
A reassessment of the Carnot cycle and the concept of entropy 
 
 

Sosale Chandrasekhar1

 
 

Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012 (India) 
 
 
 
 

Abstract 
 
It is argued that the Carnot cycle is a highly inaccurate representation of a steam engine, 

and that the net work obtained in its operation would be zero. This conclusion is also 

supported by an elementary mathematical approach, which reexamines the work done in 

the four individual steps of the cycle. An important consequence of this is that the 

concept of entropy, originally proposed on the basis of the Carnot theorem, may not be a 

fundamentally valid thermodynamic quantity. Also, the experimental approach generally 

adopted in the determination of entropy is questionable, and the importance of increasing 

randomness in natural processes not universally valid. In fact, a more viable basis, at least 

vis-à-vis chemical reactions, appears to be the ratio of mass to energy, which is 

apparently maximized in the case of a spontaneous process.  
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Introduction 

The relationship between energy and work is a prime concern of thermodynamics, 

and one that has shaped, in a very fundamental way, the modern scientific view of nature 

and the universe. Our current ideas, however, apparently had very practical origins, more 

particularly in the mechanical era of steam engines and the thick of the industrial 

revolution. Steam engines essentially converted heat into mechanical work, and it was 

clearly of both theoretical and practical interest to understand this process, in particular 

defining and measuring its efficiency. Thus was born the well-known Carnot cycle.1-4a

The Carnot cycle (1824) represents a highly idealized process that is engaged in 

the continuous conversion of heat into work, via a cyclic sequence of absorption of heat 

and its subsequent conversion to mechanical work. However, whereas a conventional 

steam engine employs steam as both the source of energy and the medium of its 

mechanical conversion, the Carnot cycle is based on a sealed container of ideal gas 

connected to a piston that captures the work performed. This may be either expansion or 

compression, depending on whether the container is placed in a hot or a cold reservoir, a 

cyclic sequence enabling the continuous nature of the conversion process. 

Discussion  

The Carnot cycle. The Carnot cycle is essentially comprised of the following 

steps carried out reversibly (cf. Fig. 1).1-4a The sealed container of one mole of ideal gas 

at volume V1 is placed in a heat reservoir at a (higher) temperature T1 and the gas allowed 

to expand isothermally to volume V2; the container is removed from the reservoir, 

jacketed to prevent heat exchange, and the gas expanded adiabatically to temperature T2 

and volume V3. The jacket is removed, and the cylinder placed in a reservoir at a (lower) 
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temperature T2, and the gas compressed isothermally to volume V4; the cylinder is again 

jacketed to prevent heat exchange, and the gas compressed adiabatically to the original 

volume V1 and temperature T1.  

Thus, apparently, the system has not only converted heat into work but also 

returned to the original state, ready to begin a new cycle (implicitly, ad infinitum). Note 

that in the two expansion steps heat is both absorbed and mechanically expended, into 

work performed upon the surroundings; conversely, in the compression steps work is 

performed upon the system which thus acquires heat. The splitting of the expansion and 

compression stages into isothermal and adiabatic steps is arbitrary, but apparently enables 

the calculation of the overall work performed as follows. 
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Fig. 1. The Carnot cycle represented as a pressure-volume (P-V) diagram. (All symbols 

have their usual meaning as explained in the text.) 
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The work done in each adiabatic step is equal to the product of the heat capacity 

at constant volume (Cv) and the temperature difference [ΔT = (T1-T2)], i.e. CvΔT 

(compression) and -CvΔT (expansion); these clearly cancel each other out. The isothermal 

steps are believed to involve work of -RT1ln(V2/V1) (expansion) and -RT2ln(V4/V3) 

(compression). Thus, the overall work obtained in the Carnot cycle (W) is considered to 

be given by eqn. 1.  

W = -RT1ln(V2/V1) - RT2ln(V4/V3)    (1) 

(V1/V4)γ-1 = (V2/V3)γ-1 = (T2/T1)              (2) 

W = RΔT ln(V1/V2)     (3)  

Furthermore, for an adiabatic process the temperature and volume changes are 

believed to be related as in eqn. 2 (γ = Cp/Cv, Cp being the specific heat at constant 

pressure). Thus, the overall work performed in the Carnot cycle upon the surroundings is 

considered to be given by eqn. 3 (from eqns. 1 and 2). 

