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The abbreviations used are: EGFR, epidermal growth factor receptor; DMEM, Dulbecco’s 

modified Eagle’s medium; PBS, phosphate-buffered saline; FBS, foetal bovine serum; TGF-

, Transforming Growth Factor-beta; Stat3, Signal Transducer and Activator of Transcription 

3; Smad, Sma- and Mad-related protein. 
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Abstract

Transforming Growth Factor-  (TGF- ) and Epidermal Growth Factor (EGF) signaling 

pathways are both independently implicated as key regulators in tumor formation and 

progression. Here, we demonstrate that activation of the tumor-associated and over-expressed 

EGFR desensitizes TGF-  signaling and its cytostatic regulation through specific Stat3 

activation and Smad7 induction. In normal and tumor human cell lines, reduction of TGF- -

mediated Smad2 phosphorylation, nuclear translocation and Smad3 target gene activation 

were observed where EGFR is over-expressed, but not in cells which expressed EGFR at 

normal levels. The EGFR downstream signaling molecules phosphatidyinositol-3 Kinase 

(PI3K) or mitogen-activated protein kinase/ERK kinase (MEK) are not responsible for the 

down-regulation of TGF-  signaling since blockade of them by specific pharmacological 

inhibitors LY294002 and U0126 had little effects on the sensitivity of TGF-  signaling. We 

identified Stat3 as a signaling molecule activated specifically and persistently by over-

expressed EGFR, but not by normal levels. Importantly, Stat3 is responsible for the reduced 

TGF-  sensitivity, since its knockdown by siRNA restored TGF-  signaling sensitivity. 

Furthermore, over-expressed EGFR, through Stat3 activates Smad7 promoter activity, 

increasing its protein levels, which is a negative regulator of TGF-  signaling. Consequently, 

cells were re-sensitized to TGF-  when Smad7 expression was reduced using siRNA. 

Therefore we establish a novel EGFR-Stat3-Smad7-TGF-  signaling molecular axis where 

tumor-associated over-expression of EGFR in epithelial cells results in hyperactivation of 

Stat3, which activates Smad7 expression, compromising the TGF- ’s cytostatic regulation of 

epithelium and consequent tumor formation.  
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Introduction

Growth factor and cytokine signaling networks control many aspects of cell behaviour 

such as proliferation, survival, migration, invasive capabilities, transformation and 

differentiation. In normal cells, these complex signaling pathways are tightly regulated. 

Alterations of these signals are often found to cause, directly or indirectly, tumor formation. 

Transforming Growth Factor-  (TGF- ) and Epidermal Growth Factor (EGF) signaling 

pathways are both independently implicated as key regulators in tumor formation and as such 

they are potential therapeutic targets1-4.

Ever since its discovery, EGFR has been intimately associated with cancer. Indeed, the 

cDNA of EGF receptor was first cloned from the human A431 carcinoma cell line, which 

over expresses the receptor protein5-8. Subsequently, the involvement of the EGFR in many 

human cancers has been established in cancers of the head&neck (90%), brain (30%), breast 

(30-50%), bladder (30-90%), stomach (30-70%), lung (45%), ovarian (30-80%) and prostate 

(10%)9,10. A number of studies further demonstrated that overexpression of EGFR or its tumor 

associated mutant forms resulted in tumor transformation in vitro and enhanced tumor growth 

in vivo, suggesting a causal effect of the elevation of the EGFR expression levels in 

carcinogenesis11. That role of EGFR in carcinogenesis led to the development and evaluation 

of EGFR blocking agents for cancer treatment1. Two EGFR-targeted approaches have been 

explored: one using monoclonal antibodies (mAbs) targeting its extracellular domain, and the 

other using small-molecular tyrosine kinase inhibitors (TKIs) targeting its intracellular 

tyrosine kinase1,12,13. A combination of the two or with chemotherapeutic treatment has also 

been evaluated1. The successful development of EGFR-specific TKIs gave rise to high hope 

that EGFR-blocking reagents could be the next generation of “magic bullets” in treating 

human cancers14.
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More than 20 phase II and III clinical trials targeting EGFR have been conducted, some 

are still active, on many cancer types, including cancers of the head&neck, colorectal, glioma, 

prostate, NSCL(non-small cell lung) and other types of cancers, with current trials focusing 

on NSCL cancers1,15,16. However, the patient response rate varied greatly from almost no 

response to over 50%, while the improvement on overall patient survival is uncertain1,17.

While monotherapy targeting EGFR delivered some responses, early trials did not show 

improvement in combination therapy1,17. The reasons for their apparent lack of benefit when 

used in combination therapy are unclear. It is suspected that different administration schedules 

may be required21. Further research is necessary to establish their mechanism of action. 

Identification of accurate biomarkers may be needed to identify appropriate patients1,18.

In normal cells, EGFR is expressed at relatively low levels (~104 receptors/cell). Its 

activation is controlled by ligand binding and dimerization/oligomerization19. Two main 

downstream pathways are activated, namely Ras-MAPK and PI3K-Akt2. Other pathways may 

also be activated, including Src, PLC  and Stats2. The activation of Stats is identified, but has 

not been taken seriously as physiologically relevant mediators of EGFR biology. In EGFR-

driven tumors, the receptor is normally expressed at higher levels (~106 receptors/cell). 

