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 Biodiversity shapes tree species aggregations in tropical forests  
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Spatial patterns of conspecific trees are considered as the consequences of biological interactions and 

environmental influences. They also reflect species interactions in plant communities 1, 2. However, 

biological attributes are often neglected while deliberating the factors shaping species distributions. As 

rising attentions are paid to spatial patterns of tropical forest trees, we noticed that seven Center of 

Tropical Forest Sites and four Forest Dynamic Plots in Asia and America have presented analogously 

high proportions of species with aggregated conspecific individuals coincidently 3-6. This phenomenon 

is distinctive and repudiates fundamental ecology hypotheses which suggested dispersed distributions 

of conspecific tropical trees due to intensive density and natural enemy pressures in tropical forests. 

We believe that similar aggregation patterns shared by these tropical forests implies the existence of 

structuring forces in biogeographical scale instead of habitat heterogeneity in local community scales 

as scientists have considered 7-9. To approach the factors contributing to this cross-continent spatial 

pattern of trees, we obtained and reviewed ecosystem attributes, including topography, temperature, 

precipitation, biodiversity, density, and biomass, of these forests. Here we show that the proportions of 

aggregated species are actually constants independent of any ecosystem attributes regardless the nature 

of these tropical forests. However, local biodiversity are the major factor determining the number of 

aggregated species and the aggregation of large individuals of these forests. Aggregation of large trees 

declines along rising biodiversity, while the numbers of aggregated species increase permanently along 

lifting biodiversity. We propose a possible equilibrium and saturated status of the tropical forests in 

accommodating aggregated species. Furthermore, the tight correlations of biodiversity and species 
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aggregation strongly imply the importance of overlooked biological interactions in shaping the spatial 

patterns in the tropical forests. 
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In the past decades, the most profound findings have been reported from a dry tropical forest in 

Costa Rica that most of the conspecific individuals, including large congeners, were spatially 

aggregated3. However, whether this pattern is common remains unknown. Factors contributing to 

species aggregations are yet revealed as well. Many studies have been implemented in the major 

tropical forests over the world afterwards to examine the universality of species aggregations 4, 5, 10 for

better understanding of species coexistence and distribution in endangered tropical ecosystems. 

Surprisingly, we found that the most important tropical forest research sites coincidently possessed 

analogously high proportions of aggregated species, including six plots of Center of Tropical Forest 

Site (CTFS) and four Forest Dynamic Plots (FDP) (Table 1) 4, 5, 10. The aggregation pattern challenged 

essential ecological hypotheses in spatial patterns, such as hyperdispersion11 and Janzen-Connell 

hypotheses12, 13, which addressed that mature tropical trees should be less aggregated due to mortality 

of young trees resulted from natural enemy attacks and intraspecific competition caused by 

neighboring congeners. As rising attentions have been paid to probe into the factors shaping species 

aggregation, environmental factors, such as topography and soil, have been overwhelmingly concluded 

as the major causes at local community scale7, 8, 14, 15. Few studies have confirmed that heterogeneous 

habitats constructed by topographic variations and climatic features were significantly contributive to 

species aggregation by providing varied niche spaces and copious resources to the tropical forests. 

Nevertheless, habitat heterogeneity is relatively localized and insufficient to explain the analogous 

patterns of species aggregation in the tropical forests located across biogeographical regions with 

various floras, habitat heterogeneity, and disturbance regimes. Furthermore, biological factors, such as 

delicate species interactions, which function in species coexistence and niche differentiations as well16,

are often forgotten in deliberating the factors shaping aggregated distributions of tropical forest species. 

The aggregation of conspecific individuals usually implies inconspicuous intraspecific competition and 

adult-juvenile allelopathy in these forests1. On the other hand, it also suggests vital interspecific 

competitions, since aggregations of congeners may reduce the front facing interspecific interferences. 
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Unfortunately, these mechanisms were seldom discussed for the tropical forests, probably because it is 

arduous to examine complicated interspecific interactions in highly diversified tropical forests. 

