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Abstract 

 

Drug resistance is a major problem for combating tuberculosis. Lack of 

understanding of how resistance emerges in bacteria upon drug treatment limits 

our ability to counter resistance. By analysis of the Mycobacterium tuberculosis 

interactome network, along with drug-induced expression data from literature, we 

show possible pathways for the emergence of drug resistance. To a curated set of 

resistance related proteins, we have identified sets of high propensity paths from 

different drug targets. Many top paths were upregulated upon exposure to anti-

tubercular drugs. Different targets appear to have different propensities for the 

four resistance mechanisms. Knowledge of important proteins in such pathways 

enables identification of appropriate ‘co-targets’, which when simultaneously 

inhibited with the intended target, is likely to help in combating drug resistance. 

RecA, Rv0823c, Rv0892 and DnaE1 were the best examples of co-targets for 

combating tuberculosis. This approach is also inherently generic, likely to 

significantly impact drug discovery. 
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Introduction 

Tuberculosis (TB) has remained one of the largest killer infectious diseases despite the 

availability of several chemotherapeutic agents and a vaccine [ 1]. The global burden of 

tuberculosis has taken a new dimension in the recent years due to the emergence of drug 

resistant varieties of Mycobacterium tuberculosis, besides synergy with HIV [ 2]. Global 

surveillance indicates that multi-drug resistant (MDR-TB) and extensively drug 

resistant TB (XDR-TB) is spreading to many countries and is posing a major threat to 

TB eradication programs [ 3, 4]. Several different strategies are being explored to counter 

the problem of resistance, which include rotation of antibiotic combinations, enhanced 

medical supervision to ensure patient compliance, identification of new targets that may 

be less mutable, search for new chemical entities for known targets, use of virulence 

factors as targets and ‘phenotypic conversion’, which aims to inhibit the resistance 

mechanism employed by the bacterium [ 5]. While each of these may be very important 

measures, available statistics indicate that resistant forms are still on the rise, warranting 

more research in the area. Of the different measures listed, the most cogent in its 

approach in the long term, is targeting the resistance mechanisms, since it enables 

confronting the problem at its source. However, in order to use this strategy effectively, 

it is at the outset, essential to understand the ways by which resistance can emerge upon 

exposure to a given drug.  

Studies on the molecular mechanisms of resistance to first line and second line 

antitubercular drugs have led to mapping of several mutations in the drug targets and the 

regulatory gene segments [ 3]. Besides these, the activation of the efflux pumps and 

drug-modifying enzymes are other known mechanisms of drug resistance [ 6]. Several 

studies in other organisms have reported the acquisition of drug-inactivating genes 

through horizontal gene transfer as a means of selection of the resistant variety [ 7]. It is 

clear from these that diverse mechanisms can exist for generating resistance and that the 

proteins involved in each can be quite remote from the drug targets in terms of their 

functional classes. It is important to study how, upon exposure to the specific drug 

molecule, information can flow from the target molecule to those that are involved in 

resistance. Knowledge of the molecular basis by which information flows from the 

specific drug target to the proteins elsewhere in the system relevant to drug resistance, 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
08

.1
67

4.
1 

: P
os

te
d 

11
 M

ar
 2

00
8



4 

 

will help us address the issue of resistance in more systematic, rational and novel ways. 

With the availability of many genome-scale data from several studies, it is now feasible 

to address the issue of resistance from a systems perspective. Here, we use a proteome-

scale network of protein–protein connectivity to discover possible pathways that may be 

responsible for generating drug resistance. The network analyses reported here further 

help in classification of these paths based on known resistance mechanisms. The study 

also identifies controlling hubs within these paths and suggests proteins that could be 

explored for their use as drug co-targets. 

Results and Discussion 

Interactome network. A proteome-scale interaction network of proteins in 

M. tuberculosis H37Rv (Mtb) was derived (Table S1) from the STRING database [ 8], 

which includes interactions from published literature describing experimentally studied 

interactions as well as those from genome analysis using several well established 

methods such as domain fusion, phylogenetic profiling and gene neighborhood 

concepts. Thus, the network captures different types of interactions such as (a) physical 

complex formation between two proteins required to form a functional unit, (b) genes 

belonging to a single operon or to a common neighborhood, (c) proteins in a given 

metabolic pathway and hence influenced by each other, (d) proteins whose associations 

are suggested based on predominant co-existence, co-expressions, or domain fusion. 