Although the many structures of the EGFR family, either with or without ligand complexing 

have been solved recently20,21, we still do not fully understand how exactly the receptors are 

activated. Even more surprisingly and despite intensive scientific and clinical research, we are 

yet to identify which downstream molecules are specifically activated by tumor-associated 

and overexpressed EGFR and are responsible for EGFR’s tumorigenic function. There is an 

urgent medical need to have this question answered. 

TGF-  regulates a wide range of cellular processes including cell proliferation, 

differentiation, migration, organization and death3. As one of the most potent inhibitors of 

normal cell growth, the loss of growth inhibitory responses to TGF-  is often observed in 
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cancer cells22,23. It is widely accepted that TGF-  is a tumor suppressor, given the frequent 

occurrence of many types of tumors in mice with disruption of TGF-  or its signaling 

components by gene targeting and many types of human cancers containing loss-of-function 

mutation of TGF-  signaling components3,24.

Biological responses to TGF-  are mediated mainly by the type I (T RI) and II (T RII)

transmembrane cell surface receptors4,25 which contain cytoplasmic domains with 

serine/threonine kinase activity. TGF-  ligands bind T RI and T RII thereby triggering 

phosphorylation and activation of T RI. The activated ligand-receptor complex then binds 

and phosphorylates through T RI the intracellular signaling molecules Smad2 and 

Smad34,25,26. Once phosphorylated these regulatory Smads (R-Smad) form complexes with 

Smad4 (also called DPC4 for deleted in pancreatic carcinoma locus 4) and translocates into 

the nucleus. In the nucleus, they associate with transcription factors to form transcriptionally 

active DNA complexes4,25,26.

TGF-  signaling can be negatively regulated at multiple levels in and out side the target 

cells4: secreted molecules such as decorin binds directly to TGF-  ligands and neutralize their 

biological activity; the transmembrane protein BAMB1 sequesters ligand from binding to 

T RI; FKBP12 blocks receptor phosphorylation; the E3 ubiquitin ligase Smurf1 degrades R-

Smads and T R following binding to Smad7, while Smad7 directly competes with Smad2/3 

for binding to T RI.

The tight regulation of TGF-  signaling pathway at every step is critical in homeostasis, 

since any perturbation of the pathway in vivo appear to result in cancer forming in mice. 

Deletion of one copy of Smad4 or TGF- 1 gene resulted in gastric tumor formation in 

mice27,28 as well as mice lacking the gene encoding the RUNX3 transcription factor29.

Intriguingly, the transcription factor RUNX3 is a target gene for TGF-  signaling and the 
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gastric epithelium of RUNX3-/- mice is desensitized to TGF- -dependent growth suppression. 

Consequently, the mice also gave rise to gastric tumor formation29. Perturbation of TGF-

signaling by expressing a dominant negative form of T RII (DN-T RII)30 or the negative 

regulator Smad731 as a transgene in mice also led to various forms of tumor formation. It 

remains to be answered whether the TGF-  signaling pathway is so fundamental in 

maintaining homeostasis that not only its direct disruptions, but also other oncogenic signals 

acting through the impairment of TGF-  signaling, leads to tumor formation. 

Stat signaling pathways were originally delineated in the context of normal cytokine 

receptors such as interferon (IFN) and interleukin-6 (IL-6) receptors32,33. Evidence for a role 

of Stat3 in tumor transformation was provided by a constitutively activated mutant form, 

Stat3C, which was found to transform fibroblasts in culture, allowing them to form tumors in 

mice34. The first direct links between Stat3 and human cancer came from the findings that 

constitutive Stat3 activity is required for the growth of head&neck cancer cells and multiple-

myeloma cells35,36. Subsequently, Stat3 activation has been detected at high frequency in 

diverse human cancer cell lines and tissues of blood, breast, head&neck, skin, lung and 

prostate6.

We have recently discovered37  that hyperactivation of Stat3 causes 100% penetration of 

gastric tumor formation in knock-in mice carrying an artificial mutant form of gp130Y757F,

(which results in sustained hyperactivation of Stat3), while the knock-in mice with a 

monoallelic deletion of Stat3 are almost completely free of the tumors. Importantly, we have 

found that hyperactivation of Stat3 desensitizes TGF-  signaling, releasing cells from its 

cytostatic regulation, therefore allowing tumor formation. Subsequently, we identified the 

TGF-  signaling negative regulator Smad7 as a Stat3 transcriptional target. Identification of 

up-regulation of Smad7 by Stat3 provided a direct molecular link between the hyperactivation 

of Stat3 and the desensitization of TGF-  signaling in gastro tumorigenesis. This link is also 
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applicable to human, since in human gastric cancers, the increase of Stat3 activity occurs 

concomitantly with elevated Smad7 expression37. While Stat3 activation is observed in many 

types of tumors and increasingly, is becoming an anti-tumor target, there is no genetic 

evidence of its oncogenic mutation.  

