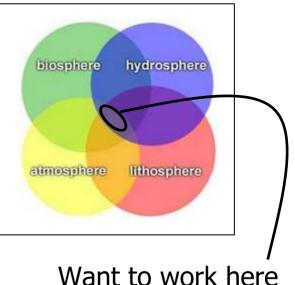
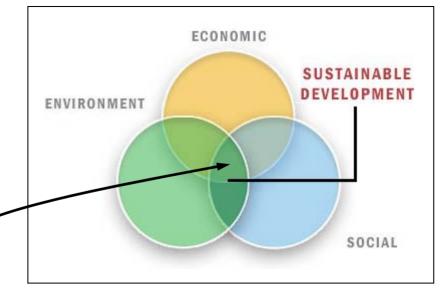
Sustainability and Environmental Chemistry in Semi-Arid/Arid Regions: A Unique Research Opportunity with Global Implications


Sierra Rayne

Chemistry, Earth & Environmental Sciences Irving K. Barber School of Arts and Sciences University of British Columbia at Okanagan

What is Environmental Chemistry?

- Definition depends on where you look:
 - "Study of chemical phenomena in natural places"
 - Not be confused with green chemistry
 - Seeks to reduce potential pollution at source
- Study of the sources, reactions, transport, effects, and fates of chemical species in the
 - air (atmosphere)
 - soil/rock (lithosphere)
 - biological (biosphere),
 - and water (hydrosphere) environments,
 - and the effect of human activity on these

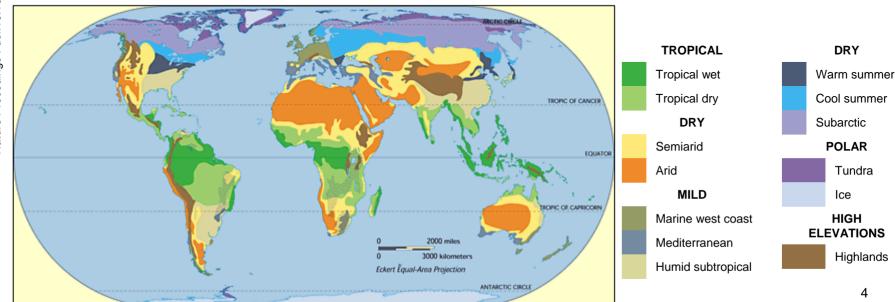


Definition "feeds back" on green chemistry, so necessarily includes components of this...

Sustainability: What is it? How is multidisciplinary environmental chemical research related?

- 1. Provide for the needs of the present
- Not diminish the ability of future generations to provide for themselves
 - Repeatable process with no negative environmental consequences (

- To work here, our group must (collectively) have broad academic backgrounds and collaborate with:
 - Biologists, biochemists, toxicologists, ...
 - Geographers, geologists, physicists, math/statistics ...
 - Economists, political scientists, ...

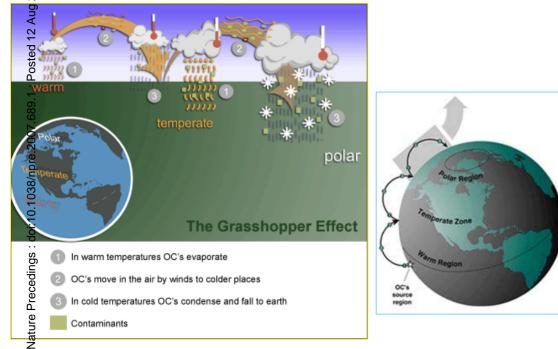

3.

Semi-Arid/Arid Regions

- Characterized by low (generally < 0.5 m) annual precipitation
- Also undergoing rapid population growth and development:

>250 million over next 5 years

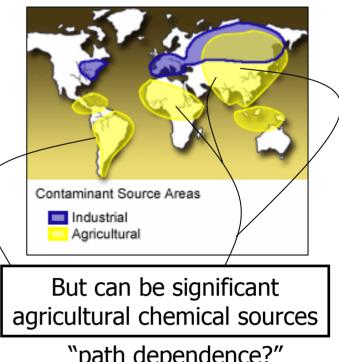
- Sub-Saharan Africa
- India
- Southern California
- South-Central British Columbia and Northern Alberta/NWT


Semi-Arid/Arid Regions and History

First great civilizations arose on banks of rivers in semi-arid/arid regions:

