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Abstract 

Emphysema is a progressive lung disease characterised by loss of lung parenchyma 

with associated functional changes including decreased tissue elastance. Here we 

report β1 integrin is a novel target for tissue repair and regeneration in 

emphysema. We show a single dose of a monoclonal antibody against β1 integrin 

induced both functional and structural reversal of elastase-induced lung injury in 

vivo, and we found that similar matrix remodelling changes occurred in human 

lung tissue. We also identified a potential mechanism of action as this  allosteric 

modulation of β1 integrin inhibited elastase-induced caspase activation, F-actin 

aggregate formation and changes in cellular ATP levels. This was accompanied by 

maintenance of β1 integrin levels and inhibition of caveolin-1 phosphorylation. We 

propose that allosteric modulation of β1 integrin-mediated mechanosensing 

prevents cell death associated with lung injury and progressive emphysema, thus 

allowing cells to survive and for repair and regeneration to ensue.  
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Introduction 

Chronic Obstructive Pulmonary Disease (COPD) is characterised by poorly 

reversible and progressive airflow limitation associated with chronic bronchitis and 

emphysema (1). There are currently no effective treatments for emphysema to halt, slow 

or reverse the disease (1). Prospective treatments are focussed on the amelioration of the 

inflammation associated with the disease. The emphasis of our studies has been on the 

largely unexplored areas of repair and regeneration in emphysema.  

Recent paradigms proposed in emphysema pathogenesis include the interaction of 

apoptosis, oxidative stress and protease/antiprotease imbalance where inflammation is a 

consequence to cumulative cellular injury (2). The cell responses to such injuries are 

directed toward cell arrest, or, if the damage is beyond repair, toward cell death (3). 

This leads to the hypothesis that alveolar cell apoptosis is a critical determinant in the 

pathogenesis and progression of emphysema; a key observation documented both in 

human and animal models (4;5). Apoptosis may be induced by physical insult, ligation 

of receptors, or altered extracellular matrix (ECM) composition and/or attachment.  

The ECM interacts with integrins and modifies their function. Integrins are a family 

of heterodimeric cell surface receptors composed of α and β subunits. There is 

substantial molecular evidence for the role of integrins in tissue organisation due to their 

role in cell-ECM and cell-cell adhesion (6;7). These properties give integrins key roles 

in cell growth, differentiation, migration, and survival. Little is known about the role of 

β1 integrin specifically in the lung in health and disease, but interestingly, β1 integrin 

has been implicated in cardiac fibrosis (8) and epithelial proliferation (9).  
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We questioned whether, in emphysematous lung injury, β1 integrin function is 

involved in regulation of apoptosis of lung cells, with the corollary that modifiers of 

integrin function could be therapeutically beneficial. We have established an in vitro 

model system which replicated features of elastase-induced injury in vivo. Using this 

system, we identified a novel mechanism of β1 integrin-mediated repair in which 

allosteric modulation of the receptor inhibited caspase activation, F-actin aggregate 

formation and fluctuations in cellular ATP levels. This inhibition was obtained under 

conditions in which the total β1 expression was unchanged and clustering inhibited. 

Results 

We used several functional monoclonal antibodies, one of which, predicted to 

modify  β1 integrin allostery by binding to the hybrid domain of the receptor, had a 

marked therapeutic effect. This antibody, JB1a, binds to an epitope within the β1 

integrin’s hybrid domain irrespective of conformational state of the receptor. Targeting 

amino acid sequences in this region using antibodies have been reported to stabilise the 

physiological intermediate state of the receptor in a similar fashion as an allosteric 

antagonist (10).  