This is indeed a curious result, as the overall work in the Carnot cycle, which is 

reversibly performed at each stage and returns the system to its original state, must 

perforce be zero. Thus, the work obtained from the system in the expansion steps must be 

equal to the work done on the system in the compression steps. In fact, the only net effect 

of the Carnot cycle would be the transfer of the heat absorbed from the reservoir at T1 to 

the reservoir at T2. 

The problems and their origins. It would appear, therefore, that eqn. 3 is of 

dubious validity. Indeed, an analysis of the assumptions underlying the Carnot cycle 

provides interesting clues to the origin of the problem. In fact, a rather serious 

complication with the Carnot cycle is that all three properties defining the state of an 
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ideal gas, pressure (P), volume (V) and temperature (T), are continuously varied during 

its operation (except in the isothermal stages, when T is constant). Thus, the cycle is 

represented by the familiar P-V diagram shown in Fig. 1, which raises the following 

interesting questions. 

(V2 - V1) = (V3 - V4)   (4) 

(V1/V2) = (V4/V3)   (5) 

(V2 - V1) = (V3 - V4)(V2/V3)  (6) 

(V4 – V1) = (V3 – V2)   (7) 

        T1ln(V2/V1) = T2ln(V3/V4)            (8) 

The P-V diagram is normally displayed in a symmetrical manner, thus implying 

that the opposite sides of the ‘pseudo-parallelogram’ are equal, i.e. a = c and b = d (Fig. 

1). This indicates that the volume changes are related as in eqn. 4. On this basis, the 

volume relationship in eqn. 5, as implied in eqn. 2, cannot be generally valid, as eqn. 5 

implies eqn. 6. Thus, the net work in the isothermal steps will not be given by eqn. 3.  

The calculation of the work performed in the adiabatic steps is also problematical. 

The assumption that this is equal to |CvΔT | is questionable as Cv seems inappropriate in a 

process in which the volume is not constant. An average value of Cv is perhaps 

admissible, but only when the volume changes in the expansion and compression stages 

are equal, as given by eqn. 7. This, of course, follows from eqn. 4, and again implies a 

symmetrical P-V diagram. (Even in the case of an unsymmetrical P-V diagram, the net 

work will remain zero: this will correspond to the net energy expended, which would be 

independent of the path followed, hence zero in all analogs of the classical Carnot cycle.) 
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These arguments also imply that the work performed in the two isothermal steps 

must be equal (and opposite). Hence, the volumes would be related as in eqn. 8 (derived 

from eqn. 1, with W =0, and regardless of the symmetry of the P-V diagram). 

Although it may seem remarkable that the Carnot cycle can be disproved by the 

above elementary mathematical approach, a direct ‘phenomenological’ approach 

apparently leads to the same conclusion. Thus, the claim that the Carnot cycle models a 

steam engine is dubious for the following reasons.  

The Carnot cycle and steam engines.3,4a The Carnot cycle consists of two distinct 

stages (Fig. 1): expansion of volume from V1 to V3, during which work is done upon the 

surroundings (by the system); and compression of volume from V3 to V1, during which 

work is done upon the system (by the surroundings). A steam engine, however, only 

performs work upon the surroundings, i.e. the surroundings do not perform any work 

upon the system. The steam engine performs cyclically by virtue of a mechanical 

contrivance in the form of the action of a wheel, which returns the engine’s piston to its 

original position, but without any compression work being performed.  

Thus, the work of the ‘return stroke’ would be marginal, and apparently originates 

in the wheel’s curtailing the ‘forward stroke’: the energy for the work of return must 

originate in the expansion stage. This is certainly true of a ‘single acting’ steam engine. 

In a ‘double acting’ steam engine, the return stroke of the piston is driven by a second 

burst of steam that is enabled by an ingenious system of valves. Even so, the engine 

performs work on the surroundings (i.e. the wheel) during both strokes, the distinction 

between the forward and return strokes being arbitrary.  
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Interestingly, however, it may be argued that the demarcation between system and 

surroundings is arbitrary in the case of a steam engine, as steam is introduced from the 

surroundings. Thus, in a ‘single acting’ steam engine the expansion stroke can be 

considered to perform work upon the surroundings, and the return stroke upon the 

system. However, in both single and double acting steam engines, the spent steam is 

vented out of the system during the return stroke, thereby avoiding compression. This is 

in contrast to the Carnot cycle, in which the system is returned to its original state by 

compression (with work performed on the system).  

For the above reasons, the analogy between the steam engine and the Carnot cycle 

is apparently invalid.  

