in a handful of drugs. They would fall into one of the four main clusters if the 

cutoff were increased. The detailed composition of clusters is provided for the four networks in 

Supplementary File 2. 

The four main clusters are still present and exhibit similar characteristics as in the reference 

reversible network. Although the average size of scopes is smaller in irreversible and human 

networks than in the reference reversible case (which is natural because scopes in irreversible 

and human networks are necessarily subsets of scopes in the reference reversible network), it 

is worth noticing that the consensus scopes of the four main clusters remain very similar to 

their reference reversible counterparts (Figures 2, 3, 4). Overlaps between consensus scopes 

from different clusters were made apparent by Venn diagrams (Figure 5). Groups consisting of 

large (II and IV) and small scopes (I and III) are clearly distinguishable in the reference 

reversible network. In the reference irreversible network, this pattern is well conserved despite 

additional small clusters appearing. In human networks, more complex overlapping patterns 

emerge but two groups of large scopes are still present. 

More significantly, the drug composition of the four main clusters is well conserved throughout 

the different networks (Figure 6). Cluster III is even 100% conserved in all four networks. The 

only significant difference appears with cluster IV, which is less conserved in the human 

irreversible network. The latter network is the less densely connected of all four, therefore 

emphasizing the dependence of drug scopes on local targets and leading to a higher scattering 

of scopes. Table 4 shows that this network has a large number of very small clusters, making 

it more difficult to identify large groups of drugs with common properties as a result. On the 

other side, this network is the most appropriate when it comes to identifying highly specific 

drug-metabolism interactions, as scopes tend to be more restricted to the immediate 

neighborhood of drug targets. 

Drug scopes are correlated to therapeutic properties 

As drug scopes are related to features of the systemic modes of drug action, a fundamental 

question was to determine whether the properties of drug scopes could be linked to 

therapeutic properties of the drugs themselves. We consequently analyzed the distribution of 



therapeutic properties, defined by level 1 tags of the ATC classification (see Methods), in the 

four main groups of drugs identified by clustering of their drug scopes. As shown in Figure 7, 

the repartition of therapies is not uniform in the four groups. While clusters II and IV show 

relatively similar compositions in therapies, they together strongly differ from clusters I and 

III. 55% of drugs in cluster III belong to the musculo-skeletal system (M) category, and 77% 

of all class M drugs belong to cluster III. Cluster I is dominated by antiinfectives (A) and 

sensory organs (S) drugs; it contains half of all blood related drugs (B) and three quarters of 

hormonal preparations (H). Clusters II and IV on the contrary are dominated by cardiovascular 

drugs (C), while this class is almost absent from the other groups. Respiratory system drugs 

are only found in clusters II and IV. 

The fact that clusters II and IV show more similarities than the other clusters must be put into 

relation with the fact that these two clusters correspond to large scopes, while clusters I and 

III correspond to small specific scopes. Therefore, there appears to be a relationship between 

the composition and extent of a drug scope and its therapeutic properties. This observation 

reinforces the potential role of scopes as an indicator of drug action and effects in a systems-

wide context. 

A complementary analysis of the relationships between drug scopes and therapies was realized 

by constructing a network of drug scopes (see Methods). Complex interwoven interactions can 

be analyzed in networks by identifying the cohesive building blocks of the system. Cohesive 

subgraphs are sets of nodes with high density of edges in their network neighborhood. We 

applied an iterative decomposition method to uncover k-core subnetworks, defined as the 

largest subgraphs where every node has at least degree k. Figure 8 shows the decomposition 

of a network of drug scopes, for a threshold of 0.2 in the Jaccard distance between scopes and 

in the human irreversible case. Each colored node represents a different core partition. Highly 

connected drugs are located in innermost cores where overlapping with complete therapy 

graphs is more evident. The overlapping of therapy cliques with k-core subgraphs confirms 

links between the composition of scopes and the effects of drugs. 

Discussion  

It is a widely accepted fact that new approaches are needed to facilitate and increase the 

quality of the drug target identification and drug development processes. High levels of 

investment by pharmaceutical companies in recent years have not been followed by a 

corresponding increase in discovery and commercialization of new drugs, and the traditional 

reductionist approach of drug development is seen as a possible cause for this lack of success. 

Many diseases are multifactorial and can not be handled by targeting only isolated molecules, 

but systemic aspects need to be taken into account. The toxicity and harmful side-effects of 

some drugs can also be accounted to by a failure of considering drug action in an integrated 



and systemic way. When a molecular target is perturbed by a drug, effects are not limited to 

that target but potentially extent to the whole interaction network connected to it. It therefore 

becomes more and more necessary to study drug action with a systems biology perspective, 

and important efforts are needed to construct and characterize the interaction networks 

connecting drug targets to all components of a biological system. 