Here we establish a novel EGFR-Stat3-Smad7-TGF-  signaling molecular axis where 

tumor-associated over-expression of EGFR in epithelial cells results in specifically the 

sustained hyperactivation of Stat3, which induces Smad7 expression, compromising the TGF-

’s cytostatic regulation of epithelium and consequent tumor formation. 
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 Results 

Over-expression of EGFR inhibits TGF-  signaling. A previous study showing that 

aberrant IL-6/gp130 signaling caused a desensitization in TGF-  response37, led us to 

hypothesize that EGFR signaling could also mediate a similar outcome.  Five human cell lines 

(A431, HN5, 293T, 293T-EGFR and A549 cells) with varying EGFR expression levels were 

used (Fig. 1a), to determine whether EGFR activation effected TGF-  signaling. The Smad3 

luciferase reporter construct, pCAGA12-luc was transiently transfected into those cell lines to 

quantitatively determine TGF-  signaling sensitivity. Stimulation with TGF-  activated 

pCAGA12-luc activity in all 5 cell lines used (Fig. 1b). Interestingly, this increased pCAGA12-

luc activity was significantly reduced in EGFR over-expressing cells (A431, HN5 and 293T-

EGFR), but not in the low EGFR expressing cells lines (293T and A549) when cells were 

treated with EGF (Fig. 1b), suggesting that EGF inhibited pCAGA12-luc activity in cells with 

high levels of EGFR expression.

 As EGF inhibited Smad3 reporter activity in cell lines expressing high EGFR levels, we 

next examined whether EGF had similar effects on Smad2 phosphorylation and localization. 

As expected, TGF-  treatments resulted in increased Smad2 phosphorylation in all 5 cell lines 

tested (Fig. 1c). EGF however, clearly reduced the TGF- -mediated phospho-Smad2 levels in 

A431, HN5 and 293T-EGFR cells, albeit these levels were still greater than basal levels (Fig. 

1c). In contrast, EGF induced no detectable difference in phospho-Smad2 levels in 293T and 

A549 cells (Fig. 1c).  Consequently, EGF treatment caused a marked decrease of Smad2 

nuclear translocalisation by TGF-  such as in A431 cells (Fig. 1d).

 To confirm that EGFR activation was responsible for the observed desensitization of 

the TGF-  signaling, AG1478, a specific inhibitor of EGFR38 was used. Treatment with 

AG1478 dramatically reduced both basal and ligand stimulated phospho-EGFR in A431, HN5 
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and 293T-EGFR cells (Fig. 1e). It had no effect on the TGF-  reporter activity in the normal-

EGFR expressing 293T cell line (Fig. 1f). However, the EGF-mediated reduction of the TGF-

 reporter activity was reversed when A431, HN5 and 293T-EGFR cells were co-treated with 

AG1478 (Fig. 1f), confirming that activation of over-expressed EGFR mediates the 

desensitization of the TGF-  signaling. 

   Finally, to determine whether EGFR blockade re-sensitized cells to the inhibitory 

effects of TGF- , the EGFR over-expressing human head&neck tumor cells HN5 were treated 

with TGF-  with or without AG1478 and assessed for  [3H]-thymidine incorporation. Indeed, 

HN5 cells lost TGF- -mediated growth arrest as it did not result in much decrease in [3H]-

thymidine incorporation (Fig. 1g). However, when the EGFR activity was blocked with 

AG1478, a reduction in [3H]-thymidine incorporation greater than 50% was observed, 

indicating that EGFR inhibition leads to a re-sensitization of HN5 cells to TGF- -mediated 

growth suppression. 

EGF-Mediated Inhibition of the TGF-  pathway is not dependent on PI3-K and MEK 

Signaling. Two of the most documented signaling pathways activated upon EGFR 

phosphorylation are the Ras-MAPKs and the PI3K-Akt pathways. To examine whether these 

pathways were involved in the desensitization of TGF-  signaling, we used pharmacological 

inhibitors to block either MEK (U0126) or PI3K (LY294002) activity without effecting 

phospho-EGFR levels (Fig. 2a, 2b). Unlike the EGFR inhibitor AG1478, neither the MEK 

inhibitor U0126 nor the PI3K inhibitor LY294002 re-sensitized the TGF-  reporter activity in 

the EGFR over-expressing HN5 and 293T-EGFR cells (Fig. 2c, d). These results suggest that 

the EGF-mediated inhibition of the TGF-  pathway is not dependent on MEK and PI3K 

signaling.
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Over-expression of EGFR mediates specifically sustained Stat3 phosphorylation and 

transcriptional activity. As we had previously shown that sustained Stat3 activation results in 

the desensitization of TGF-  signaling in the IL-6/gp130 signaling system37, we next set out 

to determine whether EGF could lead to Stat3 activation. While EGF-stimulation resulted in 

increased phospho-EGFR, phospho-Erk1/2 and phospho-Akt levels in all 5 cell lines used 

(A431, HN5, 293T, 293T-EGFR and A549) without changes to total protein levels,  

phosphorylation of Stat3 was observed in only the EGFR over-expressing cell lines, (A431, 

HN5 and 293T-EGFR) (Fig. 3a). Furthermore, this EGFR over-expression-specific Stat3 

activation was sustained throughout the duration of a 480 min time-course experiment (Fig. 