However, we suggest that easily accessible biological factors, such as density and diversity are capable 

of providing preliminary insights to these biological interactions shaping species aggregations in the 

tropics.

To reveal the factors contributing to the inter-continental phenomenon of species aggregations, 

we employed and analyzed the metadata of these ten forests featured with noticeable species 

aggregations and archived with comprehensive data of ecosystem attributes, including Hui Kha 

Khaeng (HKK) Wildlife Sanctuary (Thailand), Lambir Hills National Park (Sarawas, Malaysia), Pasoh 

Forest Reserve (Peninsular, Malaysia); Barro Colorado Island (BCI) (Panama), Sinharaja (Sri Lanka), 

and Mudumalai Wildlife Sanctuary (India), and four our lowland rain forests (FDP) in southern Taiwan: 

Lanjenchi, Nanjen Lake, Nanjenshan I and Nanjenshan II. 

According to our results, the importance of biodiversity is evident in shaping species 

aggregations in these tropical forests. Significantly tight linear regression of fisher’s alpha, a diversity 

index, to the number of aggregated species suggests that the size of species pools determined the 

amount of aggregated species (Fig. 1). As the biodiversity of plant communities ascends, the forests 

are capable of accommodating more species with aggregated conspecific individuals. Furthermore, the 

function of the linear regression indicates a consistent relationship between the local biodiversity and 

the numbers of aggregated species: the number of aggregated species equals four point five times the 

value of fisher’s alpha, the biodiversity index. This fixed relationship, nevertheless, suggests that the 

proportions of aggregated species in these forests are actually constants independent of any ecosystem 

attributes, including biological and environmental factors (see supplementary information). These 

surprising results not only infer to a possible “equilibrium” of species aggregations in tropical forests 

which is similar to the idea of carrying capacity, and these forests all reached this saturated proportions 

of species aggregation a tropical plant community can possibly support.  

Furthermore, biodiversity weighted on the number of aggregated large individuals and the 
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tendency of species aggregation in these forests as well. Evident and significant correlations were 

found between the number of species with significantly aggregated large individuals and all of the 

factors representing local biodiversities, including fisher’s alpha, family number and genus number 

(Fig. 2a, 2b, 2c). However, the best fitted logarithmic curve suggests a relatively saturated status, 

resembling the species-area relationship, of aggregated large individuals is reached regardless of rising 

biodiversities, suggesting other limiting factors restricting the amount of aggregated large individuals. 

Similar pattern of restriction is also reflected on the exponentially decreasing trend of LA ratio 

(Species with aggregated large individuals/all aggregated species) along ascending biodiversity (Fig. 

3). Presumably, intensified biological interactions caused by complicated neighborhoods under high 

biodiversity functioned as shaping forces regulating the amount of aggregated species, especially on 

large individuals.  

Although the fisher’s alpha, family number and genus number simultaneously confirmed the 

importance of biodiversity and biological related mechanisms, insights of the existing publications and 

studies are, unfortunately, not able to approach why the size of species mixture is crucial in 

determining number of aggregated species. It is also unknown why aggregation of big trees is limited 

in these forests after reaching a biodiversity threshold. More importantly, we know nothing about the 

mechanisms resulting in the constant proportions of species aggregations across the globe. Our 

conjecture is that the aggregation of most tropical species is driven by mechanisms of species 

coexistence, especially biological interactions. The core of this conjecture inherits the lottery and 

neutral hypothesis of amazingly high biodiversity in the tropical forests17, 18 that the presence of every 

individual of any species in the tropical forests should be stochastic or neutral initially. Mechanisms, 

such as seed dispersal, inter- and intra- specifc competition, and predation, function afterwards during 

long-term succession19, 20. The aggregations, consequently, form in the ecological processes toward a 

steady status of coexistence, equilibrium.  