Allosteric modulation of β1 integrin increases ECM production 

We first investigated whether β1 integrin allosteric modulation altered the ECM, 

focussing on perlecan because of its known role in basement membrane integrity. In a 

co-culture of primary human alveolar epithelial cells with lung interstitial cells, the anti-

β1 integrin antibody JB1a caused an increase in perlecan (figure 1a); a change that 
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persisted for 24 hours and was partially sensitive to pre-treatment with cycloheximide 

and the non-specific MMPs activator aminophenylmercuric acetate (APMA). Treatment 

with neutralising anti-MMPs 7 and 9 antibodies failed to produce a similar increase in 

perlecan expression. The changes in perlecan in response to JB1a were accompanied by 

an increase in tissue inhibitors of metalloproteinase-1 (TIMP1) initially (figure 1b) and 

pro-MMP-9 subsequently (figure 1c). The results indicate that JB1a-induced changes in 

proteoglycan are not solely due to alteration in the MMP/TIMP balance. Similar 

responses in human lung explants and the alveolar cell line, NCI-H441, were also 

obtained and were specific to JB1a treatment (data not shown). As controls we 

demonstrated that the anti-β1 integrin antibody TS2/16, which binds the 207-218 amino 

acid sequence, and 6S6 clone, which binds a discontinuous unmapped epitope, had no 

effect on proteoglycans. 

Allosteric modulation of β1 integrin effects reversal of emphysematous injury in 

vivo.  

In order to investigate whether allosteric modulation of β1 integrin was of 

therapeutic value, mice were treated with the anti β1 integrin monoclonal antibody, 

JB1a, or vehicle, either once on day 14 (21 day group, 21d) or on days 21 and 28 (35 

day group, 35d) after elastase instillation and the achievement of maximal air space 

enlargement on the basis of a pilot time course study and previous reports (11). Both 

JB1a and 6S6 clones bind β1 integrin in mouse tissues (12). We have further confirmed 

that JB1a binds β1 integrin in murine tissue by immunoprecipitation followed by mass 

spectrometry and western analyses to ascertain the identity of the protein to which the 

JB1a clone binds in murine tissues (data not shown). An additional group receiving 
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elastase and the isotype control IgG1, MOPC21, was performed and showed no reversal 

of elastase-induced structural damage (data not shown). The clone 6S6 did not induce 

repair in vivo (data not shown). This clone is known to induce aggregation in addition to 

adhesion blocking. 

Allosteric modulation of β1 integrin effects functional reversal of emphysematous 

injury in vivo.  

As expected, there was a marked leftward shift in the respiratory pressure-volume 

curve (PV) in response to elastase, and there was a progressive increase in the PV shape 

exponential constant, k, particularly in the 35 day group (figure 2a-b). This shift was 

reversed by JB1a treatment (figure 2a-b, for 35 day data, 21 day data not shown). 

Furthermore, the effect of elastase treatment on the peak pressures and quasi-static 

elastance derived from the PV curves were significantly reversed by JB1a treatment 

(figures 2c and 2d).  

Allosteric modulation of β1 integrin effects structural reversal of emphysematous 

injury in vivo.  

Lung morphometry demonstrated that JB1a treatment also reversed elastase-induced 

air space enlargement (figures 3a and 3b). The explanation for the discrepancy between 

the functional and structural differences of the 21day and 35day treatment groups may 

reflect the presence of inflammation, noted histologically in the 21day but not 35 day 

group. The functional reversal was accompanied by reversal in elastase-induced damage 

to elastic fibres (data not shown).  
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To ascertain the effects of allosteric modulation of β1 integrin on lung structural 

repair, we assessed the number of contiguous airspaces using image analysis of 

histological sections from the 21day group (Figure 3c-e, Figure 4 for method). Elastase 

pre-treatment decreased the number of contiguous airspaces and was reversible by JB1a 

treatment (Figure 3c). In addition, elastase pre-treatment caused a decrease in the 

number of septal junctions which was partially reversed by JB1a (Figure 3d). No change 

was seen in the number of septal ends (Figure 3e).  

The effect of allosteric modulation of β1 integrin on alveolar septation 

Using 3D image reconstructions of expression pattern of TTF-1 and GATA-6 in 

21day group animals, two transcription factors which control septation in the 

developing lung (13;14) were investigated.  