The metabolic network is one of these interaction networks, and drug scopes provide a 

straightforward and efficient tool to construct them and to analyze their properties. We have 

shown that drug scopes can vary greatly in size and distribution. When a drug has a small 

scope, its action is necessarily restricted to a small set of reactions and compounds. Whether 

this feature should be considered as enviable or not is open to discussion, and most certainly 

depends on the context. When a disease is due to the malfunction of a specific process or the 

lack of a specific metabolic compound, a small scope would a priori be preferable, since it 

guarantees that no harmful side-effects are induced by the drug. Large scopes are more 

difficult to assess: on the one side, a drug with a large scope is potentially more efficient in 

combating a multifactorial disease, as its effects can extend far beyond the immediate targets. 

On the other side, because it is difficult so far to quantify such large-scale effects, it cannot be 

excluded that they might include negative consequences for the organism. A wishful goal for 

the future should therefore involve moving beyond this type of qualitative view of drug-

metabolism interactions towards a more quantitative view. For example, being able to predict 

which reactions and compounds of the drug scope are enhanced or repressed by the drug’s 

action could lead to a whole new level of knowledge. 

It is remarkable too that correlations can be observed between drug scopes and therapeutic 

properties of drugs. This observation strengthens the relevance of drug scopes in studying a 

drug's action and effects in a systems-wide context. As they discriminate the networks of 

action of different drugs, scopes also offer a discrimination between the consequences of these 

actions. Whether this finding can be turned into a predictive tool, i.e. to determine scopes and 

drug targets with the aim of obtaining effect, remains open to investigation but certainly 

provides an exciting perspective. 

Methods  

Construction of drug scopes  

The Drugbank database is a comprehensive bioinformatics and chemoinformatics resource 

containing detailed information about all US approved drugs and their molecular targets [17]. 

We downloaded the database and identified all drugs having enzymatic targets by extracting 

their Enzyme Commission (EC) numbers. For each of them, we compiled the list of substrates 



and products using both the Kegg [21] and Brenda databases [22]. In the case of unspecific 

reactions having multiple substrates and products, we only selected the most common 

compounds, as uncommon compounds are usually not supported by the scope construction 

application. 

For each drug, the complete set of compounds determined in this way constituted the seeds of 

the drug scope. Oxygen and water were added to the seeds if not already present, as it is 

assumed that these compounds are always available in a human metabolism context. The 

following cofactors were also assumed to be available for metabolic reactions, but they were 

not added to the seeds: ATP, ADP, NAD, NADH, NADP, NADPH, CoA. 

We subsequently used the MetaPath Online application [14] to construct the scopes resulting 

from these seeds. For each drug, we computed four different scopes based on four metabolic 

networks: a reference network corresponding to the union of all species vs. a human network, 

and for each of those a reversible vs. an irreversible topology. Scopes were saved as text files 

for subsequent analysis. 

It frequently occurred that multiple drugs had the same set of enzymatic targets. In this case 

the scopes of these drugs are necessarily identical. In several parts of our analysis such 

duplicate scopes were counted only once, so that we used a subset of scopes that are all 

distinct. A list of drugs and their enzymatic targets is provided in Supplementary File 1, where 

drugs with identical targets are highlighted in the same color. 

Clusters of drug scopes 

We used the Jaccard distance between sets to define a measure of dissimilarity between 

scopes. For two scopes A and B, the Jaccard distance is 1 - |A∩B|/|A∪B|, where |A∩B| is the 

number of compounds contained in the intersection of A and B, and |A∪B| is the number of 

compounds contained in the union of A and B. If two scopes are identical their Jaccard distance 

is 0; if two scopes have no compound in common their Jaccard distance is 1. 

Hierarchical clustering of drug scopes was calculated with the R statistical computing 

environment using the Jaccard distance as a measure of dissimilarity. The clustering algorithm 

proceeds iteratively, at each stage joining the two most similar clusters, continuing until there 

is just a single cluster. At each stage, distances between clusters are recomputed according to 

the particular clustering method being used. We adopted the complete linkage method which 

defines the distance between any two clusters as the maximum distance between them. A 

cutoff value of 0.5 was used to define clusters. 



Consensus scopes  

Following a definition set by Matthäus et al. [16], the consensus scope of a cluster is the set of 

compounds that are contained in at least 50% of all scopes in the cluster. Consensus scopes 

are useful to visualize the typical properties of a group of drug scopes. Although the threshold 

of 50% is arbitrary, this definition is very robust against variations of the threshold. Most 

consensus scopes of our clusters remain identical when the threshold varies between 30% and 

90%. The same property was observed with consensus scopes of clusters of individual 

compounds [16]. 

Therapeutic properties  

The Drugbank database also contains information about the therapeutic properties and 

applications of each drug. This information follows the Anatomic Therapeutic Chemical (ATC) 

classification. The ATC system is used by the World Health Organization as an international 

standard for drug utilization studies. It divides drugs into different groups according to the 

organ or system on which they act and their chemical, pharmacological and therapeutic 

properties. Drugs are classified into groups at five different levels. The first level of the code 

consists in a letter for the anatomical group, there are 14 such groups. 

