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Silk production from opisthosomal glands is a defining characteristic of spiders 

(Araneae). Silk emerges from spigots (modified setae) borne on spinnerets (modified 

appendages). Spigots from Attercopus fimbriunguis (Shear, Selden & Rolfe, 19871), 

from Middle Devonian (386 Ma) strata of Gilboa, New York were described in 19892 

as evidence for the oldest spider and the first use of silk by animals. Slightly younger 

(374 Ma) material from South Mountain, New York, conspecific with A. fimbriunguis, 

includes spigots and other evidence which elucidate the evolution of early Araneae 

and the origin of spider silk. No known Attercopus spigots, including the original 

specimen2, occur on true spinnerets but are arranged along the edges of plates. 

Spinnerets originated from biramous appendages of opisthosomal somites 4 and 5; 

while present in Limulus, no other arachnids have opisthosomal appendage 

homologues on these segments. The spigot arrangement in Attercopus shows a 

primitive state prior to the re-expression of the dormant genetic mechanism which 

gave rise to spinnerets in later spiders. The inability of Attercopus precisely to control 

silk weaving suggests its original use as a wrapping, lining or homing material. 
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The oldest silk-producing spigots are known from the Middle Devonian of Gilboa, 

New York2. This specimen, slide 334.1b.AR34 (Fig. 1a), was described as a nearly 

complete, fusiform spinneret, consisting of a single article, bearing about 20 spigots arrayed 

along the presumed medial surface but more clustered distally. On the basis of the single, 

simple spigot type and the lack of tartipores (vestigial spigots from earlier instars), the 

fossil spinneret was compared most closely with those of the primitive spider suborder 

Mesothelae, and was presumed to be a posterior median spinneret. The distinctiveness of 

the cuticle enabled us to associate the spinneret with remains previously referred tentatively 

to a trigonotarbid genus1. Restudy of this material resulted in a fuller description of the 

animal as the oldest known spider, Attercopus fimbriunguis3. The appendicular morphology 

of Attercopus, but little of the body, is now known in great detail. 

Collections made in 1993 and 1996 at the South Mountain locality, Schoharie 

County, New York (74°16'30"E/42°23'55"N), in Middle Devonian strata (lower Frasnian, 

lowermost Onteora Formation, 374 Ma5), yielded new material which is indistinguishable 

from Attercopus fimbriunguis from Gilboa, and thus presumed to be conspecific. The new 

material includes three pairs of chelicerae (thus establishing the presence of at least three 

individuals), numerous podomeres including a palpal femur showing the distinctive patch 

of spinules on the infero-anterior surface (Fig. 1b), and two slides with specimens showing 

spigots. The last are numbered sequentially (SM 1.11.3 and SM 1.11.4), which means they 

were extracted from the the same acid-macerate residue and slide-mounted one after 

another, and so could be parts of the same animal. SM 1.11.3 (Fig. 1e) consists of a 

subrectangular mass of overlapping layers of cuticle with about 33 spigots arrayed in an 

approximate double row along one long edge and an area of unsculptured cuticle along the 

opposite edge. The folds have their long axes parallel to the shorter edges. These features, 

together with the setal arrangement, suggests to us that the preferred orientation is: 
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unsculptured cuticle anterior, spigots posterior, shorter edges lateral. Seven macrosetae 

and/or their sockets are present on SM 1.11.3. One postero-lateral corner is missing; spigots 

are most numerous at the opposite postero-lateral corner. Because of the presence of 

spigots, we interpret SM 1.11.3 as part of the opisthosoma. Living and fossil mesotheles 

have macrosetae at the rear of each large tergite6, and other spiders which lack tergites 

commonly bear large setae on the abdomen which reflect original segmentation; thus the 

macrosetae on Attercopus SM 1.11.3 could also reflect at least four sclerotized plates and 

the transverse lines could represent plate boundaries (NB both dorsal and ventral surfaces 

are present).  

SM 1.11.4 (Fig. 1c,d) is a smaller piece of cuticle than SM 1.11.3. The distribution of 

setae and spigots enables orientation of the piece. At one lateral side is an even fold that 

conforms to the curved outline of the postero-lateral margin; this is interpreted as a 

doublure along the margin of the plate. It is folded at the lateral side and bears about 15 

spigots in an approximate double row along the posterior edge; the anterior and opposite 

lateral edges are torn. If SM 1.11.4 were once joined to SM 1.11.3, then it is likely that it is 

the missing postero-lateral corner of SM 1.11.3, with its postero-lateral concentration of 

spigots. Of especial interest on SM 1.11.4 is the long, winding, filament emerging from the 

distal end of one spigot (Fig. 1d). Detailed study shows that this is a single strand which is 

inseparable microscopically from the tip of the spigot, thus leading us to hypothesize that 

this is a strand of silk. No other silk strands have been seen in Attercopus material, but silk 

from modern spiders is identical in size and appearance under the light microscope.  

