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Celiac disease (CD) is an autoimmune disease prevalent in ~1% of the general 

population1. CD is unique because both the major genetic (Human Leukocyte 

Antigen-DQ2/DQ8 alleles) and etiologic factors (dietary glutens) for susceptibility 

are known2,3. While these alleles are responsible for the inappropriate T cell 

response that characterizes CD, they are not sufficient since most HLA-

DQ2+/DQ8+ individuals exposed to glutens never develop disease. The reasons for 

this have not been explained; however our novel findings strongly advocate a role 

for interleukin-23 (IL-23) in the immunopathogenesis of CD. We demonstrate that 

wheat gliadin stimulates monocytes to produce significantly higher amounts of 

inflammatory cytokines IL-1β, IL-23, and tumor necrosis factor-α (TNFα) in CD 

patients compared to HLA-DQ2+ healthy individuals. Furthermore, we determine 

that IL-1 signalling is obligatory for production of IL-23, since IL-1β triggers IL-

23 secretion in a dose-dependent manner and IL-1 receptor antagonist (IL-1ra) 

blocks IL-23 responses to gliadin. Our results suggest that gliadin activation of 

monocytes and the subsequent robust secretion of IL-1β and IL-23 initiate the 

immune response cascade that is manifest as CD, and reveal for the first time that 

the IL-1 system regulates production of IL-23. The discovery of IL-23 has 
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highlighted the critical role of the innate immune response in autoimmunity and 

other inflammatory conditions4. We anticipate that our novel findings will lead to 

the discovery of therapeutic targets for this disease and other inflammatory 

diseases mediated by IL-23.  

Celiac disease (CD) is a chronic inflammatory disorder of the small intestine 

triggered by dietary glutens in genetically susceptible individuals1. More than a decade 

of research has defined the T cell response to gluten-derived gliadin peptides in CD, yet 

the early events that initiate its activation are not well understood3,5,6. Clearly, the 

compromised intestinal epithelial barrier that characterizes CD allows gliadin access to 

the intestinal submucosa, where it must be acquired and processed by antigen presenting 

cells (APC) for presentation and activation of gliadin-specific CD4+ T cells. While 

augmented levels of zonulin and potent inflammatory cytokines IL-1β and TNFα have 

all been reported to increase intestinal permeability by disrupting the integrity of tight 

junctions in individuals with CD and other forms of inflammatory bowel disease (IBD), 

the precise mechanisms involved remain to be determined 7-9.  

A dynamic relationship between intestinal epithelial cells (IEC) and dendritic cells 

(iDC) regulates the processes of immunologic tolerance to harmless food and 

commensal antigens and adaptive immunity to pathogens10. The aberrant response to 

dietary glutens in CD immediately calls into question the maturation and activation state 

of iDC in these individuals. Indeed, a subset of activated lamina propria DQ2+ DC 

derived from circulating blood monocytes was recently implicated in the pathogenesis 

of CD 11. Moreover, circulating monocytes from CD patients have been demonstrated to 

produce substantially more TNFα and IL-8 in response to gliadin than monocytes from 

healthy individuals 12. Together, these findings suggest that CD ultimately results from 

accumulation of normally quiescent circulating monocytes that are activated upon 

encounter with gliadin in the gut.   
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Monocytes and their progeny are integral components of the innate immune 

system.  In response to environmental antigens, conserved pattern recognition receptors 

(PRR) trigger cytokine production directing the immune response to the encountered 

antigen 13. New evidence shows that activated monocytes producing IL-1β and IL-23 

are the most potent stimulators of the memory subset of pathogenic T helper cells 

(termed Th17) that secrete tissue destructive cytokines IL-17, IL-21 and IL-22 14-16.  

IL-1 was one of the first cytokines to be described and has since proved to be an 

important mediator of multiple immunologic processes throughout the body, including 

inflammatory conditions in the gut17. The IL-1 family consists of proinflammatory 

cytokines IL-1α and IL-1β and anti-inflammatory IL-1ra, which prevents IL-1 

signalling by binding the active IL-1 receptor (IL-1RI)18. An imbalance between IL-1β 

and IL-1ra, resulting from amplified levels of IL-1β  has been associated with 

inflammation in CD19. Interestingly, elimination of dietary glutens significantly 

increases levels of IL-1ra in these individuals without substantially altering IL-1β, 

suggesting that individuals with CD inherently produce more IL-1β and IL-1ra, and that 

dietary glutens may induce inflammation by shifting the balance toward IL-1β in 

individuals with CD.     