Consequences of the invalidity of the Carnot cycle. On the basis that the overall 

work performed in the Carnot cycle is zero, not only is eqn. 3 invalidated, but also the 

notion that it leads to the efficiency of a steam engine. (The efficiency of the Carnot cycle 

would be zero as there is no net work.) The ‘efficiency’ of the Carnot cycle (E) is derived 

from eqn. 3, defined in eqn. 9, and leads to the idea of entropy (S) as defined in eqn. 10. 

[Q1 and Q2 are the heats absorbed at temperatures T1 and T2 respectively, and correspond 

to the work performed in the isothermal steps: Q1 = RT1ln(V2/V1) and Q2 = RT2ln(V4/V3).]  

 

E = W/Q1 = (Q1 + Q2)/Q1 = (T1 – T2)/T1           (9) 

  dS = dQrev/T      (10) 

Thus, intriguingly, the invalidation of eqn. 3 leads to the collapse of the 

fundamental thermodynamic concept of entropy.  
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Also, eqn. 9 has led to the idea that the efficiency of a steam engine is limited by 

T2, the temperature of the lower temperature ‘heat sink’, maximum efficiency being 

attained only at absolute zero. This appears unviable in the light of the above discussion, 

so the efficiency of a steam engine apparently remains an open question.  

Interestingly, it may be argued that the work obtained by adiabatic expansion in 

the Carnot cycle (b in Fig. 1, vide supra), being equal to CvΔT, would be greater at ever 

lower temperatures of the sink. Ostensibly, this corresponds to the temperature of the 

working environment in a steam engine. However, in an adiabatic expansion the system 

is thermally isolated from the environment, so the temperature of the sink is apparently of 

no significance. The efficiency would then be a function of largely the friction in the 

system (assuming constant external pressure).  

These arguments further evidence the inappropriateness of the analogy between 

steam engines and the Carnot cycle.  

The entropy concept in general. Originally, entropy was defined vis-à-vis steam 

engines (vide supra) as the heat inevitably wasted at the lower temperature sink. This was 

thus considered as unavailable heat, and led to the idea that there was a natural limit to 

the conversion of heat into work. However, as argued above, these ideas now appear 

unsustainable. (Even in the case of a steam engine, the efficiency appears to be limited by 

‘non-thermal’ aspects, such as friction and external pressure.) 

As the ideas of classical thermodynamics began to be generalized, an important 

conceptual development was the idea that entropy was related to randomness, as 

expressed in eqn. 11. (kB is the Boltzmann constant and w the number of possible states, a 

measure of randomness). 

B
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S = kBlnw   (11) B

G = H-TS   (12) 

ΔG = ΔH-TΔS   (13) 

ΔG = -TΔStotal   (14) 

ΔGo = -RT lnK   (15) 

These ideas were enshrined in the classic Gibbs free energy function (G), defined 

as in eqn. 12 and eqn. 13 (valid at constant T), and apparently recaptured in the relation 

involving the changes in the Gibbs free energy in a process (eqn. 14). (H is the enthalpy; 

ΔStotal is the total entropy change including both the system and surroundings, i.e. ΔStotal = 

ΔSsystem + ΔSsurroundings.)  

Thus, although all terms in eqn. 13 referred to the system, ΔH was the heat given 

off to the surroundings (so equal to -TΔSsurroundings), which leads to eqn. 14. This led to the 

view that an increase in overall entropy (positive ΔStotal) was associated with a decrease in 

G, and that these signified spontaneity and applied to all processes occurring naturally 

(i.e. without human intervention).  

These developments evidence the famous aphorism of Clausius: ‘Die energie der 

Welt ist constant; die Entropie der welt strebt einem Maximum zu.’ Thus, entropy was 

seen as the ‘arrow of time’, in the sense that the Universe evolved relentlessly towards 

increasing disorder. (For a note on the ‘Clausius inequality’, see Appendix.) However, 

perhaps the most important application of these ideas was in the area of chemistry, as 

discussed below.  
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Entropy in chemistry.1,2 Extending the above ideas to chemical reactions led to the 

view that eqns. 13 and 14 predicted the direction of chemical change, as the equilibrium 

constant (K) was related to the standard Gibbs free energy change (ΔGo, eqn. 15). This 

implied that chemical reactions occurred in the direction of decreasing Gibbs free energy. 

However, an interesting problem with these views is that many natural processes 

increase rather than decrease order, i.e. decrease randomness. A particularly serious 

challenge to the ‘arrow of time’ concept is the evolution of life in the Universe, which 

generates an enormous level of order rather than disorder.  