From our re-evaluation of 334.1b.AR34 we conclude that the original description is 

essentially correct, but note that the specimen consists of a sheet of cuticle folded over 

twice; thus the resemblance of the piece of cuticle bearing spigots to a ‘semifusiform’ 
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spinneret3 is fortuitous. In summary, the specimens of Attercopus bearing spigots are plate-

like in morphology, with two rows of spigots along the presumed posterior edge. The 

spigots are not borne on appendage-like spinnerets. 

Spider spinnerets are homologues of biramous opisthosomal appendages, still present 

in the primitive chelicerate Limulus, as demonstrated by expression of the developmental 

genes pdm/nubbin and apterous in embryos of spiders and Limulus7. In Limulus these 

appendages consist of a segmented median branch and a lateral branch with a plate 

covering lamellate gills. In spider embryos, distalless gene expression shows four pairs of 

spinnerets (anterior median and lateral, and posterior median and lateral pairs) represented 

by two pairs of appendage buds on opisthosomal somites 4 and 58. The appendage buds 

each later divide in two to produce potentially four pairs of spinnerets, although in nearly 

all spiders some of these buds do not develop into functional post-embryonic spinnerets. 

The full complement of eight spinnerets is today seen only in the primitive mesotheles 

Liphistius and Heptathela (even in these animals the anterior median pair bears no silk-

producing spigots)9. Other homologues of opisthosomal appendages in spiders are the 

book-lung opercula (2 pairs in mesotheles and mygalomorphs, on somites 2 and 3) and 

tracheae derived from appendage apodemes in araneomorph spiders on somite 3. The book-

lung covers and pectines of scorpions and Blattfüsse of eurypterids are similarly derived 

from opisthosomal appendages. In other arachnids, homologues of opisthosomal 

appendages can be seen in the gonopods and book-lung opercula of tetrapulmonates, and 

possibly other organs in diverse groups10, but only spiders show expression of appendage 

homologues on somites 4 and 5. Silk glands also occur in many adult male spiders along 

the anterior edge of the epigastric furrow (somite 2). These are termed epiandrous or 

epigastric glands11, and open through simple spigots (fusules). Epigastric fustules are 
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simple spigots which, because of their medial position in relation to the more lateral book-

lung opercula, could be serial homologues of the median spinnerets of somites 4 and 5. 

The advantage of spigots on spinnerets is obvious: silk production can be controlled 

to produce complex linear structures, rather than just sheet-like masses of threads. Our 

interpretation of spigot location in Attercopus suggests that the original use of silk in proto-

spiders was to produce such sheets, perhaps used as burrow linings, or to cover egg masses, 

or as trails that would allow hunting animals to return to the safety of a retreat12. 

 Loss and reappearance of wings in stick insects suggests that genes for appendage 

development can be suppressed, perhaps by a single disabling mutation, and later 

reactivated, again perhaps by a reversal of the original mutation or an offsetting mutation 

that restores gene function13. Once these genes were reactivated in the ancestors of spiders, 

it would be a clear advantage to have the spigots on them as this would confer significantly 

more control over the use and distribution of silk, as seen in the orb-weaving Orbiculariae 

of today in the construction of their architecturally precise webs. 

While mesothele spiders and a few mygalomorphs have abdominal tergites that can 

be attributed to the original segmentation of the abdomen, no spiders living or fossil have 

ventral abdominal plates. However, these plates are present in all other arachnid orders, 

including the Pedipalpi (orders Amblypygi, Uropygi and Schizomida). The origin of these 

plates is not well understood and the patterns of expression of hox genes has not been 

studied except in spiders and some mites (in the latter with focus on head segmentation, not 

expression of appendage-determining genes14). It has been suggested on the basis of 

palaeontological and developmental evidence15, at least for scorpions, that these plates are 

not true sternites but are in fact the fused remnants of paired abdominal appendages, as 
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indeed seems to be the case for the epigastric plate and book lung covers of spiders. In 

mesotheles the first two pairs of book-lung covers are part of continuous sclerotization 

across the abdomen, with distinct posterior margins. 