GATA-6 expression demarcates alveolar boundaries, and is increased following 

elastase-induced injury  

Following elastase-induced air space enlargement in the lung in the 21day group, an 

increase in GATA-6 staining was observed in alveoli in comparison to vehicle-treated 

animals (Figure 5 ). JB1a treated animals exhibited a less pronounced GATA-6 staining 

in comparison to elastase-treated mice (Figure 5). However, the pattern of GATA-6 

expression displayed marked differences following antibody treatment in comparison to 

vehicle-treated mice, as revealed by 3D reconstructions of immunohistochemically-

labelled slides. Airspace enlargement was patchy in 21day JB1a-treated lungs (Figure 5) 

and these were rich in GATA-6 expressing structures, many of which were elongated 

relative to vehicle-treated controls whereas the non-emphysematous areas displayed 

punctate GATA-6 structures as in vehicle-treated lungs (Figure 5) and appeared 

hypercellular (Figure 5) relative to vehicle-treated controls (Figure 5). The patchy 
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emphysematous regions in JB1a treated lungs (Figure 5) resembled smooth saccular 

structures not unlike those observed in mouse neonatal lung immediately prior to 

formation of the secondary septa.  

Although varying levels of airspace enlargement (emphysema) were observed in 3D 

reconstructions of PPE-treated lung with occasional elongated GATA-6 expressing 

structures (Figure 5), no saccular structures typical of emphysematous regions of JB1a 

treated lungs were observed. 

Hyperplasia of TTF-1 expressing cells is a feature of β1 integrin antibody 

treatment in elastase-injured lung 

In both elastase-injured and vehicle-treated lungs, TTF-1 expression localised to 

either cells residing in the corner of the alveolus or at the free septal end (Figure 5 ). 3D 

reconstructions revealed that TTF-1 expressing cells often appeared in clusters in all 21 

day groups albeit the expression patterns in elastase-injured lungs (Figure 5) were 

similar to those of vehicle-treated lungs (Figure 5). By contrast, a marked hyperplasia of 

TTF-1 expressing cells was observed in antibody-treated lungs in both emphysematous 

(Figure 5) and non-emphysematous areas (Figure 5).   

By assessing the co-distribution of GATA-6 and TTF-1 in 3D reconstructions, it was 

determined that areas of TTF-1 cell hyperplasia (Figure 5) did not co-localise with 

GATA-6 expression but rather appeared adjacent. Thus, it would appear that in the lung, 

GATA-6 and TTF-1 have discrete expression domains.  

Allosteric modulation of β1 integrin reduced cell death after emphysematous 

injury in vivo.  
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Allosteric modulation of β1 integrin affects both mitosis (15) and cell death (16). 

Since cell death has been implicated in COPD progression (5;17), we evaluated the 

prevalence of TUNEL positive cells in mouse lung at days 21 and 35 following injury 

with or without JB1a treatment. There was a significant increase in TUNEL positive 

cells in the lung both at 21 days and 35 days post-elastase instillation: this was 

significantly reduced by subsequent treatment with JB1a (figures 6a and b).  

The cellular mechanism of reversal of emphysema using an in vitro system induced 

by β1 integrin allosteric modulation.  

Elastase can induce apoptosis of epithelial cells secondary to altered attachment 

(anoikis), accompanied by alteration in mitochondrial permeability and caspase 

activation (18). In a co-culture of adult human lung fibroblasts over-layered with NCI-

H441 cells, under cyclic mechanical stimulation, we show that elastase treatment caused 

a significant increase in caspase 3 and 7 activity, consistent with previous reports (19). 

Addition of JB1a to the cultures inhibited elastase-induced caspase activation in a 

similar fashion to the broad spectrum caspase inhibitor, ZVAD-fmk (figure 7a).  