The effects of environmental factors on distribution of conspecific individuals, however, are 

relatively minor according to our results. For large trees, correlated environmental factors, such as 
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elevations and disturbances suggest that topography and disturbances are critical restrictions to 

survival21, 22 (see supplementary information). Stresses, such as space, water, and wind, may not be 

able to support clumped distribution of large individuals due to severe competition for resources. 

Conclusion

According to our results, we would like to call for attentions on mechanisms shaping the 

consistent proportions of species aggregations across the tropics and on biological interactions resulted 

from magnificent biodiversity in these forests. However, the biodiversity here is not simply what have 

been defined in the past decades. It actually embraces family and genus, which were seldom 

considered as important indicators of biodiversity. We believe this will definitely contribute to better 

understanding of the shaping forces of species coexistence, biodiversity and spatial patterns of 

precious tropical forests over the world. 

Methods

Ecosystem attributes 

Accessible environmental factors of these forests obtained for the analyses included area (km2),

Log(area), topography(m), number of disturbance type, average elevation, highest elevation, lowest 

elevation, elevation difference, number of disturbance type, annual average temperature, highest 

monthly average temperature, lowest monthly average temperature, difference of highest and lowest 

monthly average temperature, annual average precipitation, highest monthly average precipitation, 

lowest monthly average precipitation, difference of highest and lowest monthly average precipitation, 

months with precipitation < 100 mm, and total precipitation in driest three months6,10,14,15.

We obtained all of the available biological information published for these forests as the 

biological attributes, including the number of total species, number of family, number of genus, 

number of species /Log area, individual number per hectare, basal area per hectare, and fisher’s alpha 

(S=a*ln(1+n/a) where S is number of taxa, n is number of individuals and a is the Fisher's alpha)23.
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Fisher’s alpha is the only common biodiversity index published by these tropical forests, and number 

of species per Log area was utilized to present the biodiversity per area. 

Parameters of species aggregation 

Few parameters were selected as indicators of the spatial patterns of sampled forests. The number of 

significantly aggregated species indicated the overall aggregation patterns of these forests, while the 

percentage of significantly aggregated species to total analyzed species showed the proportions of 

aggregation. Number of species with significantly aggregated large individuals represents the 

aggregation pattern of large trees, while the percentage of these to total analyzed species showed the 

proportion of aggregated large trees. Furthermore, the ratio of species with significantly aggregated 

large individuals to total significantly aggregated species (LA Ratio) represented the aggregation 

tendency of large individuals in the forests.  

Pearson’s correlation was applied to assess the correlations among the factors and curve estimation of 

regression analysis (significance at 95% two tailed) was conducted to estimate the patterns of 

significant correlations by SPSS 15.0 for windows (SPSS Inc., Chicago, 2006). 

Supplementary Information is linked to the online version of the paper at www.nature.com/nature. 
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Table 1. Numerical summary of the analyzed CTFS and FDP forest plots.  
     DBH > 11 Large trees2

Plot Location 
Plot Size 

(ha) 
Species 
number

No. of species 
analyzed 

Species % Species %
LA 

Ratio3

Barro Colorado Panama 50 300 183 149 81.4   41 51.9 0.28 

Huai Khae Khaeng Thailand 50 231 95 77 81.1   34 68.0 0.44 

Lambir Malaysia 52 1174 772 653 84.6  72 46.5 0.11 

Lanjenchi Taiwan 5.88 136 88 86 97.7   51 78.5 0.59 

Mudunalai India 50 71 25 22 88.0   17 85.0 0.77 

Nanjen Lake Taiwan 1.61 120 91 87 95.6   28 63.6 0.32 

Nanjenshan plot I Taiwan 2.10 106 52 42 80.8   13 59.1 0.31 

Nanjenshan plot II Taiwan 0.64 67 25 15 60.0   3 17.6 0.20 

Pasoh Malaysia 50 817 535 433 80.9  46 28.0 0.11 

Sinharaja Sri Lanka 25 205 158 156 98.7   47 62.7 0.30 
1: All species with individuals > 1 cm in DBH. 2: Individuals with DBH > 10cm and 8 cm in CTFS and 
FDP plots respectively. 3: Number of species with significantly aggregated large individuals/number of 
significantly aggregated species. 
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Legends

Figure 1. The regression and curve fitting analyses of the number of aggregated species and fisher’s 

alpha diversity index. The equation and curve represent the most significant trend of the data. 