IL-23 is a relatively new inflammatory cytokine composed of the IL-12/23p40 

subunit and the IL-23p19 protein that is preferentially secreted in specific tissues by 

APC 20,21. It perpetuates chronic inflammation by stimulating both adaptive and innate 

cells to produce additional proinflammatory mediators 4. CD has been considered a 

typical Th1 disease, however emergence of the IL23-Th17 paradigm has prompted 

reanalysis of cell-mediated tissue damage previously attributed to the IL12-Th1 axis, 

and emphasized the decisive role of the innate arm in adaptive immunity. Although 

novel studies have detected augmented levels of IL-23 in rheumatoid arthritis, psoriasis, 

Crohn’s disease, ulcerative colitis and multiple sclerosis, and other cytokines associated 
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with Th17-mediated inflammation (IL-1β, IL-6, IL-15 and TNFα)  have been implicated 

in the pathogenesis of CD, an association with IL-23 has not yet been reported 19,22-29. 

Given the strong genetic requirement associated with CD, we investigated 

gliadin’s capacity to activate the IL-23 pathway in HLA-DQ2+ individuals with and 

without CD. We predicted that gliadin would induce increased levels of IL-23 and 

related inflammatory cytokines in HLA-DQ2+ individuals with CD compared to healthy 

individuals. To test this hypothesis, we exposed PBMC from CD patients and HLA-

DQ2+ healthy individuals to a pepsin-trypsin digest of gliadin (PTG) and analyzed 

culture supernatants for IL-1β, IL-1ra, IL-6, IL-12p70, IL-23 and TNFα. We discovered 

that PTG stimulated production of IL-23, IL-1β, IL-6 and TNFα and reduced secretion 

of IL-1ra in all donors tested, however levels of IL-1β, IL-23, IL-6 and TNFα were 

significantly higher, and IL-1ra substantially reduced, in CD patients (Figure 1a). 

Importantly, PTG did not induce IL-12p70 in any of the donors tested (negative data not 

shown). These results confirm that gliadin stimulates robust production of IL-1β and 

TNFα in individuals with CD12,19 and demonstrate gliadin’s ability to disrupt the 

balance between IL-1β and IL-1ra by simultaneously inducing high levels of IL-1β and 

decreased levels of IL-1ra. Moreover, our novel findings strongly advocate a role for 

IL-23 mediated inflammation in the pathogenesis of CD.  

In order to demonstrate that production of these potent mediators depended on 

gliadin exposure, dose response curves were generated with PTG or β-glucan, an agent 

known to activate the IL-23 pathway. Both stimuli induced dose-dependent production 

of IL-1β and IL-23, although PTG proved to be far more effective as evidenced by 

detectable levels of IL-23 achieved with 100μg/ml versus 500μg/ml of β-glucan (Figure 

1b). These stimulatory effects of PTG were not due to endotoxin contamination, since 

the presence of LPS in this preparation of PTG was ruled out in earlier studies29.      
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Several immunodominant epitopes of α-gliadin that preferentially bind HLA-DQ2 

and DQ8 molecules as well as an innate peptide p31-43 have been implicated in the 

pathogenesis of CD30. To determine if any of these epitopes were involved in activation 

of the innate immune response, we incubated PBMC with synthetic overlapping 

peptides spanning the entire sequence of α-gliadin. None of the overlapping peptides 

tested individually or in combination stimulated secretion of IL-1β or IL-23, indicating 

that other subtypes of gliadin (γ- or ω-gliadin) or additional properties of gliadin are 

required for induction of these cytokines (negative data not shown). Since gliadin is a 

glycoprotein and β-glucan recapitulates the inflammatory cytokine response generated 

by PTG, posttranslational modifications are likely necessary for pattern recognition and 

activation of APC.  