This network represents a first comprehensive view of the connectivity among the 

various proteins, analogous to obtaining the road map of a city. With the methodology 

currently available, it is inevitable for a network of this type to contain some false 

positives as well as false negatives. To minimize this problem, all interactions tagged as 

‘low-confidence’ in the STRING database have been eliminated from this study. The 

considered network, despite its shortcomings, provides an excellent framework for 

navigating through the proteome. It also allows for refinement of the network upon the 

availability of new experimental data.  

Paths to Resistance. The network contains 3,925 nodes (proteins), with 29,664 

undirected edges (interactions) between them. The clustering coefficient of the network 

is 0.447. This high clustering coefficient is indicative of the high density of connections 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
08

.1
67

4.
1 

: P
os

te
d 

11
 M

ar
 2

00
8



5 

 

in the network. Global views of the effects of antitubercular drugs on the mycobacterial 

proteome were obtained from the microarray experiments reported earlier; a list of 

genes whose expression levels were either increased or decreased upon exposure to the 

drugs was obtained for seven drugs, viz. isoniazid [ 9, 10], ethionamide [ 10], isoxyl, 

tetrahydrolipstatin, SRI-221, SRI-967 and SRI-9190 [ 9]. Known mechanisms relevant 

to resistance were classified into four types (a) efflux pumps, which transport drugs out 

of the cell, (b) cytochromes and other target modifying enzymes that could cause 

potential chemical modification of drug molecules, (c) SOS-response and DNA 

replication leading to mutations in the gene or its regulatory region, (d) proteins 

involved in horizontal gene transfer (HGT) to import a target modifying or detoxifying 

protein from its environment. We curated a list of 74 genes in the Mtb genome based on 

these mechanisms from published literature (Table 1). Among these, 12 cytochromes, 

out of the 36 present, five pumps (of 25), one HGT protein (of four) and three SOS 

proteins (of nine) were found to be upregulated in the expression profile corresponding 

to at least one of the seven drugs considered here.  

Proteins that were targets of the given drug(s) were grouped together as ‘source’ 

while the curated set of resistance proteins were grouped together as ‘sink’. Three of the 

drugs isoniazid, ethionamide and isoxyl are known to be inhibitors of mycolic acid 

biosynthesis, for which the 26 proteins of the mycolic acid pathway (MAP) [ 11] were 

used as source. It can be envisaged that upon inhibition of a protein in a given pathway, 

metabolic adjustments often occur so as to minimize the effect of inhibition on the 

particular protein [ 6]. In order to incorporate the effect of such adjustments, we have 

considered the whole pathway as the source rather than the individual protein. There are 

also reports in the literature that multiple proteins in MAP may be targeted by some of 

these drugs [ 12], making it important to consider the pathway as a whole. Shortest paths 

from source to the curated set of resistance proteins (sink) were computed. The set of 

shortest paths forms a network, consisting of 616 nodes and 1683 edges, which is 

referred to as the MAP-RES network hereafter (Fig. 1).  

The best ranked shortest paths to each of the four resistance mechanisms were 

identified as shown in Table 2 (complete list given in Table S2). High-scoring paths to 

each of the resistance mechanisms were observed from MAP (Fig. 2). However, paths 
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to SOS proteins top the list, followed by paths to cytochromes, while paths to HGT and 

pumps were of much lower rank. Nodes and edges that occur most frequently in a given 

set of paths are considered as node and edge hubs. Top edge-hubs in MAP-RES are listed 

in Table S3. Several of the nodes in these edge hubs also happen to be top node hubs. 

Some such edge hubs are MmaA4 (Rv0642c) – Rv0892, FabD (Rv2243) – FadA5 

(Rv3546), FadA5 (Rv3546) – Cyp125 (Rv3545c), Rv0049 – PcaA (Rv0470c), Rv0823c 

– DesA1 (Rv0824c), Acs (Rv3667) – Rv3779 and KasA (Rv2245) – RecA (Rv2737c). 

