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Application of optical methods to human brain tissue in vivo, e.g., measuring 

oxyhemoglobin and deoxyhemoglobin concentration changes with near-infrared 

spectroscopy (NIRS), requires the a priori assumption that background optical 

properties remain unchanged during measurements1,2. However, fundamental 

knowledge about light scattering by brain cells per se remains sparse; many factors 

influence light transmission changes through living brain tissue, bringing into question 

what is being measured. We have observed slow wave-ring spreads of light transmission 

changes on the rat cerebral cortex during potassium-induced cortical spreading 

depression (CSD) and ascribed them to squeezing-out of blood from capillaries by 

swollen brain cells3,4. However, in rat hippocampal slices, where no blood components 

were involved, similar light transmission changes were observed during K+-induced 

CSD and ascribed to cell swelling and dendritic beading5,6,7. Here we show that 

two-dimensional light scattering changes occur through suspensions of osmotically 

swollen (depolarized) red blood cells, apparently arising from light scattering changes at 

the less curved, swollen surface of the steep electrochemical gradient coupled with 

water activity difference across the plasmic membrane. These optical property changes 

are likely to be relevant to interpretation of photometry or spectroscopy findings of 

brain tissue in vivo, where neurons are polarizing and depolarizing during brain 
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 3

function.  

 

 The above findings imply that cell membrane depolarization/polarization during 

brain activity would contribute to the optical transmission changes of the brain tissue. 

Considering the complexity of the in vivo situation, we decided to use a simple 

experimental model to investigate the relationship between membrane depolarization 

and light transmission changes through the plasmic membrane. We previously observed 

that glutamate-induced swelling of cultured C6 cells (rat astroglioma) was associated 

with a membrane potential decrease from -49.7 mV to -23.0 mV8, employing an 

intracellular microelectrode developed by T. Tomita9. However, we could not confirm 

light transmission changes through the cell suspension because of the inhomogenous 

distribution of the cells in the medium due to aggregate or sludge formation. In the 

present paper, we report an examination of the relationship between osmotic 

shock-induced cell swelling (depolarization) and light transmission changes using red 

blood cells (RBCs) as representative mammalian cells, since RBCs lack a nucleus and 

yet are known to be polarized with membrane potential at the plasmic membrane, 

which contains numerous channels and a sodium pump10. Further, it is easy to measure 

the isotropic diametric changes of RBCs, and to measure the light transmission through 
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RBC suspensions.  

Figure 1 shows a continuous recording of changes in light intensity when the 

photodetector (PD) was rotated around the surface of the tube containing the 

suspension A (control). The rotation was done rapidly in a stepwise manner at intervals 

of 10°. As shown, the light intensity was low at around 0°, but became high at around 

80° indicating that 1ight was more scattered to the side than transmitted. Microscopic 

observation revealed that the RBCs were swollen in hypotonic media (Figure 2: bottom). 

The leftmost picture is a microphotograph of an RBC having the diameter of 7.2 µm, 

taken with a video-enhanced contrast differential interferential contrast microscope11. 

As described in Materials and Methods, the RBC suspension was made successively 

more hypo-osmolar from A to E. Above the symbols for suspensions A-C are 

superimposed lines representing the edges of RBCs in those suspensions. RBCs in 

suspensions D and E were hemolyzed, so that the edges could not be traced. In A, RBCs 

exhibited a typical concave appearance. In diluted suspension B, RBCs showed slight 

swelling, and in C, RBCs showed marked swelling with an anisotropic convex 

appearance, but also some hemolysis. Although RBC swelling was heterogeneous and 

individually irregular, so that the values can not be considered precise, there was a 

clear trend for increasing diameter of RBCs with increasing dilution: 7.2 ± 0.9 µm (mean 
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± SD) for A, to 7.9 ± 1.2 µm for B, and 9.4 ± 2.9 µm for C (volume-wise, by 1.3x in B/A and 

2.7x in C/A). Light intensities of scattered light at various angles are summarized in 

Table 1 where the mean values of 5 measurements at each angle are listed for A, B, C, D, 

and E, respectively. Changes of the angular distribution of light scattering by these 

suspensions are presented on a polar chart in Figure 2. Light transmission (forward 

scattering) was increased more than 10 times by hemolysis, while sideward scattering 

was decreased to one-third. These changes occurred despite the presence of the same 

concentration of hemoglobin and the same amount of plasmic membrane components in 

all of the suspensions. Changes in total light energy with cell swelling were calculated 

by integrating light intensities from +120° to -120°. They were 16.6 a.u. (arbitrary units) 

for A, 18.1 a.u. for B, 19.4 a.u. for C, 23.9 a.u. for D, and 34.7 a.u. for E. This is 

consistent with the increases in total area of light scattering with cell swelling shown in 

Figure 2. 