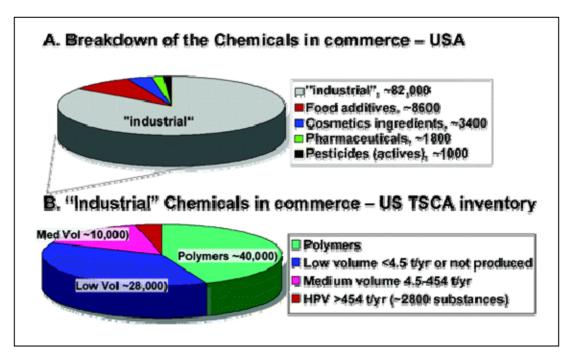
1038/npre.2007.689.1 : Posted 12 Aug 2007

1. the Nile in Egypt 2. the Tigris-Euphrates of Mesopotamia 3. the Indus in Pakistan 4. the Hwang Ho "Yellow" of China 5. Kamloops on the Thompson?? Black Sea MESOPOTAMIA Mediterranean Mongolia Sea China Yellow River


Semi-Arid/Arid Regions in Global Contaminant Cycling

2007

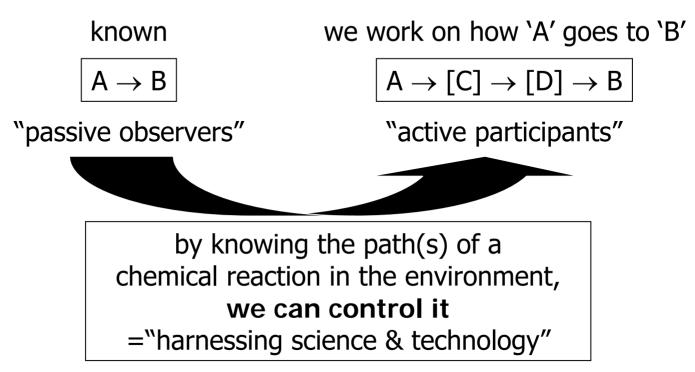
- Also operate as 'stop-over' points in the poleward movement of pollutants
 - Little known about how this 'semi-arid layover' affects the amount and 'signatures' of global contaminant fluxes


Are not major sources of global industrial contaminant inputs

"path dependence?" or, not a state function?

Which Chemicals Do We Study?

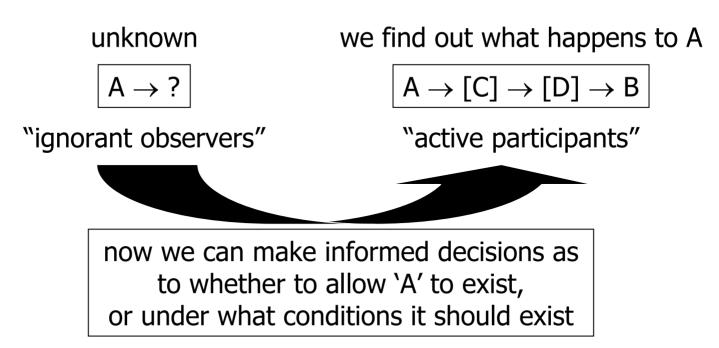
 Having decided to embark on our research program, which compounds do we invest in?



- Short answer: it's a bit of a guess ...
 - 'the most toxic we know', societal factors, industry trends, ...

What is our focus?

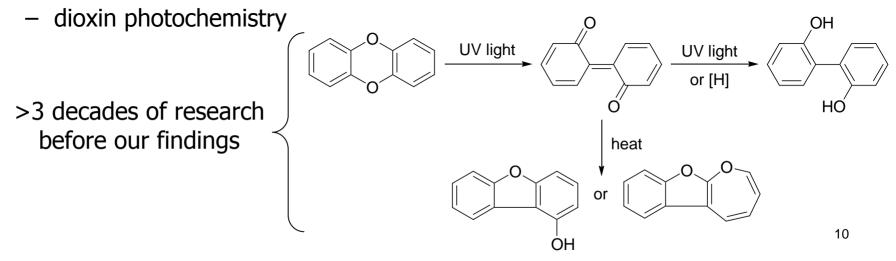
Chemical dynamics in environmental systems