It is interesting to note that many of these edges can be attributed to metabolic 

linkages wherein the reactions involving the two proteins share a common metabolite 

(e.g. Rv0642 – Rv0892 or Rv0892 – Rv3801c). A few other edges could be attributed to 

adjacency of the genes in the genome whose transcription may be regulated by a 

common mechanism. A number of these proteins are also upregulated in the top paths 

(Figs. 1 & 2). In some cases, the entire paths were upregulated in one or more of the 

drugs, indicating the correlation of the identified paths with the observed expression 

profiles. A path from FabG4 (Rv0242c) to KasA (Rv2245) to RecA (Rv2737c), appears 

to be such a path, where all are upregulated, making the flow of information from 

source to sink that of high propensity. Another interesting path is from DesA1 

(Rv0824c)–Rv0823c–RecA (Rv2737c), which also has an alternate sub-path to RecA 

through RuvA (Rv2593c). In this path, besides RecA, Rv0823c is also upregulated 

(Fig. 2). Considering the individual functions of these molecules, it is easy to 

comprehend that the transcriptional regulator (Rv0823c) influenced by DesA1 

(Rv0824c), triggers the activation of RecA (Rv2737c), which while itself a sink, also 

activates many proteins such as DnaE1 (Rv1547), important for DNA synthesis. DesA1 

was earlier identified as a potential anti-tubercular drug target [ 11], by virtue of its 

critical role in mycolic acid biosynthesis [ 13]. Targeting RecA, DnaE1 or Rv0823c 

individually or together by chemotherapeutic agents along with DesA1, appears to be a 

good strategy to counter emergence of drug resistance. Thus RecA and DnaE1 could be 

considered as potential ‘co-targets’ for DesA1 and other MAP targets. All these three 

proteins are upregulated in response to one or more of the MAP inhibitors. 
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As many as 19 cytochrome proteins were found to be present in a tight cluster 

(Fig. 1), seven of them upregulated, connected to the MAP through Rv0892, which is 

annotated as a probable monooxygenase. Some noteworthy pathways across the four 

classes are: (i) Rv2243 (FabD) – Rv3546 (FadA5) – Rv3545c (Cyp125) (cytochrome); 

(ii) Rv2524c (Fas) – Rv2918c (GlnD) – Rv2890c (RpsB) – Rv3240c, the latter a 

translocase implicated in horizontal gene transfer; (iii) Rv2245 (KasA) – Rv1908c 

(KatG) – Rv1988 (a methyltransferase annotated as an efflux pump); (iv) Rv2245 

(KasA) – Rv2737c (RecA), Rv0904c (AccD3) – Rv1547 (DnaE1), both important for 

homologous recombination and DNA synthesis.  

In fact, RecA (Rv2737c) and a few other proteins such as SecA1 (Rv3240c), 

SahH (Rv3248c), Rv0892 and metK (Rv1392) occur in multiple resistance mechanisms, 

making their roles even more prominent in the emergence of resistance. Some of the 

MAP proteins such as KasA (Rv2245), FabD (Rv2243), which are upregulated, also 

appear to mediate multiple pathways across different resistance mechanisms. Proteins 

important for multiple resistance pathways could help in prioritizing ‘co-targets’. Of the 

top node and edge hubs in MAP-RES, it is of interest to note that nodes Rv0892 and 

Rv2243 are also among the top hubs in the entire STRING network, indicating their 

critical role in the Mtb interactome. Table S4 lists the nodes and edges in the STRING, 

ranked based on their betweenness.  

Table 2 also indicates shortest paths containing upregulated proteins in one or 

more of the four non-MAP drugs, used for obtaining the microarray data, along with the 

three MAP drugs discussed so far. It was observed that while paths to SOS still topped 

the list, many paths to cytochromes, pumps and HGT were found and contained a 

number of upregulated proteins, indicating that propensities for traversal of a path could 

vary from drug to drug. The other known targets of clinically used anti-tubercular drugs 

are RpoB (Rv0667) for rifampicin, the gyrase GyrA (Rv0006) for fluoroquinolones, cell 

wall biosynthesis proteins such as Alr (Rv3423c), DdlA (Rv2981c), Rv3792, EmbA 

(Rv3794) and EmbB (Rv3795) for cycloserine. With these targets as source, shortest 

paths were computed to the sink proteins. We observe that short high-scoring paths were 

observed from all targets examined to SOS involving many common nodes (e.g. DnaE1 
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(Rv1547), RecA (Rv2737)) whereas paths to other resistance mechanisms differed from 

target to target. Some edges in the SOS response (e.g. Rv2158c – Rv0631c) were 

common to paths from cell wall proteins and gyrase. From gyrase, SOS was the only 

predominant path, whereas from RpoB, paths to HGT and cytochromes were also 

among the top paths. For RpoB, many of the paths to SOS were mediated through Dcd 

(Rv0321), a DCTP deaminase. From cell wall proteins, paths to HGT and SOS top the 

list of high-scoring paths again, although there are also several paths to cytochromes. 