The kinetics of cytokine responses to PTG was determined by exposing PBMC to 

PTG for 6, 24, 48 and 72h. These studies revealed that IL-1β, IL-6 and TNFα were 

secreted in as few as 6h following PTG exposure, while IL-23 could not be detected 

until 24h, suggesting that induction of IL-23 required earlier inflammatory mediators 

(data not shown). During these initial studies, we also observed a positive correlation 

between IL-1β and IL-23, which led us to hypothesize that IL-1 is essential for 

production of IL-23. To directly examine the role of IL-1β in IL-23 responses, we 

treated PBMC from CD patients with IL-1ra prior to stimulation with PTG or the 

positive control, β-glucan.  IL-1ra completely inhibited induction of IL-23 in response 

to both PTG and β-glucan, illustrating the fundamental role of IL-1 signalling in IL-23 

production (Figure 2a). IL-1ra also markedly reduced levels of IL-1β in PBMC treated 

with both antigens, suggesting that IL-1β released upon engagement of PTG or β-

glucan with their respective pattern recognition receptor (PRR) perpetuates production 

of IL-1β and facilitates induction of IL-23 (Figure 2a). Additionally, PBMC were 

treated with physiologic concentrations of exogenous IL-1β in order to ascertain its 

direct effects on cytokine production. Importantly, IL-1β alone induced IL-23 
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production at much lower levels than PTG and β-glucan, indicating that additional 

signalling pathways triggered by these antigens enhance secretion of IL-23 (Figure 2b). 

These results demonstrate for the first time that the IL-1 system regulates IL-23, and 

illustrate the powerful anti-inflammatory effects of IL-1ra on induction of IL-23.  

While IL-1β is produced by many cell types, IL-23 production is thought to be 

restricted to activated APC. Recently, TLR activated monocytes were shown to secrete 

high levels of IL-23 and to be the best inducers of Th17 cells14, thus we predicted that 

monocytes were the cellular source of PTG-induced IL-23. To investigate this 

hypothesis, we exposed purified lymphocytes, monocytes, or monocyte-derived DC 

(cultured with GM-CSF and IL-4 for 72h) to PTG overnight and analyzed the cell-free 

culture supernatants for IL-23 and related “Th17” polarizing mediators. Under these 

conditions, monocytes and not their progeny DC or lymphocytes produced IL-23, IL-

1β, IL-6, TNFα and CCL20 in response to PTG, demonstrating a direct interaction 

between PTG and its anonymous PRR(s) on this population (Figure 3).   

As with whole PBMC, IL-1ra significantly inhibited IL-23 responses to PTG and 

β-glucan in purified monocytes (Figure 4a), and addition of exogenous IL-1β to this 

subset triggered a dose-dependent IL-23 response (Figure 4b). These results illustrate 

that gliadin directly stimulates monocytes to secrete IL-23 and related inflammatory 

mediators and further support a primary role for the IL-1 system in IL-23 mediated 

inflammation.  

In summary, our studies demonstrate that enzymatically digested wheat gliadin 

stimulates monocytes to produce significantly more IL-23, IL-1β and TNFα in CD 

patients than HLA-DQ2+ healthy individuals, and reveal a fundamental role for the IL-1 

system in the IL-23 pathway. We show that IL-1β directly induces monocytes to secrete 

IL-23, while its natural inhibitor, IL-1ra, substantially inhibits both the IL-1β and IL-23 
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responses generated by monocytes exposed to gliadin. Moreover, our data indicate that 

gliadin initiates the inflammatory cascade by disrupting the balance between these two 

IL-1 members, which could be targeted therapeutically for treatment of this disease and 

other conditions associated with IL-23 mediated inflammation. 

Methods 

Cells. Peripheral blood mononuclear cells (PBMC) were isolated from Celiac patients’ 

and healthy donors’ whole blood by density gradient centrifugation in Lymphocyte 

Separation Medium (ICN Biomedicals Inc.). PBMC were viably cryopreserved in 

RPMI-1640 media (Invitrogen Corp.) containing 20% human AB serum (hAB) (Gemini 

Bioproducts) and 10% Dimethylsulfoxide (Sigma) using an automated cell freezer 

(Gordinier Electronics), and stored in the vapor phase of liquid nitrogen until used. 