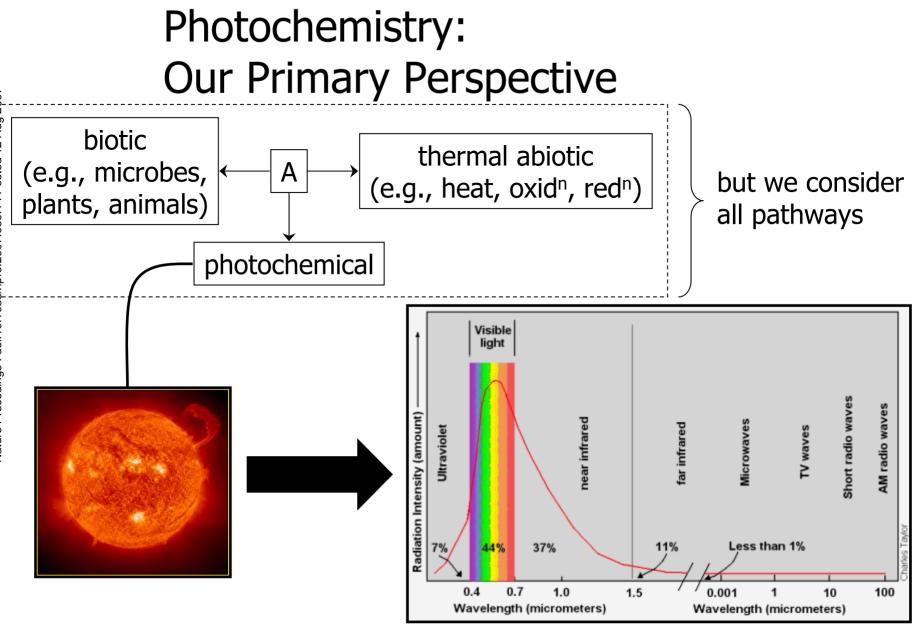

- We have two main goals:
 - 1. Understand the pathways by which "already known" overall chemical reactions occur in aquatic systems

What is our focus?

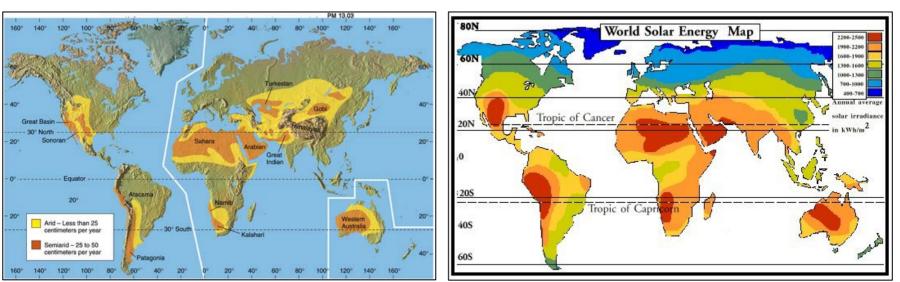

Chemical dynamics in environmental systems

2. Uncover new pathways for chemical transformations in aquatic systems

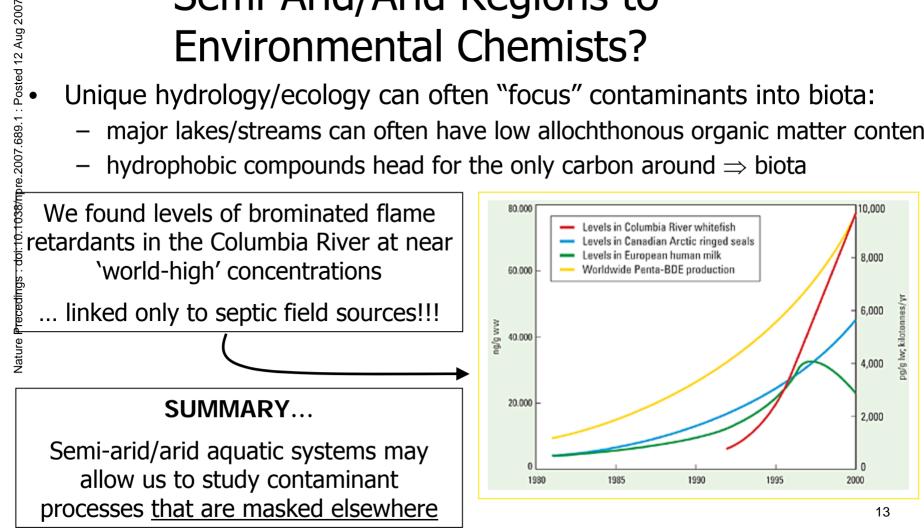

Nice Theory ... Give Practical Examples!