3b). In fact the specific sustained Stat3 phosphorylation correlated with an increase in Stat3 

transcriptional activation as measured by the luciferase promoter activity using the pAPRE-luc

reporter construct in EGFR over-expression cells (Fig. 3c). There was minimal Stat3 reporter 

activation in the cells expressing normal or low levels of EGFR (293T and A529) (< 2-fold; 

data not shown). Using the EGFR inhibitor AG1478, it was further confirmed that Stat3 

phosphorylation and transcriptional activity were indeed mediated by EGFR in all the cell 

lines examined (Fig. 3d). Finally, using the small molecular inhibitors to MEK and PI3K, the 

EGFR over-expression mediated Stat3 phosphorylation and transcriptional activity were 

determined to be independent of the MEK and PI3K pathways (Supplementary Fig. 1). Taken 

together, these results demonstrate that over-expression of EGFR mediates specifically 

sustained Stat3 phosphorylation and transcriptional activity. 

EGFR mediated inhibition of the TGF-  signaling is Stat3-dependent. To verify 

conclusively that Stat3 mediates desensitization of the TGF-  signaling, we knocked down 

Stat3 protein expression by siRNA (Fig. 4a). In both A431 and HN5 cells the activity of the 

TGF-  reporter pCAGA12-luc was increased when the endogenous Stat3 levels were knocked 

down (Fig. 4b), indicating that Stat3 is indeed required for the EGFR-mediated 
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desensitization of the TGF-  signaling. Importantly, Stat3 knock down restored TGF-

mediated growth suppression of HN5 tumor cells as determined by [3H]-thymidine 

incorporation (Fig. 4c).

Smad7-dependent de-sensitization of TGF-  signalin by EGFR. As we have 

previously shown that hyper-activation of Stat3 induced expression of the negative regulator 

of TGF-  signaling, Smad737, we next examined whether the EGFR-Stat3 mediated de-

sensitization of the TGF-  signaling is dependant on Smad7. Indeed, EGFR activation 

increased Smad7 gene promoter activity in A431 and HN5 cells as measured by the promoter 

reporter pSmad7-luc construct (Fig. 5a). Conversely, the pSmad7-luc promoter activity was 

significantly reduced when A431 or HN5 cells were treated with the EGFR inhibitor AG1478 

(Fig. 5b), demonstrating that Smad7 promoter activity can be regulated by EGFR activation. 

Consequently, the Smad7 protein levels were decreased when EGFR activity is blocked by its 

inhibitor AG1478 (Fig. 5b). Furthermore, both the Smad7 promoter activity and Smad7 

protein expression were reduced when the Stat3 expression levels were knocked down (Fig. 

5c). These data demonstrate that up-regulation of Smad7 protein levels in EGFR over-

expressing tumor cells is through the Stat3 mediated Smad7 promoter activation. To 

determine whether EGFR-Stat3 mediated desensitization of TGF-b signaling is due to 

increased Smad7 expression, we use Smad7 siRNA to knockdown its expression (Fig. 5d). 

Indeed, in both A431 and HN5 tumor cells, Smad7 knockdown largely restored the TGF-

reporter activity when EGFR is activated by EGF treatment (Fig. 5e). Of note, the reporter 

activity in the absence of EGF treatment is also vastly increased by Smad7 knockdown, 

confirming the effect of the basal Smad7 expression increase in EGFR over-expressing cells, 

which can be reduced by EGFR inhibitor treatment (Fig. 5b). Importantly, Smad7 

knockdown, like Stat3 knockdown, restored HN5 tumor cell growth inhibitory sensitivity to 

TGF-  (Fig. 5f).
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Discussion

Ever since its discovery as one of the first receptor tyrosine kinases, EGFR and its 

signaling have been studied extensively. Many downstream pathways have been identified, 

but little is known about the difference between the normal and tumorigenic signals 

transduced from EGFR. It was presumed that the two main downstream pathways, Ras-

MAPK and PI3K-Akt were responsible for EGFR-driven tumor growth. However, it has been 

difficult to detect the different mode of their activation between normal and tumor cells. At 

best, less than 10% elevation of MAPK activation by a constitutively active EGFR ( 2-

7EGFR)39 was proposed to explain its tumorigenicity. Yet, these downstream signals have 

been employed to measure the efficacy of EGFR inhibition in cancer treatment 40-42. The 

identification of Stat3 here as a molecule specifically and persistently activated by the over-

expressed and tumor-associated EGFR but not by EGFR expressed at normal levels reveals a 

critical signaling difference by EGFR between normal and tumor cells.   