Highly purified monocytes (95% purity) were obtained from healthy donors as above 

followed by countercurrent centrifugal elutriation.  The resulting cells were viably 

cryopreserved in fetal bovine serum (Summit Biotechnology) containing 10% DMSO 

and 5% glucose (Sigma) for later use. All individuals gave informed consent for 

peripheral blood drawn for this study. The study protocol was approved by the 

Institutional Review Board at the University of Maryland School of Medicine.  

DNA Extraction and HLA Typing. DNA was extracted from a portion of the PBMC 

using the QIAamp DNA Mini Kit (Qiagen) per the manufacturer’s instructions. DNA 

was analyzed by spectrophotometry to determine quantity and purity and stored at –

20°C until used. Alleles of genes encoding HLA were identified using One Lambda 

Micro SSP™ ABDR Typing Kit, and alleles of genes encoding HLA-DQ were 

determined by DQA1 and DQB1 SSP UniTray® Kit (Dynal Biotech) following the 

manufacturer’s.    
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Reagents. Gliadin was prepared by enzymatic digestion as described previously29. The 

presence of contaminating endotoxin in gliadin was determined by Limulus amebocyte 

assay per the manufacturers’ instructions. 100mg of β-D-glucan from barley (Sigma) 

was dissolved in 600ul 95%EtOH followed by 9mL distilled water.  The resultant slurry 

was stirred vigorously at 100°C for 3 minutes, allowed to cool, and stored at 10mg/ml at 

4°C until used. 25 overlapping 20mers spanning the sequence of α-gliadin were 

synthesized and purified >95% at the University of Maryland Biopolymer Lab, and 

stored at –20°C until used. Recombinant human IL-1β and IL-1ra were purchased from 

R & D Systems. 

PBMC cultures. PBMC from CD patients and HLA-DQ2+ healthy controls was tested 

as follows. 106PBMC/ml were incubated in RPMI-1640 supplemented with 10% heat 

inactivated hAB, 1% L-glutamine, 1% Pen-Strep and 20mM Hepes Buffer (cRPMI) 

with and without PTG, β-glucan, 5ng/ml rhIL-1β, or 10μg/ml pooled synthetic 20mers 

of α-gliadin in 96 well U-bottom plates (Denville Scientific Inc.) at 37 °C in 5% CO2 

for 6, 24, 48, or 72h. Alternatively, 106PBMC/ml were incubated with 0.5μg/ml rhIL-

1ra at 37 °C in 5% CO2 for 1h then cultured with and without 100μg/ml PTG or 

500μg/ml β-glucan for an additional 20h. Cell-free culture supernatants were harvested 

for cytokine and chemokine analysis.  

Elutriated monocyte cultures. 5 x 105monocytes/ml were cultured in cRPMI with and 

without 100μg/ml PTG, 100μg/ml β-glucan, or 0.5-50ng/ml rhIL-1β in 96 well U-

bottom plates at 37 °C in 5% CO2 for 20h. Alternatively, 5 x 105monocytes/ml were 

incubated with 0.5μg/ml rhIL-1ra at 37 °C in 5% CO2 for 1h then cultured with and 

without 100μg/ml PTG or β-glucan for an additional 20h. Cell-free culture supernatants 

were harvested for cytokine and chemokine analysis. 

Cytokine & chemokine analysis. Cell-free culture supernatants were analyzed for IL-

1β, IL-1ra, IL-6, IL-12p70, IFNγ, TNFα (Bio-Plex Cytokine Assay kit, Bio-Rad) or IL-
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1β, IL-23 (ELISA kit, eBiosciences), IL-1ra and CCL20 (Quantikine ELISA kit, R & D 

Systems) following the manufacturers’ protocols. Appropriate standard curves were 

included in each assay. 