Paths to pumps were relatively fewer in number, in all cases. Of interest, however was a 

path to EfpA (Rv2846c), a transporter known to confer resistance to fluoroquinolones 

(Rv0006–Rv0524–Rv3065–Rv2846c), rifampicin and isoniazid resistance [ 6]. A higher 

scoring path to IniA (Rv0342) was observed through Rv0340 (conserved hypothetical 

protein), again agreeing well with previous reports based on transcription studies [ 14]. 

We also analyzed paths from proteins KatG (Rv1908c), EthA (Rv3854c) and PncA 

(Rv2043c), all known to transform prodrugs to the active drug species to the sink. It was 

interesting to observe that while EthA and PncA did not appear to have short paths to 

any of the resistance mechanisms, KatG had a direct interaction with an efflux pump 

(Rv1988, a probable methyltransferase, homologue of Erm37) and also several paths of 

two or fewer edges to all resistance mechanisms. In fact, studies on clinical isolates 

have shown mechanisms such as mutations in KatG, leading to loss of catalase activity, 

mutations in the promoter region of inhA, leading to its overexpression and mutations in 

InhA, leading to loss of affinity for isoniazid [ 3]. Paths to different resistance 

mechanisms for different drugs observed here, suggest that a given target may have a 

higher propensity for eliciting a specific mechanism of resistance, which when 

understood can be utilized to identify appropriate co-targets or secondary targets, to 

prevent emergence of resistance.  

Upon analysis of the network formed only by the upregulated proteins (Table S5), 

for each of the seven drugs, we observe that the network density is much higher, over an 

order of magnitude in most cases, than that of the whole interactome. This indicates that 

the upregulated genes have a higher influence on each other and more importantly their 

inter-relatedness is perhaps for a specific purpose. Such a purpose, if present, is non-

obvious by their functional classes or by a common analysis (such as co-expression) of 
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the microarray data, except in a few cases. However, when viewed in the context of the 

interaction networks, it becomes possible to analyze the outcome of such inter-

relatedness.  

Reports in literature indicate that the main strategies for adaptation by the bacillus 

in response to these drugs are mutations to reduce the bioavailability or the binding of 

these drugs to the MAP target(s). This inherently implies that the MAP proteins have a 

streamlined mechanism to pass on the information of drug inhibition (or lack of mycolic 

acid production) to the SOS proteins involved in recombination and DNA biosynthesis. 

A time course microarray data over a period of a few weeks from clinical samples 

would ideally have been required to see the expression patterns where resistance has 

emerged. Nevertheless, the existing data provides a first glimpse of the possible routes 

that might lead to resistance. Knowledge of the pathways leading to drug resistance will 

be of immense help in identifying appropriate co-targets, thus forming a new rational 

strategy for combating drug resistance. Given the rapid accumulation of various types of 

‘omics’ data, including comprehensive views of protein–protein interactions, this type 

of analyses is becoming feasible for many pathogenic organisms. Our approach is also 

inherently generic, lending itself to be utilized in any drug discovery program.  

Methods 

Interactome Network. A proteome-scale interaction network of proteins in Mtb was 

derived (Table S1) from the STRING database, using only the ‘high-confidence’ and 

‘medium-confidence’ data. 

Curation of Resistance Genes. We curated a list of 74 genes in the Mtb genome based 

on resistance mechanisms from published literature [ 6, 7, 15– 17, TubercuList web server 

(http://genolist.pasteur.fr/TubercuList/)] (Table 1). 

Betweenness. Betweenness is a centrality measure of a vertex within a graph [ 18]. For a 

graph G(V,E), with n vertices, the betweenness CB(v) of a vertex v is defined as 

( )( ) st
B

s v t V st

vC v σ
σ≠ ≠ ∈

= ∑  
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where σst is the number of shortest paths from s to t, and σst(v) is the number of shortest 

paths from s to t that pass through a vertex v. A similar definition for ‘edge 

betweenness’ was given by Girvan and Newman [ 19]. Betweenness was calculated for 

all nodes and edges in STRING, ranking them to obtain a list of hubs (Table S4). 