In both the normal and tumor cells, MAPK (Erk1/2) and Akt activation by EGFR are 

rapid and transient (Fig. 3), regardless of the levels of EGFR expression. In contrast, low 

levels of EGFR do not activate Stat3 while only high levels of EGFR are capable of Stat3 

activation. Surprisingly, Stat3 activation by high levels of EGFR is slower than the Erk1/2 or 

Akt activation (Fig. 3). Furthermore, the high level of EGFR-mediated Stat3 activation is 

persistent, unlike the transient nature of Erk1/2 and Akt activation. This is in direct contrast to 

cytokines such as IL-6 and IL-11 which mediated Stat3 activation rapidly and transiently37,43.

Our previous work demonstrated in both animal models and human tissues that persistent 

Stat3 activation leads to stomach epithelial hyper-proliferation. It becomes clear in recent 

years that Stat3 is an oncogene and its activation is prevalent in many human cancers34,44,45.

Unlike many other oncogenes, there is no genetic evidence of gain-of-function mutation. The 
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observation that the tumor-associated over-expressed EGFR activates Stat3 persistently 

identifies EGFR as an upstream molecular cause of Stat3 activation physiologically. 

The tumorigenic consequence of the persistent Stat3 activation at least is partially 

mediated through the desensitization of TGF-  signaling via its negative regulator Smad7 

expression in stomach epithelium37. Indeed, EGFR-mediated Stat3 activation also results in 

the desensitization of TGF-  signaling in many cell lines with EGFR over-expression. More 

importantly, in the head&neck tumor cell line with high levels of EGFR, HN5, there is a loss 

of cytostatic/growth inhibitory regulation by TGF-  (Fig.1), which can be reversed by 

blocking either EGFR or Stat3 activation (Fig. 1 and 4). Restoration of TGF-  signaling can 

also be achieved in those cell lines by knockdown of Smad7 expression (Fig. 5). Thus, the 

loss of TGF-  cytostatic regulation on normal cell growth may represent a key molecular 

event during many organ types of tumorigenesis driven by over-expression of EGFR through 

the EGFR-Stat3-Smad7-TGF-  cross-talk axis. 

Loss of TGF-  sensitivity and thereby loss of cytostatic regulation may represent a key 

molecular event in tumor progression. Desensitization to TGF- -mediated growth regulation 

can occur through the generation of loss-of-function mutations in either TGF-  receptors or 

downstream signaling molecules46. However, the overall occurrences of such mutations in 

human tumors are not frequent46, suggesting that there may exist alternatives other than direct 

TGF-  signaling component deletion or mutation. Indeed, some early work showed that Ras 

inhibited TGF-  signaling through MAPK’s modification of Smads47-49 while IFN-  inhibits 

TGF-  signaling through Stat1 mediated Smad7 expression50. We have not seen any de-

sensitization of TGF-  signaling mediated by MAPKs (Erk1/2) in cells expressing either high 

or low levels EGFR (Fig. 3).  At least in the context of stomach epithelium, Stat1 did not 

cause de-sensitization of TGF-  signaling37. Both here and our previous work37 identify Stat3 
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as a key mediator of loss of TGF-  cytostatic regulation through signaling pathway cross-talk. 

In early tumor development where tumor growth and expansion are dominant, TGF-  acts as 

a tumor suppressor while it promotes invasion in late stages of tumor progression. 

Importantly, TGF-  signaling may be necessary for the late tumor invasion, best 

demonstrated in colon tumor development where deletions or mutations in the TGF-

signaling pathway gave rise to a better prognosis compared to patients with colon cancers 

with intact TGF-  signaling51,52. Desensitization of TGF-  signaling through signaling cross-

talk such as EGFR-Stat3-Smad7-TGF-  demonstrated here instead of the component 

deletions or mutation may enable the cells to by-pass TGF- ’s tumor suppressive effect in 

early tumor development while the pathway can be re-sensitized by different molecular means 

to promote tumor invasion at late stages.  

Establishing the loss of cytostatic regulation by TGF-  by tumor-associated EGFR over-

expression through the EGFR-Stat3-Smad7-TGF-  axis has direct implications in EGFR 

signaling targeted cancer therapy. Firstly, it provides some clear molecular targets for treating 

EGFR-driven tumors, namely, Stat3 and Smad7. Several research groups have developed 

therapeutics that target Stat3 with some success36,53,54, such as administration of anti-sense 

oligonucleotides targeting Stat3 expressing hematological tumors in mice53 and a synthesized 

triterpenoid, CDDO-Imidazolide to inhibit Stat3 phosphorylation in human myeloma and lung 

cancer cells46,55. Similar strategies may be employed to target Smad7 expression in tumors. A 

combination of Stat3 and/or Smad7 with EGFR targeting may provide a much more effective 

treatment. Secondly, to determine the efficacy of any EGFR targeted treatment, in addition to 

its effects on Ras-MAPK and PI3K-Akt pathways, it may be necessary to measure the effects 

on Stat3 activation, Smad7 activation and TGF-  signaling sensitivity. Given the availability 

of the sensitive luciferase reporters for Stat3, Smad7 and TGF-  signaling, it is not 

unreasonable to envisage them being used to directly monitor the real effects of any EGFR 
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targeting therapy on its more specifically tumorigenic downstream signaling. More 

importantly, they can be used in vivo in real time when coupled with live imaging techniques 

to optimize treatment regimen, especially regarding dosages and schedules. 
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Materials and Methods 