An important implication of the present results is that light is scattered by intact cells, 

and that increase of the membrane tension associated with swelling is not relevant to 

the light scattering changes, since in swollen cells, the membrane must have been 

tensioned, and yet the light was less scattered. This may imply that the site of light 

scattering is not at the hydrophobic surface of the phospholipid membrane, but rather 
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 6

at the anionic gel layer where complex hydrogen bonding networks of membrane 

components and the ionic gradient create an electrochemical osmotic gradient between 

the extracellular fluid and intracellular colloid-rich fluid. If this is the case, then the 

extent of light refraction depends on the magnitude of the osmotic gradient, and 

therefore on the polarization/depolarization of the membrane. It is a well known fact 

that light is reflected/refracted at such a water activity difference interface, and the 

principle is practically used for determination of colloid concentration in aqueous colloid 

solutions. It should be noted that sialic acid modification of the cell membrane is 

common to both RBC and nerve cells13. A comment on the relationship between cell 

swelling and membrane depolarization is worthwhile here. In general, depolarization 

occurs upon sodium ion (Na+) influx, which is accompanied by water movement across 

the cell membrane12.13, resulting in more or less cell swelling14.15. Functioning ganglion 

cells were reported to swell16. In the present experiment, water moved into the cell 

along the osmotic gradient created and maintained by the sodium pump. The water 

movement dissipates thermodynamic potential at the membrane, naturally leading to 

loss of the potential and depolarization. We believe that mammalian cells of normal size 

are in a state of entropy-minimum imposed by the action of the sodium pump, and the 

membrane is unstable and responsive to even minimal stimuli14. Cell swelling is a 
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 7

self-perpetuating process, not energy-requiring. Energy is required for recovery of 

depolarized cells to their previous small size14. Depolarization and cell swelling are thus 

two sides of the same coin.   

Additional points derived from the present observations are that 1) the attenuation of 

light intensity at 0° (light transmission) in suspensions is strongly influenced by light 

scattering, even when the amount of hemoglobin (and therefore the absorbance by 

hemoglobin as a whole) remains unchanged. When the cells swell, the light 

transmission increases, even though the cell membrane must become tensioned during 

swelling. Even more notably, light transmission increases 10 times in the hemolyzed 

cell suspension, even though the same amount of membrane components (ghosts) is still 

present. Thus, the membrane structure per se is not relevant to light scattering as a 

reflector/refractor of light. When incident light passes through a suspension, light is 

absorbed and scattered, and the remaining light emerges as transmitted light from the 

opposite side of the suspension. Within the suspension, photons are scattered and mixed. 

Light energy as a whole is mostly preserved, since reflection at biological membranes is 

elastic16, and light radiates from the surface of the suspension. The suspension as a 

whole would start to glow like a glow lamp17. This was practically illustrated when a 

brain model made of clear polystyrene encasing a Mercox cast of rat brain vasculature 
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 8

was placed in a dark room and illuminated with a single narrow monochromatic NIR 

beam (λ = 650 nm). The whole brain glowed, since light was scattered (mixed) by the 

material17.  

 On the other hand, absorption of light at a specific wavelength occurs with loss of 

light energy. Absorption can be a negative divergence of photon flow19, and absorbers 

are a sink of light energy. The increase in total light energy with cell swelling (Table 1) 

may be explained by lessened absorption. In fact, when RBCs swell, they become 

hypochromic, though the reason is not known. Another possible explanation for the 

increase in total light energy with cell swelling would be the directional shift of light 

scattering, described by the so-called transport scatter coefficient g18, since our 

integration data did not include changes in the angular distribution of backward light 

scattering between the angles of -120°— 180°— +120°.  