Network analysis. Shortest paths from source to the curated set of resistance proteins 

(sink) were computed using the Dijkstra’s algorithm implemented in the MATLAB-

Boost Graph Library (David Gleich; http://www.stanford.edu/~dgleich/programs/matlab 

_bgl/). We added a weighting scheme to account for the frequency of the edge in the 

network, as well as to incorporate the upregulation information of the nodes forming a 

given edge. The weight of an edge AB is given as 

1
(1 )(1 )st

st s t

w
f N N

=
+ +

 

where fst corresponds to the frequency of the edge between s and t, which is the number 

of times a given edge occurs in the set of paths, Ns and Nt refer to number of drugs (only 

drugs that target MAP are considered) for which node s and node t are upregulated 

respectively. Thus, the maximum possible score for an edge is unity, when the edge 

appears only once in the set of chosen paths and neither of the nodes forming the edge is 

upregulated. A path score was computed as the sum of the weighted scores for the edges 

in a path, from which the least scoring path corresponded to the highest rank. Cytoscape 

[ 20] was used for network visualizations.  
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Antibiotic efflux pumps [ 6, 15] 

PstB (Rv0933), Rv2686c, Rv2687c, Rv1688c, IniA (Rv0342), Mmr (Rv3065), Rv3239c, 

Rv3728, EfpA (Rv2846c), Rv1877, Rv2333c, Rv2459, Rv1410c, Rv1250, Rv1258c, EmrB 

(Rv0783c), Rv1634, Rv0849 

Rv0191, Rv0037c, Rv2456c, Rv2994 (hypothetical) [ 15] 

BlaC (Rv2068c) [Antibiotic degrading enzyme [ 6]]* 

Erm37 (Rv1988), WhiB7 (Rv3197A) [Target-modifying enzymes [ 16, 17]]* 

SOS and related genes [ 7] 

DnaE2 (Rv3370c), RuvA (Rv2593c), RecA (Rv2737c), RecB (Rv0630c), RecC (Rv0631c), 

RecD (Rv0629c), DnaE1 (Rv1547), PolA (Rv1629), LexA (Rv2720) 

Genes implicated in horizontal gene transfer [TubercuList, 7] 

SecA1 (Rv3240c), SecA2 (Rv1821), Rv3659c, Rv3660c 

Cytochromes [TubercuList] 

ccdA (Rv0527), CcsA (Rv0529), CtaB (Rv1451), CtaC (Rv2200c), CtaD (Rv3043c), CtaE 

(Rv2193), CydA (Rv1623c), CydB (Rv1622c), CydC (Rv1620c), CydD (Rv1621c), Cyp121 

(Rv2276), Cyp123 (Rv0766c), Cyp124 (Rv2266), Cyp125 (Rv3545c), Cyp126 (Rv0778), 

Cyp128 (Rv2268c), Cyp130 (Rv1256c), Cyp132 (Rv1394c), Cyp135A1 (Rv0327c), 

Cyp135B1 (Rv0568), Cyp136 (Rv3059), Cyp137 (Rv3685c), Cyp138 (Rv0136), Cyp139 

(Rv1666c), Cyp140 (Rv1880c), Cyp141 (Rv3121), Cyp142 (Rv3518c), Cyp143 (Rv1785c), 

Cyp144 (Rv1777), Cyp51 (Rv0764c), DipZ (Rv2874), LldD1 (Rv0694), LldD2 (Rv1872c), 

QcrB (Rv2196), QcrC (Rv2194), SdhC (Rv3316) 

Table 1: Curated list of resistance proteins  
*These proteins are antibiotic degrading and target modifying proteins, but since they are 

very few, have been included with the pumps for convenience  
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Path Score 