Antibodies and reagents Rabbit polyclonal antibodies directed against Erk1 and Stat3 

and goat polyclonal antibody directed to Akt were obtained from Santa Cruz. The phospho-

Erk1/2, phospho-Akt and phospho-Stat3 rabbit polyclonal antibodies were from Cell 

Signaling Technology, while the mouse phospho-tyrosine monoclonal antibody (4G10) was 

from Upstate Biotechnology. Anti-mouse Smad2 and Actin antibodies were purchased from 

Transduction Laboratories and Sigma respectively. The anti-Rabbit Smad7 polyclonal 

antibody was obtained from Imgenex. The anti-mouse Alexa488-conjugated secondary was 

from Molecular Probes. The Anti-rabbit phospho-Smad2 antibody was kindly provided by 

Prof. P. Ten Dijke (Uppsala Branch; Ludwig Institute for Cancer Research). The mouse anti-

EGF receptor antibody mAb 806 was provided by the Melbourne Centre for Clinical Sciences 

(Ludwig Institute for Cancer Research). The MEK inhibitor U0126 and the PI3K inhibitor 

LY294002 were purchased from CalBiochem. AG1478 and Recombinant mouse EGF was 

kindly provided by A.Prof. E. Nice (Melbourne Tumor Biology Branch; Ludwig Institute for 

Cancer Research) and recombinant human TGF- 1 was purchased from R & D systems. [3H]-

thymidine was provided by Molecular Probes. Human Stat3 and Smad7 siRNA were from 

Santa Cruz, while the fluorescein labeled control siRNA was from Qiagen. 

Cells and cell culture  The epidermoid carcinoma cell line A431, the head&neck 

carcinoma cell line HN5, the human embryonic kidney cell line HEK-293T (293T) and the 

EGFR-Flag tagged stably transfected HEK-293T-EGFR (293T-EGFR) cell line and the lung 

carcinoma cell line A549  have all been previously described19,56-58. The A431, HN5 and 

A549 cell lines were maintained in Dulbecco’s Modified Eagle’s Medium, while the 293T 

and 293T-EGFR cell lines were maintained in RPMI medium. All media contained 10% 

foetal bovine serum (FBS), 2 mM glutamine, 100U/ml penicillin and 100 μg/ml streptomycin. 

Cells were incubated in a humidified atmosphere of 90% air and 10% CO2 at 37 C.
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Western blot analysis  Cells were lysed in a lysis buffer (50mM Tris (pH 7.4), 150mM 

NaCl, 1% Triton-X-100, 50mM NaF, 2mM MgCl2, 1mM Na3VO4 and protease inhibitor 

cocktail (Roche)) and clarified by centrifugation (13,000g for 15 min at 4 C). Proteins were 

then separated by SDS-PAGE (Invitrogen), blotted onto nitrocellulose and probed with the 

indicated primary antibodies. The signal was visualized using the ECL chemoluminescence 

detection kit (Amersham Biosciences) following incubation with appropriate secondary 

antibodies.

Luciferase assays The firefly luciferase constructs pAPRE-luc59, pSmad7-luc60 and 

pCAGA12-luc61 have been all previously described. Cells were transiently transfected with the 

construct using the FuGENE-6 transfection kit (Roche). After a 24 h transfection period, cells 

were washed with PBS and cultured with TGF- , EGF, AG1478, U0126 and/or LY294002 at 

the concentrations indicated for a further 24 h. Cells were then lysed and assessed for 

luciferase activity using the Luciferase Reporter Assay Kit (Promega) following the 

manufacturer’s instructions. To assess for the effects of Stat3 and Smad7 knockdown on 

Smad3 and Smad7 promoter activity, cells were transiently transfected with Stat3, Smad7

siRNA or fluorescein-labelled control siRNA using the HiPerFectTM transfection reagent 

(Qiagen) as per the manufacturer’s instructions 24 h after transfection with p(CAGA)12-luc

and pSmad7-luc constructs. 

[ H]-thymidine incorporation assays3  Cells were plated in 96-well plates in DMEM-

10% FBS and allowed to adhere overnight. Quadruplicate wells were treated with TGF-  and 

or AG1478 at the concentrations indicated for 48 h and then incubated with 0.2 μCi of [3H]-

thymidine/well for an additional 4 h. Cells were lysed with 0.5 M NaOH, harvested by using a 

Filtermate Harvester (Packard Instrument Co.), and the incorporated [3H]-thymidine measured 

with a Microplate Scintillation Counter (Packard Instrument Co.). To assess for the effects of 

Stat3 and Smad7 knockdown on [ H]-thymidine incorporation3 , cells were transiently 
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transfected with Stat3, Smad7 siRNA or fluorescein-labelled control siRNA using the 

HiPerFectTM transfection reagent in solution and seeded in 96-well plates 24 h prior to TGF-

treatment. 