 

 

MATERIALS AND METHODS 

The method used here was reported in our previous communication20. Briefly, 

measurements of the intensity of 1ight scattering at various angles around a 

transparent tube containing blood were undertaken with an apparatus fabricated in our 
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laboratory. As shown in the center of Figure 1, the apparatus consisted of a light source 

(LED), a transparent vinyl tube (2.6 mm in ID and 3.2 mm in OD) to hold the RBC 

suspension and a photodetector (PD). The LED was a gallium arsenide diode which 

emitted an infrared beam with a maximum wavelength at 950 nm (Hamai Electric Co., 

Tokyo). The beam was collimated perpendicularly to the suspension. The PD consisted 

of a silicon photodetector (SPD-550, Sharp Electric Co., Tokyo) having a narrow 

sensitive surface (0.5 mm x 2 mm), which was arranged so that its long axis was along 

the longitudinal direction of the tube. In the apparatus, the PD was so mounted that it 

could be moved in an arc on the surface of the tube at the cross-sectional plane 

containing the incident beam. By this means, the intensity of light scattering by the 

blood was determined at angles between +120°— 0°— -120°around the tube. The light 

scattering at 0° was called forward light scattering or light transmission and that 

around at ± 90° was considered as sideways scattering. The materials used were 5 

samples of 20 ml freshly drawn heparinized whole blood from healthy male volunteers, 

who had given informed consent. The whole blood was centrifuged to separate RBC and 

plasma. Five suspensions were prepared by mixing plasma, RBC and distilled water. 

Suspension A was RBC 40% + plasma 60% (hematocrit 40%), suspension B RBC 40% + 

plasma 40% + distilled water 20%, suspension C RBC 40% + plasma 30% + distilled 
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water 30%, suspension D RBC 40 % + plasma 20% + distilled water 40%, and 

suspension E RBC 40 % + distilled water 60%, so that all suspensions had the same 

hemoglobin concentration per suspension volume. The osmotic changes in suspensions 

B, C, D, and E were designed to cause osmotic cell swelling to different degrees. 

Microscopic observations of RBC swelling were made on the suspensions placed on a 

slide glass and covered with a cover slip. Microscopic photographs were enlarged and 

printed, and the diameters of RBCs were measured with a ruler. The cell shape changes 

were not similar, but anisotropic. The discoid shape became spherical, with bulging of 

the central part of the cell body. However, the volume changes were calculated simply as 

the cube of the diametric changes, as a representation of cell swelling and therefore the 

degree of the depolarization of the cells. To avoid the flow effect due to RBC 

aggregation17 the measurement was made within a short period of less than 20 s. 

Practically, after gently shaking a suspension in the container, the suspension was 

introduced into the tube gravitationally. The output of the SPD was continuously 

recorded on a DC recorder while the SPD was rotating around the tube. The magnitude 

of the intensity change read off in mV from the record was plotted against angle in polar 

coordinates. To estimate absorption loss of light intensity, the total light energy in A, B, 

C, G and E was broadly calculated as ∑
+

−

120

120
I , and the values obtained were compared. 
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END NOTE  

M. Tomita and N. Suzuki planned and supervised the experiment. Y. Tomita and H. 

Toriumi conducted the experiment. T. Osada obtained blood samples from subjects. M. 

Unekawa and J. Tatarishvili contributed to the preparation of figures and calculation of 

results. 
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FIGURES 

 

Figure 1. Schematic illustration of apparatus for continuous recording of light intensity 

by rotating the photodetector (PD) around the surface of the tube containing a 

suspension of red blood cells. The rotation was done rapidly in a stepwise manner at 

intervals of 10° within a period of about 16 s (see text for details). A typical output signal 

for suspension A (control) is shown (solid line). 
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 16

 

 

Figure 2. Light scattering changes diagrammed onto a polar chart. Closed circle is from 

suspension A (control); double circle, suspension B; small open circle, suspension C; 

large open circle, suspension D; cross, suspension E (hemolyzed blood). LED stands for 

light emitting diode. Underneath, on the left, is a microphotograph of a control RBC 

having the diameter of 7.2 µm. Above the symbols for suspensions A-C are 

superimposed lines representing the edges of RBCs in those suspensions. RBCs in 

suspensions D and E were hemolyzed, so that the edges could not be traced. For details, 

see the text. 
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TABLE 

           Table 1  Summary of results 

 A B C D E 
0° 1.2 1.8 2.8 9.2 10.6 

20° 1.1 2 3 8.2 9.5 
40° 1.4 2.5 3 2.5 6.6 
60° 2.8 3.2 3.3 1.5 3.3 
80° 3.8 3.5 3.2 1.2 1.9 

100° 3.5 2.9 2.2 0.8 1.5 
120° 2.8 2.2 1.9 0.5 1.3 

 16.6 18.1 19.4 23.9 34.7 
                                    (in arbitrary units) 
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