- . Understand the pathways by which "already known" overall chemical reactions occur in aquatic systems
 - PBDE (polybrominated diphenyl ether) debromination

lower brominated compounds found in environment, previously only speculation on how they came to be


Uncover new pathways for chemical transformations in aquatic systems

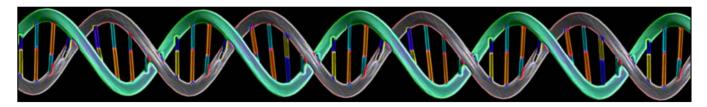
Semi-Arid/Arid Regions and Photochemical Research: A Good Fit?


Correlation between semi-arid landscapes and regions of high solar intensity

What Else is Interesting About Semi-Arid/Arid Regions to **Environmental Chemists?**

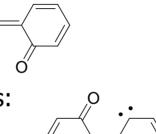
Unique hydrology/ecology can often "focus" contaminants into biota:

- major lakes/streams can often have low allochthonous organic matter content
- hydrophobic compounds head for the only carbon around \Rightarrow biota

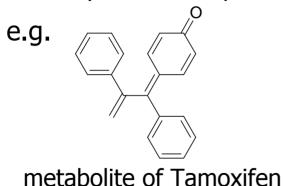


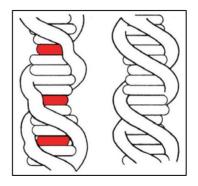
Reactive Intermediates in Environmental Systems: Why Care?

What is a reactive intermediate?


recall $A \rightarrow [C] \rightarrow [D] \rightarrow B$ [C] and [D] are reactive intermediates

- How long do they 'live'?
 - Practical boundaries: nanoseconds \rightarrow hours
 - Determined by their environment
- What do they react with?
 - Depends ...
 - We're interested in RI's that react with DNA and other biological materials

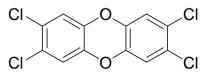

What Types of Reactive Intermediates?

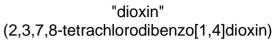

- We're currently focused on two major groups:
 - 1. Biphenylquinones:
 - 2. Quinone methide carbenes:

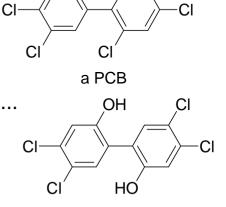
so we hypothesize that these RIs are DNA "intercalaters"

- Why these ones?
 - Structurally related to quinone methides \Rightarrow known to intercalate DNA

Where Do These RIs Come From?

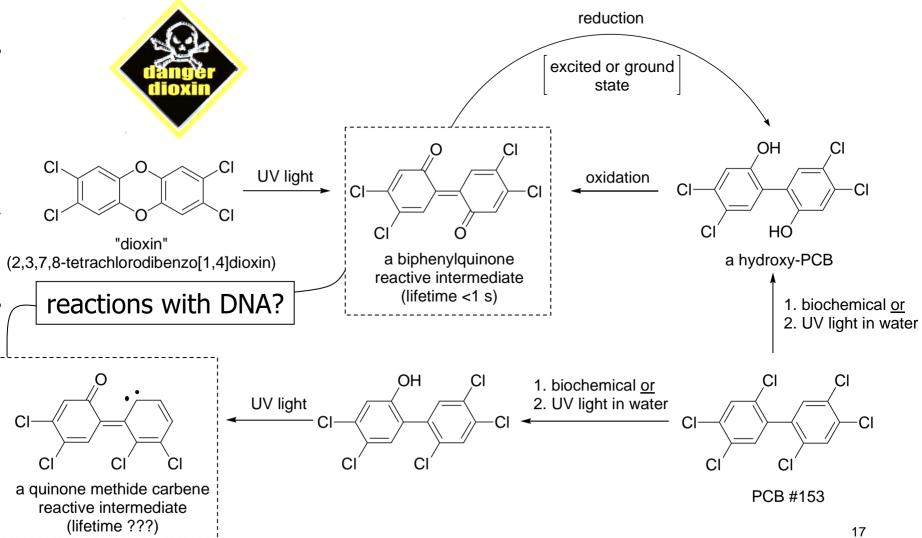

"Dioxins" and PCBs are two primary sources:


- 1. Dioxins:
 - Not produced intentionally
 - Byproducts of combustion sources and chlorination of organics
 - Very acutely toxic (LD₅₀ as low as 1 µg/kg body wgt.)
 - Much unknown about cause of long-term cancer risks
 - much \$\$ spent over past several decades...