It seems highly unlikely that the spigot-bearing plates in Attercopus are tergites, and 

much more probable that they represent ventral plates, since in spiders the spinnerets are 

invariably ventral. If the ventral plates are appendage-derived, the reactivation of genes 

(such as distalless) which would extend these plates once more into segmented appendages 

would carry along with them the spigots observed in Attercopus to be distributed along the 

posterior margins of those plates. We suggest that developmental genetic studies to 

determine the homologies of the ventral plates in the pedipalp orders could provide 

evidence to resolve this question. Further evidence that silk spigots are associated with 

appendages comes from the recent finding that at least one species of mygalomorph spider 

has silk spigots on the ventral surfaces of its leg tarsi16. These spigots produce threads that 

help the spider cling to smooth surfaces. 

In Permarachne, from the Permian of Russia, a series of six abdominal plates are 

clearly seen17 (Fig. 2a,b). In the original description these were interpreted as tergites (as 

seen in mesotheles) even though all other visible structures in the fossil are ventral, a fact 

originally accounted for by assuming that the specimen represented a moult from which the 

carapace had been displaced, thus revealing ventral structures in the prosoma. However, 

these structures are in ventral, not dorsal, view. It now seems more parsimonious to 

interpret the series of plates as ventral plates, conforming to the ventral view of the rest of 

the fossil. Thus there is a real probability that both Attercopus and Permarachne bore a 

series of ventral plates. 



7 

In summary, we propose the following scenario for the origin of spinnerets, based on 

our restudy of Attercopus and Permarachne. The ancestors of spiders had ventral 

opisthosomal plates, possibly derived from appendages, along the edges of which were 

arrayed silk-producing spigots. The reactivation of hox genes controlling appendage 

development (possibly distalless or a similar gene) caused the redevelopment of 

appendages on at least two opisthosomal segments, and the spigots were carried along onto 

these nascent spinnerets. The greater control thus achieved over silk-weaving triggered the 

enormous radiation of spider diversity. It has not escaped us that under this scenario, 

Attercopus and Permarachne may no longer be considered spiders, and we will describe in 

another place an ordinal-level plesion to receive them. 

Methods 

Attercopus fimbriunguis specimens were recovered from the rock matrix by digestion in 

concentrated hydrofluoric acid followed by washing in dilute hydrochloric acid and 

mounted on plain microscope slides in Clearcol mountant. The specimens were studied 

using a Leica DM2500 M microscope and photographed with a Leica DFC420 digital 

camera attachment. Images of the new Attercopus specimens were captured using Leica 

FireCam software on an Apple MacBook Pro computer and manipulated using Adobe 

Photoshop CS3 software. Drawings were made using a drawing tube attached to the 

microscope and also by tracing photographic images in Adobe Illustrator CS3. All 

specimens are deposited in the Department of Invertebrates, American Museum of Natural 

History, New York.  

The holotype and only known specimen of Permarachne novokshonovi, PIN 4909/12, 

part and counterpart, comes from the Koshelevka Formation, Kungurian Stage, Cisuralian 

Series (Permian), at the Krutaya Katushka outcrop, left bank of the Barda River, upstream 
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of Matveyevka, Russia, and is deposited in the Palaeontological Institute of the Russian 

Academy of Sciences, Moscow17. The specimen was studied, under ethanol to enhance 

contrast, using a Wild M7S stereomicroscope, drawn using a drawing tube, and 

photographed with a Nikon D1X digital camera attached to the microscope.  
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Figure 1. Attercopus fimbriunguis, Devonian of New York (localities: G = Gilboa, 

SM = South Mountain), macerated from matrix with HF and slide-mounted. a, first-

described ‘spinneret’, G 334.1b.34; darkness of cuticle reflects number of layers, 

so this fragment is folded over twice. b, distinctive palpal femur, SM 1.11.12. c, 

piece of cuticle from corner of opisthosomal ventral plate showing setae, spigots 

and possible silk strand, SM 1.11.4. d, close-up of e showing possible silk strand 

emerging from spigot shaft, SM 1.11.4. e, part of opisthosoma with double row of 

spigots, SM 1.11.3. Scale bars, 0.5 mm. 

Figure 2. Permarachne novokshonovi, Permian of Russia, PIN 4909/12. a, 

holotype part in rock matrix. b, Explanatory drawing of a. ch, chelicera; cx, coxa; fe, 

femur; mt, metatarsus; pa, patella; pl, ventral plate; st, sternum; ta, tarsus; ti, tibia. 

Scale bar, 1 mm. 
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