SOS   

Rv0242c -( 276)-> Rv2245 -( 596)-> Rv2737c 0.0102 

Rv0242c -( 276)-> Rv2245 -( 596)-> Rv2737c -( 44)-> Rv2720 0.0727 

Rv0904c -( 241)-> Rv1547 0.1000 

Rv0824c -( 162)-> Rv0823c -( 247)-> Rv2737c 0.1344 

Rv0242c -( 276)-> Rv2245 -( 596)-> Rv2737c -( 96)-> Rv2593c 0.1352 

Rv2246 -( 400)-> Rv1131 -( 526)-> Rv1629 0.1389 

CYTOCHROMES   

Rv2243 -( 200)-> Rv3546 -( 395)-> Rv3545c 0.0174 

Rv0242c -( 436)-> Rv2243 -( 200)-> Rv3546 -( 395)-> Rv3545c 0.0203 

Rv1350 -( 205)-> Rv2243 -( 200)-> Rv3546 -( 395)-> Rv3545c 0.0230 

Rv1483 -( 121)-> Rv2243 -( 200)-> Rv3546 -( 395)-> Rv3545c 0.0352 

Rv2243 -( 257)-> Rv0769 -( 558)-> Rv0766c 0.0643 

Rv0242c -( 436)-> Rv2243 -( 559)-> Rv2782c -( 513)-> Rv1622c 0.0655 

Rv0242c -( 436)-> Rv2243 -( 257)-> Rv0769 -( 558)-> Rv0766c 0.0673 

Rv0242c -( 436)-> Rv2243 -( 559)-> Rv2782c -( 578)-> Rv2193 0.0738 

Rv0643c -( 350)-> Rv0892 -( 350)-> Rv0568 0.0956 

Rv0643c -( 350)-> Rv0892 -( 350)-> Rv3059  0.0956 

ANTIBIOTIC EFFLUX PUMPS   

Rv2245 -( 565)-> Rv0340 -( 447)-> Rv0342 0.0526 

Rv0242c -( 276)-> Rv2245 -( 565)-> Rv0340 -( 447)-> Rv0342 0.0580 

Rv2243 -( 356)-> Rv2238c -( 569)-> Rv2687c 0.0901 

Rv2243 -( 2)-> Rv2245 -( 565)-> Rv0340 -( 447)-> Rv0342 0.1151 

Rv0642c -( 350)-> Rv3248c -( 486)-> Rv3240c -( 323)-> Rv3239c 0.1365 

Rv0642c -( 350)-> Rv3248c -( 350)-> Rv1988 0.1385 
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Rv1350 -( 90)-> Rv2245 -( 596)-> Rv2737c -( 429)-> Rv2882c -( 584)-> Rv0783c 0.3169 

Rv2245 -( 369)-> Rv1908c -( 350)-> Rv1988 0.3833 

Rv0242c -( 276)-> Rv2245 -( 369)-> Rv1908c -( 350)-> Rv1988 0.3888 

HORIZONTAL GENE TRANSFER   

Rv0644c -( 350)-> Rv3248c -( 486)-> Rv3240c 0.0812 

Rv2243 -( 202)-> Rv2925c -( 378)-> Rv3659c 0.0913 

Rv2243 -( 202)-> Rv2925c -( 378)-> Rv3659c -( 63)-> Rv3660c 0.1538 

Rv2245 -( 596)-> Rv2737c -( 514)-> Rv2890c -( 187)-> Rv3240c 0.3715 

Rv2524c -( 464)-> Rv2918c -( 380)-> Rv2890c -( 187)-> Rv3240c 0.4833 

Table 2: Top paths in the MAP-RES network.  

The weighted score for each path is shown. The nodes upregulated by MAP drugs are indicated in 

black boldface, while those that are upregulated by other drugs are indicated in grey boldface. The 

figures in parentheses indicate the edge weight; a lower edge weight indicates a higher confidence 

in the interaction. 
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Figure legends:  

Fig. 1: Illustration of the MAP-RES network depicting paths from MAP proteins to the 

curated set of resistance proteins. Nodes correspond to the individual proteins in the 

network while the edges indicate interactions between them. Each class of nodes is 

colored differently as indicated. Grey nodes indicate those that do not belong to any of 

the marked classes. The nodes are sized in proportion to the number of MAP drugs that 

induce its upregulation. The thickness of the edge is proportional to the number of times 

a shortest path is traversed through that edge.  

 

Fig. 2: Top scoring paths from MAP to each of the four resistance classes are shown. 

Nodes are labeled by their Rv IDs, as obtained from TubercuList. Nodes correspond to 

the individual proteins in the network while the edges indicate interactions between 

them. Each class of nodes is colored differently as indicated. Grey nodes indicate those 

that do not belong to any of the marked classes. The nodes are sized in proportion to the 

number of MAP drugs that induce its upregulation. The thickness of the edge is 

proportional to the number of times a shortest path is traversed through that edge. The 

dotted edge is not a high-scoring path but is of significance, as discussed in the text. 
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