Confocal Microscopy A431 cells were seeded onto coverslips in 6-well plates in 

DMEM-10% FBS and allowed to adhere overnight. Cells were stimulated with or without 

EGF in serum-free media overnight followed by treatment with TGF-  for 15 min.  Cells 

were then washed twice in PBS, fixed in formaldehyde and permeabilized with PBS 

containing 0.2% Triton-X-100. Following blocking in PBS-Tween20 containing 5% BSA, 

cells were stained with anti-Smad2 antibody and visualized with Alexa488-conjugated 

secondary antibody using confocal microscopy as described61.
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Figure Legends 

Figure 1. Over-Expression of EGFR Desensitizes the TGF-  Pathway. a. A431, HN5, 

293T, 293T-EGFR and A549 cells were lysed and examined for EGFR and actin protein 

expression by western blot analysis as described in Materials and Methods. b. A431 (i), HN5 

(ii), 293T (iii), 293T-EGFR (iv) and A549 (v) cells were transfected with the Smad3 reporter 

construct pCAGA12-luc and allowed to adhere overnight. Cells were then treated with 

increasing concentrations of TGF-  in the presence ( ) or absence ( ) of EGF (20ng/ml) for a 

further 24 h, lysed and assessed for luciferase activity. Data are expressed as relative 

luciferase activity (fold change) by standardizing the luciferase activity of the un-stimulated 

cells to 1, and accordingly normalizing all other raw values. c. Cells were treated with EGF 

(20ng/ml) overnight in serum-free media, then stimulated with TGF-  (0, 0.2 and 2ng/ml) for 

30 min as indicated above. Cells were then lysed and examined for phospho-Smad2 and total 

Smad2 expression by western blot analysis. d. A431 cells were stimulated with or without 

EGF (20ng/ml) overnight in serum-free media, then treated with or without TGF-  (0.2ng/ml) 

for 15 min as indicated above. Cells were then fixed in formaldehyde, permeablised in 0.2% 

Triton-X-100 and stained with anti-Smad2 antibody. Localisation of Smad2 was visualized 

with Alexa488-conjugated secondary antibody using confocal microscopy as described in 

Materials and Methods. e. A431, HN5 and 293T-EGFR were treated with AG1478 (0, 0.4 and 

2 M) for 30 min in serum-free media, then stimulated with or without EGF (20ng/ml) for 10 

min as indicated above. Cells were then lysed and examined for phospho-EGFR and total 

EGFR expression by western blot analysis. f. A431 (i), HN5 (ii), 293T (iii) and 293T-EGFR 

(iv) cells were transfected with pCAGA12-luc, pre-treated with ( ) or without ( ) AG1478 for 

4 h, then stimulated with TGF-  (2ng/ml) and/or EGF (20ng/ml) as indicated above for a 

further 24 h. Cells were then lysed and assessed for luciferase activity and expressed as 

outlined in Fig. 1b. g. HN5 cells were treated with TGF-  in the presence ( ) or absence ( )
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of AG1478 for 48 h. Cells were then incubated with 0.2 μCi of [3H]-thymidine/well for an 

additional 4 h, lysed with 0.5 M NaOH, harvested, and then measured for incorporated [3H]-

thymidine. 

Figure 2. EGF-Mediated Desensitization of the TGF-  pathway is MEK and PI3K 

Independent. HN5 (left) and 293T-EGFR cells (right)  were treated with a. U0126 (0, 2 and 

10 M) or b. LY294002 (0, 2 and 10 M) for 4 h in serum-free media, then stimulated with or 

without EGF (20ng/ml) for 10 min. Cells were then lysed and examined for phospho-EGFR, 

total EGFR, phospho-Erk1/2, total Erk1/2, phospho-Akt and total Akt expression by western 

blot analysis as indicated above. HN5 (left) and 293T-EGFR cells (right) were transfected 

with pCAGA12-luc, pre-treated with ( ) or without ( ) c. U0126 or d. LY294002 for 4 h, then 

stimulated with TGF-  (2ng/ml) and/or EGF (20ng/ml) as indicated above for a further 24 h. 

Cells were then lysed and assessed for luciferase activity and expressed as outlined in Fig. 1b. 

Figure 3. Over-expression of the EGFR Leads to Sustained Stat3 Phosphorylation and 

Transcriptional Activity. A431, HN5, 293T, 293T-EGFR and A549 cells were serum-

starved overnight then stimulated with or without EGF (20ng/ml) for a. 10 min or b. 10, 60, 

120, 240 and 480 min. Cells were then lysed and examined for phosphorylated and total 

expression of EGFR, Stat3, Akt and Erk1/2 as indicated above by western blot analysis as 

describe in Materials and Methods. c. A431 (i), HN5 (ii) and 293T-EGFR (iii) cells were 

transfected with the Stat3 reporter construct pAPRE-luc and allowed to adhere overnight. 