Scope network construction 

Using the Jaccard distance as a measure of dissimilarity between scopes, we constructed a 

similarity network composed of scopes as nodes. Two scopes were connected by an edge if the 

Jaccard distance between them was higher than a given threshold. Drugs whose distance to 

any other drug never exceeded the threshold, which would thus constitute isolated nodes, 

were not included in the network representation. 

k-Cores  

Let G = (V, E) be a graph where V is the set of nodes and E is the set of edges. A subgraph H 

= (W, E|W) induced by the set W is a k-core iff ∀v ∈ W, deg(v) > k and H is a maximum 

subgraph with this property [23,24]. Given a graph G, the algorithm of Batagelj & Zaversnik 

determines cores hierarchy by recursively deleting all nodes and connected edges of degree 

less than k. As a result, the remaining graph is the k-core graph. 
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Figure legends 

Figure 1: Distribution of scope sizes. Multiple identical scopes are counted only once. The width 

of intervals is 20 for reference networks (top), 5 for human networks (bottom). 

 

Figure 2: Frequencies of occurrence of compounds in scopes. Multiple identical scopes are 

counted only once. The width of intervals is 2. 

 

Figure 3: Frequencies of occurrence of reactions in scopes. Multiple identical scopes are 

counted only once. The width of intervals is 2. 

 

Figure 4: Consensus scopes of drug groups plotted over a Kegg Atlas genome scale metabolic 

map for the reference reversible metabolic network. Chemical compounds belonging to the 

scope appear as red dots. 

 

Figure 5: Venn diagrams showing overlapping between consensus scopes of clusters in each 

network. 

 

Figure 6: Venn diagrams showing overlapping between drugs belonging to the four main 

clusters in each network. (1) represents cluster I for all four networks. (2) represents cluster II 

for the reference reversible/irreversible and the human reversible networks, cluster III for the 

human irreversible network. (3) represents cluster III for the reference reversible/irreversible 

and the human reversible networks, cluster IV for the human irreversible network. (4) 

represents cluster IV for the reference reversible/irreversible and the human reversible 

networks, cluster V for the human irreversible network. 

 

Figure 7: Top: Pie charts showing the distribution of therapeutic classes in the four main 

groups of drugs. Bottom: Repartition of each therapeutic class through the four groups. Colors 

correspond to identifiers I to IV as indicated below the large pie charts. 

 

Figure 8: Network of drug scopes in the human irreversible case. Nodes of same color belong 

to the same k-core, isolated nodes are not shown. Groups of drugs belonging to the same 

therapy class are highlighted. Similar patterns were observed in the human reversible case. 



Tables 

Table 1: Clusters of drug scopes in the reference reversible network. 

 

Cluster Id 
Number of drugs in 

cluster 
Average scope size

Significant compounds 

in consensus scope 

I 37 15 - 

II 163 1963 ATP, NAD+, Pyruvate, Galactose 

III 35 69 Arachidonate 

IV 41 995 Pyruvate, Galactose 

 



Table 2: Clusters of drug scopes in the reference irreversible network. 

 

Cluster Id 
Number of drugs in 

cluster 
Average scope size

Significant compounds in consensus 

scope 

I 40 14 - 

II 154 1606 ATP, NAD+, Pyruvate, Galactose 

III 35 68 Arachidonate 

IV 39 687 Pyruvate, Galactose 

V 1 27 CoA 

VI 3 47 - 

VII 3 35 - 

VIII 1 38 - 

 



Table 3: Clusters of drug scopes in the human reversible network. 

 

Cluster Id 
Number of drugs in 

cluster 
Average scope size

Significant compounds in consensus 

scope 

I 77 9 - 

II 94 339 ATP, Pyruvate, Tyrosine, Galactose 

III 35 40 Arachidonate 

IV 30 130 Pyruvate 

V 12 244 Pyruvate, Tyrosine, Galactose  

VI 8 21 - 

VII 1 44 Tryptophan, Tyrosine 

VIII 4 11 - 

IX 5 21 - 

X 3 22 - 

XI 2 14 - 

XII 2 11 - 

XIII 1 30 - 

XIV 1 33 Tyrosine 

XV 1 16 - 

 



Table 4: Clusters of drug scopes in the human irreversible network. 

 

Cluster Id 
Number of drugs in 

cluster 
Average scope size

Significant compounds in consensus 

scope 

I 62 8 - 

II 24 10 - 

III 85 230 ATP, Pyruvate, Galactose 

IV 35 40 Arachidonate 

V 14 11 - 

VI 15 21 - 

VII 13 27 - 

VIII 5 110 Pyruvate 

IX 8 21 - 

X 1 12 CoA 

XI 1 25 CoA 

XII 2 53 Tryptophan 

XIII 3 21 - 

XIV 2 14 - 

XV 1 16 - 

XVI 2 11 - 

XVII 1 24 - 

XVIII 1 30 Tyrosine 

XIX 1 16 - 

 



Supplementary Files 

Supplementary File 1: List of drugs and their enzymatic targets sorted by EC numbers. Drugs 

sharing the same targets are highlighted in the same color. 

 

Supplementary File 2: Composition of drug clusters for the four metabolic networks. 

 


















	Article File #1
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8

