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1. INTRODUCTION 

One of the most important tasks of modern bioinformatics is the development of computational tools that 
can be used to understand and treat human disease. To date, a variety of methods have been explored and 
algorithms for predicting whether a protein is involved in disease are gaining in their utility. Here, we 
describe an algorithm for detecting protein-disease associations based on the human protein-protein 
interaction network, known gene-disease associations, protein sequence, and protein functional information 
at the molecular level. Our method, PhenoPred (www.phenopred.org), is supervised: first, we map each 
protein onto the spaces of disease and functional terms based on distance to all annotated proteins in the 
protein interaction network. We also encode sequence, function, physicochemical, and predicted structural 
properties, such as secondary structure and flexibility. We then train support vector machines to detect a 
protein’s disease function for a number of terms in Disease Ontology (DO). We provided evidence that, 
despite the noise/incompleteness of experimental data and unfinished ontology of diseases, identification of 
candidate genes and proteins can be successful even when a large number of candidate disease terms are 
predicted on simultaneously. 

Predicting protein-disease associations has been previously considered by a group of techniques 
predominantly based on statistical principles (for all references see Ref. 1). For example, Freudenberg and 
Propping clustered a number of diseases from OMIM based on phenotypic data such as age at onset, tissue, 
inheritance, and then scored each gene-disease relationship proportional to the shared Gene Ontology (GO) 
annotation between a query gene and disease clusters associated with given disease. Another approach, 
POCUS, calculates the probability that different loci share the observed functional annotation by chance. 
TOM uses gene co-expression and GO annotation to find genes at particular loci that are likely to co-
express or share functional annotation with the seed genes. Several other groups have analyzed protein-
protein interaction (PPI) networks and proposed Bayesian approaches or various heuristics to gene 
prioritization. Prediction of disease associations has also been carried out in a broader context where 
various data sources are integrated together. In one of the earliest approaches, Perez-Iratxeta et al. 
calculated gene-disease associations by linking phenotype to protein function. RefSeq genes were first 
connected to GO terms and protein function was then connected to pathological condition through a 
Medline article search. Franke et al. developed Prioritizer, a Bayesian method, which utilizes functional 
annotation, microarray data, and predicted experimental protein-protein interactions. George et al. 
developed Gentrepid, a method based on PPI data and domain sharing, while Aerts et al. developed 
Endeavour, also based on statistical principles. Finally, Lussier et al. connect genomic and clinical data, 
whereas Butte and Kohane extend the concept of identifying disease associated genes from microarray data 
by considering a number of environmental and phenotypic factors. They use statistical principles to 
associate genes with Unified Medical Language System (UMLS) concepts, in effect creating a phenome-
genome network.  

Here, we present our novel approach to the prediction of protein-disease associations based on an 
experimental PPI network, known protein-disease associations, as well as protein sequence and functional 
annotation. We propose a method to associate genes or proteins to various levels of disease classification 
by considering DO information (http://diseaseontology.sourceforge.net) which organizes disease terms into 
a hierarchical structure expanding from the “disease” term to the most specific disease names in a top-down 
manner. Similarly to GO, DO is represented as a directed acyclic graph and is based on UMLS and 
International Classification of Diseases (ICD-9). The hierarchical organization of DO is beneficial for 
gene-disease prioritization algorithms in that it aggregates various levels of disease annotation into more 
general nodes thus enabling statistical inference with higher confidence.  
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Figure 1. Recall as a function of precision for PhenoPred 
(solid blue line) against the uniformly random predictor 
(dotted red line).

2. METHODS 
For each protein p, we constructed three sets of 
features for predicting disease associations: (i) PPI-
DO features were constructed based on the 
distribution of shortest distances from p to other 
proteins in the PPI network known to be associated 
with specific disease terms; (ii) PPI-GO features 
were constructed in a similar way, but based on the 
shortest distances to other proteins known to be 
associated with specific GO terms; (iii) SPP-GO 
features encode various sequence, physicochemi-
cal, and other predicted properties of the protein as 
well as its GO terms. 

To construct PPI-DO (and equivalently PPI-
GO) features, we first computed the shortest 
distances between all pairs of proteins in the PPI 
network. For each combination of (p, d), where d is 
a disease term, we find the distribution of shortest distances from protein p to all proteins known to be 
associated with d, or simply the distribution of distances to disease d. In addition, we encoded fractions of 
proteins associated with disease d amongst p’s level-t neighbors (t = 1, 2…). Our assumption is that a 
protein p associated with disease d is more likely to share the distribution of distances to the DO terms with 
the proteins associated with d than the remaining proteins. The sequence-based and functional features 
(SPP-GO) were constructed based on (i) the real-valued vector data that is obtained for each 
physicochemical or predicted property and (ii) binary encoding of the known GO annotation and PROSITE 
matches. The real-valued data representation of a protein can be easily obtained by predicting its properties, 
e.g. secondary structure or intrinsic disorder, which effectively map an amino acid sequence into a real-
valued vector (signal) of the same length. If we consider s to be such a property signal corresponding to 
protein p, then a set of features was generated based on the following: (i) the length of s; (ii) the mean and 
standard deviation of s; (iii) percentage of s that is above n-th percentile of the range of s (for various n) 
and (iv) the number of times each signal crosses these thresholds. We used the following properties: 
predictions of helix, sheet, coil, accessible surface area (ASA) and relative ASA as predicted by PHD, 
hydrophobic moment, flexibility predictions and predictions of intrinsically disordered protein regions. In 
addition, we calculated amino acid composition of each protein, as well as the number, orientation, and 
separation between predicted transmembrane helices by TMHMM. Physicochemical properties included 
aromatic content and charge. Finally, the GO and PROSITE information was encoded using a binary 
representation. The rationale for the use of property signals is that certain classes of disease-associated 
proteins have strong biases in their physicochemical properties. For example, it has been shown that 
cancer-related proteins and proteins involved in cardiovascular disease are significantly enriched in 
intrinsic disorder. All types of information are incorporated through a supervised framework using two 
layers of support vector machines. The first layer was built for each individual type of encoding (PPI-DO, 
PPI-DO, SPP-GO), while the second layer is simply a weighted average of the outputs of the first layer. 

3. RESULTS 

The predictor accuracy was evaluated using cross-validation on 422 DO terms for which 10 or more 
associated proteins were available. We evaluated all three individual models described above and a 
combined model that integrates the individual models (PhenoPred). Precision-recall curve for PhenoPred is 
shown in Figure 1, and it was shown that it achieved higher accuracy than any of the individual models, 
indicating usefulness of all lines of experimental evidence.1 The average area under the ROC curve (AUC) 
over the 422 DO terms was 73.1%, however, it includes terms on which prediction results were nearly 
random (42 terms had AUC below 60%). In addition, the predictor was manually evaluated on several 
disease terms, of which we will discuss some candidate proteins that will be interesting future targets. 
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