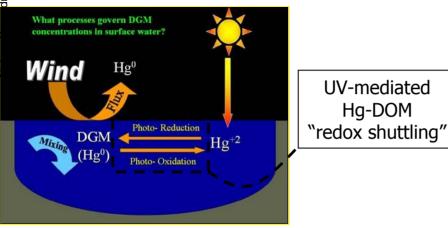


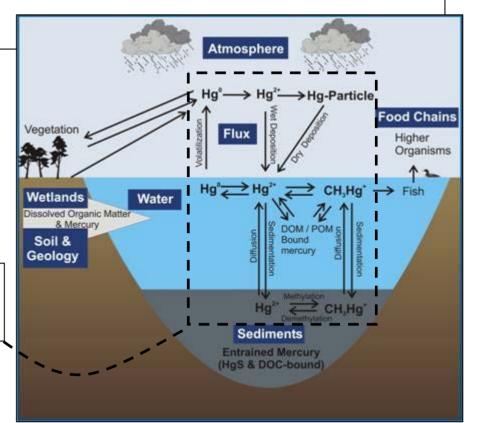
- 2. PCBs:
 - Were produced intentionally
 - Flame retardants, insulators, ...
 - Not acutely toxic
 - Long-term health effects at issue

 cancer?
 - Hydroxylated derivatives are known problems
 - endocrine disruptors, cancer?



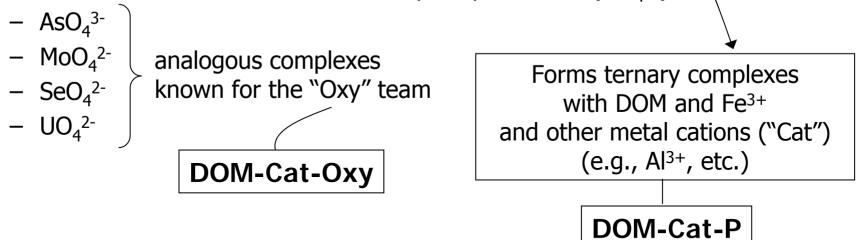
a hydroxy-PCB


The Dioxin-PCB-RI Connection



Biogeochemical Cycling of Toxic Metals: Role of Photochemistry?

- Photochemistry known to play a major role in the environmental cycling of 'cationic' heavy metals:
 - e.g., mercury, lead, etc.


Speciation and mobility of Hg greatly influenced by solar irradiation <u>and</u> dissolved organic matter (DOM)

The Information Gap: Photochemistry and the Metal Oxyanions

- Nothing known about photochemistry of 'oxyanion-formers' ("Oxy"):
 - e.g., arsenic, molybdenum, selenium, uranium, ...
- Have similar structures to the orthophosphate ion (PO_4^{3-}) :

 Bioavailability of P strongly influenced by photochemical release of PO₄³⁻ from DOM-Cat-P complexes (reduction of Fe³⁺ to Fe²⁺ via DOM-redox shuttle)

• does photochemical release of As, ... also govern bioavailability?

Thompson-Okanagan: The "Perfect Fit"

Shusway Lake almon Arm Enderby Silver Star Armstrong Park Swan-Lake Vernon Oligotrophic Kalamalka Lake Okanagan Wood Lake (low C, N, P)Lake Kelowna Ca-P pptⁿ Peachland

25 km

Nature Precedings:doi:10.1038/npre.2007.689.1:Posted 12 Aug 2007

Trans

Canada Trail

Summerland

BRITISH COLUMBIA Osoyoos

WASHINGTON

Skaha Lak

Oliver

Okanagan Jountain Park

Pentictor

Vaseux

Lake Osovoos L

> Okanagan River

why?