Statistical analyses. Data are presented as mean values + s.d. P values comparing 

different conditions within the same individuals were calculated using paired two-tailed 

Student’s t tests and p values comparing the two study groups were determined by 

unpaired two-tailed Student’s t tests (Figure 1a).  P values < 0.05 were considered 

statistically significant. 
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Figure 1 Gliadin induces robust production of IL-23 and related proinflammatory 

cytokines in PBMC from CD patients. (a) PBMC from CD patients generate 

significantly higher amounts of IL-23, IL-1β and TNFα in response to PTG 

stimulation than HLA-DQ2+ healthy individuals. PTG substantially reduces 

secretion of the anti-inflammatory cytokine IL-1ra in CD patients but not in 
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healthy individuals, and only stimulates significant levels of IL-6 in CD patients. 

PBMC from 7 CD patients and 6 HLA-DQ2+ healthy individuals (HD) were 

incubated with or without PTG (100μg/ml) for 48h, and cell-free culture 

supernatants analyzed for production of IL-1β, IL-1ra, IL-6, IL-12p70, IL-23 and 

TNFα. Together, these data illustrate that proinflammatory cytokine responses 

to PTG are augmented in HLA-DQ2+ individuals with CD compared to those 

without disease. Error bars indicate + s.d. (b) PTG stimulation of IL-23 and IL-

1β production is dose dependent. PBMC from CD patients were cultured with or 

without 25, 100, 250 or 500μg/ml PTG for 24h. Increasing doses of β-glucan 

from barley served as a positive control. Concentrations of IL-23 and IL-1β were 

quantified by ELISA. Data represents mean values from 3 independent 

experiments. Error bars indicate + s.d. 

Figure 2 IL-1 cytokines regulate the IL-23 response in vitro. (a) Addition of IL-

1ra significantly inhibits IL-23 and IL-1β responses to PTG and the positive 

control, β-glucan. PBMC were incubated with or without 0.5μg/ml IL-1ra for 1h 

prior to stimulation with PTG or β-glucan for 20h. Secretion of IL-23 and IL-1β 

were determined by ELISA. These data are mean values from 10 independent 

experiments. Error bars indicate + s.d.  (b) IL-1β alone stimulates PBMC to 

produce IL-23, however its capacity to do so is much lower (~10-fold) than that 

of PTG or β-glucan. PBMC were cultured in the absence or presence of 5ng/ml 

IL-1β for 20h, and supernatants tested by IL-23 ELISA. These results represent 

the mean of 10 independent experiments. Error bars indicate + s.d. 

Figure 3 Monocytes are the cell source of IL-23 and related proinflammatory 

mediators produced in response to in vitro gliadin stimulation. Highly purified 

lymphocytes, monocytes or monocyte-derived immDC were incubated with or 

without PTG (100μg/ml) for 24h, and supernatants analyzed for production of 
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IL-1β, IL-6 IL-23, TNFα and CCL20. PTG directly activates monocytes, and not 

lymphocytes or immature DC, to secrete IL-23. IL-1β, TNFα, IL-6 and CCL20 

responses were also generated by monocytes exposed to PTG, and not their 

progeny DC.  IL-23 data represent the mean of 5 independent experiments. IL-

1β, TNFα and IL-6 data represent the means of 3 independent experiments. 

CCL20 data is one representative of 3 independent experiments. Error bars 

indicate + s.d. 

Figure 4 The IL-1 system regulates IL-23 production in human monocytes. (a) 

IL-1ra significantly inhibited IL-23 responses from monocytes exposed to PTG 

and the positive control, β-glucan. Highly purified monocytes were incubated 

with or without 0.5μg/ml IL-1ra prior to addition of PTG or β-glucan for 20h. 

These results represent the means of 5 independent experiments. Error bars 

indicate + s.d. (b) IL-1β alone directly activates monocytes to secrete IL-23 in a 

dose dependent manner, however its capacity to do so is greatly reduced (~10-

fold) compared to that of PTG or β-glucan. Purified monocytes were treated with 

and without 0.5, 5 or 50ng/ml rhIL-1β for 20h, and culture supernatants were 

analyzed for IL-23 production. These results represent the means of 5 

independent experiments. P values compare IL-1β data sets to medium alone. 

Error bars indicate + s.d. 
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