Cells were then treated with increasing concentrations of EGF (0 - 50ng/ml) for a further 24 h, 

lysed and assessed for luciferase activity and expressed as outlined in Fig. 1b. d. A431, HN5 

and 293T-EGFR were treated with AG1478 (0, 0.4 and 2 M) for 30 min in serum-free media, 

then stimulated with or without EGF (20ng/ml) as indicated above. Cells were then lysed and 
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examined for phospho-Stat3 and total Stat3 expression by western blot analysis. Cells were 

also transfected with pAPRE-luc, pre-treated with AG1478 (0, 0.4 and 2 M) for 4 h, then 

stimulated with EGF (20ng/ml) as indicated above for a further 24 h. Cells were then lysed 

and assessed for luciferase activity and expressed as outlined in Fig. 1b.

Figure 4. EGF-Mediated Desensitization of the TGF-  Signaling Pathway is Stat3 

Dependent. a. HN5 cells were transiently transfected with control or Stat3 siRNA. After 48h, 

cells were lysed and examined for Stat3 and actin expression by western blot analysis as 

indicated above. b. Twenty-four h following transient transfection with pCAGA12-luc, A431 

(i) and HN5 (ii) cells were re-transfected with control ( ) or Stat3 ( ) siRNA, seeded and 

allowed to adhere for 24 h. Cells were then stimulated with TGF-  (2ng/ml) and/or EGF 

(20ng/ml) as indicated above for a further 24 h. Cells were then lysed and assessed for 

luciferase activity. Data are expressed as relative luciferase activity (fold change) by 

standardizing the luciferase activity of the TGF- -stimulated control siRNA transfected cells 

to 1, and accordingly normalizing all other raw values. c. Following transient transfection 

with control ( ) or Stat3 ( ) siRNA, HN5 cells were seeded and allowed to adhere overnight. 

Cells were then  treated with TGF-  for 48 h, incubated with 0.2 μCi of [3H]-thymidine/well 

for an additional 4 h, lysed with 0.5 M NaOH, harvested, and then measured for incorporated

[3H]-thymidine. 

Figure 5. EGF-Mediated Desensitization of the TGF-  Signaling Pathway is Smad7 

Dependent. A431 and HN5 cells were transfected with the Smad7 reporter construct 

pSmad7-luc and allowed to adhere overnight. Cells were then treated a. with ( ) or without 

( ) EGF or b. with ( ) or without ( ) AG1478 for a further 24 h, lysed and assessed for 

luciferase activity and expressed as outlined in Fig. 1b. c. Twenty-four h following transient 
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transfection with pSMAD712-luc, A431 and HN5 cells were re-transfected with control ( ) or 

Stat3 ( ) siRNA, seeded and allowed to adhere for 24 h. Cells were then lysed and assessed 

for luciferase activity and expressed as outlined in Fig. 1b. d. HN5 cells were transiently 

transfected with control or Smad7 siRNA. After 48h, cells were lysed and examined for 

Smad7 and actin expression by western blot analysis as indicated above. e. Twenty-four h 

following transient transfection with pCAGA12-luc, A431 (i) and HN5 (ii) cells were re-

transfected with control ( ) or Smad7 ( ) siRNA, seeded and allowed to adhere for 24 h.  

Cells were then stimulated with TGF-  (2ng/ml) and/or EGF (20ng/ml) as indicated above for 

a further 24 h. Cells were then lysed and assessed for luciferase activity. Data are expressed as 

relative luciferase activity (fold change) as described in Fig. 4b. f. Following transient 

transfection with control ( ) or Smad7 ( ) siRNA, HN5 cells were seeded and allowed to 

adhere overnight. Cells were then  treated with TGF-  for 48 h, incubated with 0.2 μCi of 

[3H]-thymidine/well for an additional 4 h, lysed with 0.5 M NaOH, harvested, and then 

measured for incorporated [3H]-thymidine. 

Figure 6. Schematic of EGF-Mediated Desensitization of the TGF-  Signaling Pathway. 

Ligand stimulation of over-expressed EGFR, leads to sustained activation of Stat3 which 

translocates into the nucleus and increases Smad7 protein expression. This in turn inhibits the 

TGF-  signaling pathway by directly competing with Smad2/3 for binding to TGF- RI. This 

thereby blocks complexing of Smad2/3 with Smad4 and movement into the nucleus for 

specific gene transcription.
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Supplementary Figure 1. EGF-mediated Stat3 activation is independent of Erk1/2 and 

Akt signaling. a. HN5 (left) and 293T-EGFR cells (right) were treated with U0126 (0, 2 and 

10 M) for 4 h in serum-free media, then stimulated with or without EGF (20ng/ml) for 60 

min. Cells were then lysed and examined for phospho-Stat3 and total Stat3 expression by 

western blot analysis as indicated above. Cells were also transfected with pAPRE-luc, pre-

treated with U0126 (0, 2 and 10 M) for 4 h, then stimulated with EGF (20ng/ml) as indicated 

above for a further 24 h. Cells were then lysed and assessed for luciferase activity and 

expressed as outlined in Fig. 1b. b. Identical experiments as outlined above were performed 

using LY294002 (0, 2 and 10 M) instead of U0126. 
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