Many chemical processes, e.g. crystallization and polymerization, produce a high 

level of order, but can be explained by a decrease in enthalpy, i.e. increase in ΔStotal (cf. 

eqn. 14). However, human civilization, in general, aims to produce order rather than 

disorder. As this activity is part of nature, it again questions the viability of the entropy 

concept in general. Thus, the persistence of ‘pockets of order’ in the Universe cannot be 

denied. (It is noteworthy that, at the level of the overall Universe, there is no meaningful 

distinction between ‘system’ and ‘surroundings’: thus, eqn. 14, rather than eqn. 13, would 

apply.)   

The experimental determination of entropy is also problematical, and underscores 

the limitations of entropy. A straightforward way to determine the standard entropy in a 

reaction is to expand eqn. 15 to eqn.16. Rearrangement of eqn. 16 leads to eqn. 17. It is 

seen that a plot of lnK versus (1/T) should be linear with slope of (-ΔHo/R) and intercept 

of (ΔSo/R) (Fig. 2; ref. 2, p. 53). Thus, measuring the equilibrium constant (K) as a 

function of temperature would lead to the standard enthalpy change (ΔHo) and the 

standard entropy change (ΔSo).  
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-RT lnK = ΔGo  = ΔHo - TΔSo   (16) 

lnK = -ΔHo/(RT) + ΔSo/R   (17) 

However, it is noteworthy that the intercept (Fig. 2) leading to ΔSo, is obtained by 

extrapolating the above straight line to a value of (1/T) = 0, which implies T = ∞. Clearly 

such an exercise has no practical significance, and the value of ΔSo obtained thereby 

would not be meaningful.  

Also, although standard entropy changes are more often determined via the 

variation of Cp with temperature, the above argument is one of definition. Thus, ΔSo as 

defined by eqn. 17 appears bereft of meaning or significance. (In fact, entropies of 

activation are determined via an extension of eqn. 17.5) 

 

  

lnK

(1/T)  

Fig. 2. The determination of the standard reaction entropy. A plot of lnK vs. (1/T) yields a 

straight line of slope (-ΔHo/R). Extrapolation of the line as shown by the dashed line 

yields the intercept (ΔSo/R). (Symbols have the usual meaning as explained in the text.) 
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Alternatives to entropy.  As seen above, although the entropy idea is apparently 

useful in practice, it is fundamentally dubious. (It is noteworthy that the criterion of 

randomness is based on the classical idea of entropy, as derived from the Carnot 

theorem.) These arguments apparently indicate that there might be a more fundamental 

concept that secretes the ‘illusion’ of entropy and randomness. 

An interesting empirical observation apparently indicates that chemical reactions 

tend to minimize the ratio of energy to mass. In other words, reactions occur 

spontaneously to produce compounds with a lower overall energy to mass ratio than the 

reactants. This is generally true of associating reactions with equilibrium favoring 

products, e.g. the Diels-Alder reaction of cyclopentadiene (1) with maleic anhydride (2) 

(Fig. 3a).5 The tricyclic adduct (3) is not only of higher mass than 1 or 2, but also of 

lower energy content (reaction is exergonic). 

For the general dissociation process shown in Fig. 3(b), it can be shown that the 

sum of the energy to mass ratios of the products is generally minimized (cf. Appendix). 

Many such organic reactions are known, such as eliminations and extrusions, and are 

generally exergonic. They are considered to be entropy-driven, although they may also be 

enthalpy-driven. 

An intriguing possibility. These arguments indicate that there exists a universal 

tendency towards a uniform distribution of energy in matter. This is the general 

implication of the above observation that chemical reactions apparently lead to products 

of high mass:energy ratio. Furthermore, it is noteworthy that mass and energy are inter-

convertible via the Einsteinian relationship (eqn. 18), c being the speed of light.4b An 

elementary (and perhaps oversimplified) interpretation of this is as follows.  
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E = mc2   (18) 

(mr/Er) = c-2   (19) 

The energy (E) in eqn. 18 refers to the energy associated with the rest mass along 

with other forms of energy possessed by the mass. The mass (m) corresponds to the sum 

total of these forms of energy. In the case of chemical reactions, however, the mass of the 

atoms and molecules (normally) corresponds to the rest mass (mr), and its associated 

energy (Er) may be derived from eqn. 19.  