R2 and P indicate the significance of regression and curve fitting at 95% confident interval 

with two tailed t-test. 

Figure 2. The regression and curve fitting analyses of the number of species with aggregated large 

individuals and biodiversity indices, including (a) fisher’s alpha, (b) family number, (c) genus 

number. The equation and curve represent the most significant trend of the data. R2 and P

indicate the significance of regression and curve fitting at 95% confident interval with two 

tailed t-test. 

Figure 3. The regression and curve fitting analyses of the LA ratio and fisher’s alpha diversity index. 

LA Ratio is determined by number of species with aggregated large individuals/number of 

aggregated species. The equation and curve represent the most significant trend of the data. 

R2 and P indicate the significance of regression and curve fitting at 95% confident interval 

with two tailed t-test. 
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Supplementary information 
Table 1. Pearson’s correlations coefficients of species aggregations to the ecosystem attributes, 

including area factors, environmental factors, biomass and density factors, and biodiversity 
factors. Total significantly aggregated species are represented by “All” and “All (%)”, while 
species with significantly aggregated large individuals are indicated by “Large” and “Large 
(%)”. LA ratio shows the tendency of aggregation of large individuals. Negative mark 
indicates negative correlation between the parameters the ecosystem attributes. 

 All All (%) Large Large (%) LA ratio

Area factor

Area 0.522 -0.137 0.472 -0.071 -0.016

Log( area) 0.495 0.089 0.608 0.059 0.088

Environmental factor

Disturbance1 0.066 0.087 0.266 0.525 0.527

Lowest elevation -0.494 -0.259 -0.342 0819 ** 0.846 **

Highest elevation -0.408 -0.213 -0.251 0789 ** 0.812 **

Elevation difference 0.213 0.119 0.341 0.317 0.310

Precipitation -0.145 0.461 0.065 -0.132 -0.207

Highest precipitation -0.422 0.139 -0.199 0.098 0.045

Lowest precipitation 0.613 0.663 * 0.651 * -0.385 -0.465

Months w/prec. <100 m -0.615 -0.647 * -0.629 + 0.336 0.426

Prec. of driest three months 0.560 0.704 * 0.644 * -0.336 -0.421

Precipitation difference -0.560 0.007 -0.339 0.180 0.143

Temperature 0.758 * 0.128 0.628 -0.495 -0.475

Highest Temperature 0.194 -0.632 * -0.212 -0.354 -0.285

Lowest Temperature 0.708 * 0.095 0.499 -0.548 -0.536

Temperature difference -0.657 * -0.386 -0.621 0.416 0.435

Biomass and density

Basal area(m2)/ha -0.008 0.235 -0.037 -0.367 -0.421

Number of total individuals 0.900 ** 0.379 0.812 ** -0.588 -0.602 +

Density 0.156 0.828 ** 0.342 -0.154 -0.243

Biodiversity  

Total species number 0.933 0.334 0.832 ** -0.607 + -0.611 +

Species/Log (area) 0.680 * 0.592 0.632 * -0.297 -0.340

Fisher's alpha 0.988 ** 0.169 0.727 * -0.604 + -0.607 +

Number of Family 0.889 ** 0.290 0.759 * -0.650 * -0.648 *

Number of Genus 0.907 ** 0.211 0.744 * -0.626 + -0.616 +
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**Correlation is significant at the 0.01 level (2-tailed); *Correlation is significant at the 0.05 level 
(2-tailed); + : marginally significant with P = 0.06. 
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