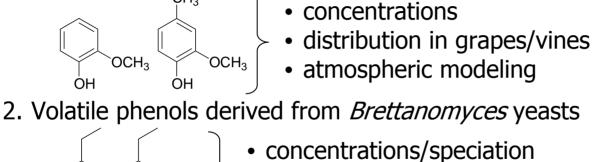
Mesotrophic Eutrophic (low/mid-C, mid-N+P) (mid-C, high-N+P) Autochthonous C Autochthonous C

want to probe the DOM-Cat-Oxy photochemistry across all trophic gradients, geochemical signatures, etc.

Ultra-Oligotrophic (very low C, N, P) Autochthonous C

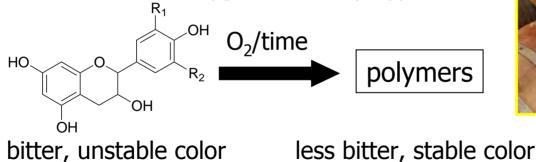
Humic (high C, low N+P) Allochthonous C

Saline


Wine Chemistry/Biochemistry of Phenolics

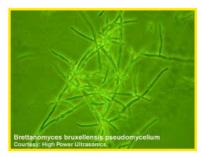
Three major projects:

CH₃


OCH₃

1. Phenols from grapes exposed to forest fire smoke

 abiotic/biotic controls on formation/degradation





Mining Geochemistry: Projects Worldwide

Nickel Plate (BC, Canada)

Mirador(Ecuador)

Canadian Diamonds

- Canadian diamond industry now a major world player:
 - >\$2 billion in annual revenue
 - >15% of world production (behind only Russia and Botswana)
 - Several new mines operating proposed
 - in the NWT, Nunavut, AB, SK, and ON
 - Capital development costs often ~\$1 billion



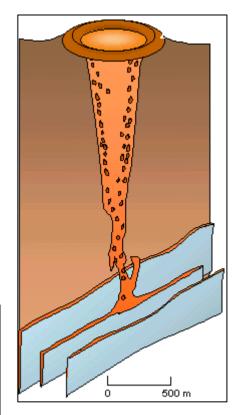
Diamond Mine Development: Geochemical/Water Quality Risks

Diamond mine development primarily open-pit (cheaper) —
Most mines have some underground component in late stages

Diavik

Land use changes

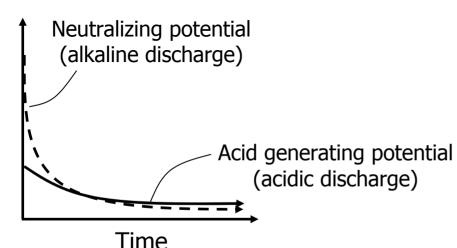
Ekati


- High sediment and metals loadings from waste rock and construction materials
- Saline inflows to open pits/underground
 - up to 1/20 as saline as seawater!

The Interesting Research Question: Risks from Kimberlite Waste?

Kimberlite hosts the diamonds:

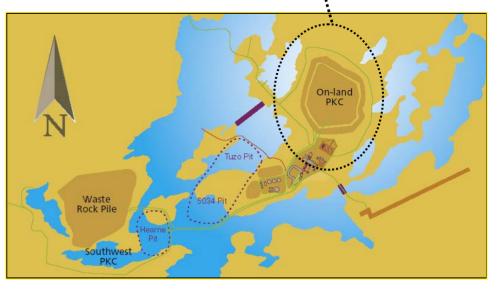
- hybrid, volatile-rich, potassic, ultrabasic igneous rock
- formed at >150 km depth
- transport diamonds to Earth's surface
- Diamond processing produces waste kimberlite:
 - referred to as PK (processed kimberlite)
 - crushed to mm and sub-mm silt/clay consistency
 - and lots of it \Rightarrow millions of tons...



Geochemistry of Canadian Kimberlites – Unreactive as Previously Thought?

Short answer is 'NO'

- Previous ideology:
 - Waste PK drainage with elevated metal loadings from some elements (e.g., Al, Ni, Co, Sr, Zn) and little potential for net acid generation
- Our findings in 2004-2005:
 - Highly saline drainage (up to 10,000 mg/L, or 1/4 the strength of seawater)
 - Long-term risk of acid rock drainage (ARD)!!