 

 

 

O

O

O

+

O

O

O
1

2

3

(a)

A B  +  C            (b)  

 

Fig. 3. (a) The Diels-Alder cycloaddition of cyclopentadiene (1) with maleic anhydride 

(2) produces the tricyclic adduct 3 (stereochemistry is ignored). (b) The dissociation of 

reactant ‘A’ results in two products ‘B’ and ‘C’.  
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Also, by the above arguments, a spontaneous chemical reaction may be seen as a 

process driven by the tendency of mass to possess the least amount of energy. This 

implies, in the limit, that the mass approaches the rest mass and its associated energy. In 

other words, the m/E ratio would tend towards the constant value of c-2 (eqn. 19). 

Importantly, note that m/E < c-2 in the reactants, as m is the rest mass, but E includes both 

the energy associated with m and other forms, e.g. chemical binding energy, part of 

which is lost upon reaction. (Although chemical binding energies are relatively small, 

eqn. 19 is useful in indicating that the m/E ratio cannot exceed the limiting value of c-2.)  

Conclusions 

The Carnot cycle, one of the cornerstones of thermodynamics, not only appears 

invalid per se, but also inappropriate as an analogy of a steam engine. The concept of 

entropy, derived on the basis of the Carnot cycle, is thus also questionable. Empirical 

observation suggests that natural phenomena tend to occur in the direction of maximum 

mass to energy ratio, which may well be a viable alternative to entropic randomness. This 

appears to be compatible with the emergence of life in the Universe, much better than 

does entropy.  
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Appendix 

The Clausius inequality.1 This is a direct consequence of eqn. 9 describing the 

efficiency of a Carnot cycle. It essentially states that, in a given process, the entropy 

changes of the system (dS) and its environment (dS’) are related as in eqn. A1. 

ΔStotal = (dS + dS’) ≥ 0    (A1) 

Thus, the total entropy change (ΔStotal) is either zero (reversible process), or 

greater than zero (irreversible process). This requires that, whereas for a reversible 

process dS = -dS’, for an irreversible process dS > -dS’. This implies, however, that a 

quantity of heat (dQ) may be transferred reversibly from the environment but absorbed 

irreversibly by the system. This is implausible, and also implies a breakdown of the 

definition of entropy for the irreversible case (eqns. A2 and A3). 
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dS = dQ/T   (A2) 

dS’ > dQ/T   (A3) 

These inconsistencies are apparently a direct consequence of the energetic 

imbalance inherent in the Carnot cycle, as embodied in eqn. 9, and discussed at length 

above. (Eqns. A2 and A3 seemingly imply that less heat is absorbed by the system than is 

released by the environment, contradicting the first law of thermodynamics.)  

Mass-energy relationships in a dissociation process. The object of this exercise is 

to show that the direction of chemical change is determined by the sum of the mass to 

energy ratios of the products (which should be greater than in the reactants). Thus, 

entropic disorder is not the driving force even for a dissociation reaction. (The associating 

case has been briefly discussed above.) 

Consider the dissociating chemical reaction shown in Fig. 3(b). Let the masses of 

A, B and C be m, m1 and m2 respectively, and their corresponding energies e, e1 and e2. 

Note that these energies correspond to the conventional enthalpies, and that these 

dissociation processes are generally considered to be strongly exergonic. 

(Conventionally, this would be due to increase in entropy.) 

The sum of the mass to energy ratios of the two products, ∑(mn/en), would then be 

given by eqn. A4; eqn. A5 follows as there can be no loss of mass.   

∑(mn/en) = (m1/e1) + (m2/e2)   (A4) 

m/e = (m1+ m2)/e    (A5) 

Expanding eqn. A4 and comparing it with eqn. A5 leads to the inequality in eqn. 

A6. This is seen to be valid by cross-multiplying to obtain eqns. A7 and A8. These are 

 16

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
08

.1
85

2.
1 

: P
os

te
d 

2 
M

ay
 2

00
8



seen to be valid for e > e1 and e > e2, regardless of whether e > (e1 + e2) or e < (e1 + e2). 

The latter case corresponds to the conventional entropy-driven process which occurs even 

if there is an overall increase in enthalpy. These prove the above proposal that ∑(mn/en) > 

m/e. 

(m1e2 + m2e1)/e1e2 > (m1+ m2)/e      (A6) 

(m1ee2 + m2e1e) > (m1e1e2 + m2e1e2)      (A7) 

m1(e/e1) + m2(e/e2) > (m1+ m2)      (A8) 

Eqn. A8 is not generally valid if e < e1 and e < e2. These cases, of course, 

represent very highly endothermic reactions (in terms of enthalpy), e.g. the reverse of the 

reaction in Fig. 3a. They are thermodynamically disfavored despite the increase in 

entropy, and are usually driven by removal of products, e.g. vacuum pyrolyses.  
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