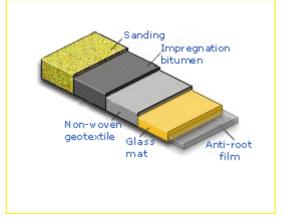


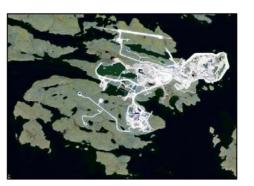
Implications? Proposed Work...~^{1 km², >30 m high}

Canadian mines have PK waste strategies that rely on 'infinite' <u>freezing of facilities</u> after closure:

- Global warming?
- Ekati already seeing evidence of ARD from kimberlite waste...

What would we do?


- Partner with industry on targeted research needs
- Use advanced laboratory- and field-based testing methods
 - Acid-base accounting (ABA), humidity cells, and leach columns
 - Optical microscopy, Rietveld XRD, and scanning electron microscopy
 - Field-scale leach pads and sample collection from operating mines
- Comparisons with South African and Russian raw/processed kimberlites?

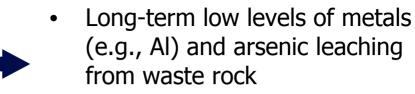

Other Issues Warranting Research

Long-term stability of bituminous liner for kimberlite tailings facilities?

- Nitrogen from blasting residues in the tailings
- Kimberlite leaches phosphate
- Carbon from the bitumen

microbial degradation?

Diavik (NWT, Canada)



Gahcho Kue (NWT, Canada)

Other Issues Warranting Research

Doris North (Nunavut, Canada)

 Mitigation strategies to allow "walk-away" closure options?

Nickel Plate (Barrick Gold)

Kupol (Bema Gold)

- Both sites have high risk of ARD from exposed pit walls at closure
- Sealing of pit walls?
 - Urethane?
 - Plasticized concretes?

materials - science/ nanotech

How Does Proposed Mining Research Program Fit Into Overall Canadian Research Strategy?

Currently have NSERC École Polytechnique-Université du Québec en Abitibi-Témiscamingue (UQAT) Industrial Research Chair in the "Environmental Management of Mining Wastes"

Industrial NSERC Polytechnique-UQAT Chair Environment and mine wastes management

Université du Québec en Abitibi-Témiscamingue

- The EP-UQAT chairs focused on geotechnical approaches:
 - e.g., covers for waste rock and tailings
- Additional work at UBC-Vancouver, Alberta, Saskatchewan, etc.
 - also focused on geotechnical and mining/civil engineering issues
- Room for a more multidisciplinary environmental focus from a chemical perspective...

Attracting Students to the Research Program: Part 1

Build on their passions and career goals:

- Not all students want to continue formal education past a B.Sc.
 - Short projects geared towards industrial applications
 - Enable life-long applied learning...
 - Emphasis on getting professional accreditation (P.Chem., P.Ag., P.Eng./P.Geo.)
- Some want to be career researchers or take leadership roles in industry (M.Sc./Ph.D./post-docs)
 - "Pure science" targeted projects to tackle fundamental environmental questions
 - Novel reactive intermediates (photochemically or thermally generated)
 - Biogeochemical cycling of metals/metalloids
 - New analytical methods
 - "Applied sciences" aimed at specifically dealing with the problems
 - Pollution prevention strategies (UV, microbial, membrane?)
 - Materials science and mining geochemistry ("varnish the pit")
 - Agricultural chemistry (e.g., micro-oxygenation of wines...)

Attracting Students to the Research Program: Part 2

- Some prefer certain 'branches' of chemistry:
 - Organic:
 - Synthesis of starting materials and degradation products
 - 'Trapping studies' of reactive intermediates with biologically relevant materials
 - Mechanistic photochemistry
 - Inorganic:
 - Biogeochemical cycling of metals/metalloids
 - Mining geochemistry
 - Analytical:
 - New methods for environmental analysis (GC-MS, LC-MS, etc.)
 - Use of analytical tools to estimate physico-chemical properties
 - Physical:
 - Equilibrium/kinetic partitioning constants and modeling
 - Photophysical studies (e.g., "sunscreening" effects of dissolved carbon)

Attracting Students to the Research Program: Part 3

- Local or global?
 - Mines in semi-arid/arid regions worldwide for those who like to travel
 - Projects close to home in the 'best place on Earth'

Acknowledgements

- NSERC
- Fisheries and Oceans Canada (DFO)
- Environment Canada (EC)
- British Columbia Wine Institute (BCWI)
 - now the BC Wine Grape Council (BCWGC)
- Investment Agriculture Foundation of British Columbia (IAFBC)