Furthermore, we found that elastase treatment increased F-actin aggregates, changes 

inhibited by both JB1a and ZVAD-fmk (figure 7b). In time lapse studies and 3D 

reconstructions, we were able to demonstrate the increase in de novo F-actin formation 

during the course of elastase-induced injury which was followed by activation of 

caspase 3 and 7 (Figure 7c, for movies see supplementary online data). 

Formation of F-actin from monomeric G-actin is energy dependent and under ATP 

depletion conditions, there is a net conversion of monomeric G-actin to polymeric F-
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actin. We measured ATP levels in co-cultures in response to elastase and JB1a. Elastase 

reduced the levels of ATP, a response inhibited by JB1a (figure 8). Of note is also the 

amplitude of fluctuations in ATP level in response to elastase, a pattern attenuated by 

JB1a. 

β1 integrin-mediated adhesion has been shown to regulate cholesterol-rich 

membrane microdomain internalisation mediated by phospho-caveolin-1 (20). In co-

cultures, elastase significantly reduced cell membrane-associated β1 integrin levels 

(figure 9a) and induced phosphorylation of caveolin-1 within two hours; changes 

inhibited by JB1a (figure 9b-c).  

Discussion 

In this report we have investigated the role of β1 integrin in lung repair in 

emphysema. We questioned whether β1 integrin becomes allosterically activated in 

epithelial or mesenchymal cells, with the corollary that allosteric antagonists could be 

therapeutically beneficial. The key finding of our investigation was that by direct 

allosteric modulation of β1 integrin with a single dose of monoclonal antibody, both 

functional and structural reversal of elastase-induced tissue injury were induced in vivo. 

This effect appeared to be due to increase septation. We further demonstrate a potential 

cellular mechanism for this β1 integrin-mediated repair. In order to do so, we 

established an in vitro model system which replicated features of elastase-induced 

emphysema in vivo. We identified that allosteric modulation of β1 integrin inhibited 

caspase activation, F-actin aggregate formation and fluctuations in cellular ATP levels, 

under conditions in which the total β1 expression was changed and clustering inhibited. 
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Our findings support the notion that cytomechanics are important determinants of cell 

fate (21) and effect repair (22). 

So the intriguing question is what is the role of β1 integrin within the context of 

remodelling. Previous reports demonstrated that excision of β1 integrin gene in cardiac 

myocytes resulted in postnatal cardiac fibrosis, depressed cardiac function and increased 

myocardial glucose metabolism leading to spontaneous heart failure (8). Conditional 

deletion of β1 integrin in the intestinal epithelium of mice causes a significant increase 

in epithelial proliferation without affecting cell adhesion (23).  

It is important to note that although the knock-out or transgenic approaches have 

highlighted the crucial role for β1 integrin, they do not elucidate more subtle functions, 

such as those controlled by avidity regulation. Integrins in general, including β1 

integrin, are known to exhibit global structural rearrangement and exposure of ligand 

binding sites upon activation (24). The overall strength of cellular adhesiveness or 

avidity is governed by affinity and valency; the latter governed by the density of the 

receptor and its ligand on the cell surface as well as the spatial and geometric 

arrangement and movement (24;25). Overall, integrin have three possible conformations 

of the extracellular domain; a low affinity bent conformation, an extended conformation 

with closed headpiece representing an intermediate affinity state, and the ligand-binding 

induced high affinity extended form with an open headpiece (26). Current integrin 

antagonists fall into three classes; direct inhibitors of ligand binding to the I domain of 

the α chain, allosteric inhibitors of the I domain of the α chain and allosteric antagonists 

of α chain/β I-like domains (25).  
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The expression of activation epitopes of β1 integrin, and hence a fully extended 

active conformation, is present in asthmatic patients and correlates with airway hyper-

responsiveness (27). Full activation of β1 integrin is required for MMP activation (7), 

an important component during remodelling. However, a function modifying antibody 

which induces an allosteric modulation locking the receptor in an intermediary low 

affinity physiological state increased proliferation in human mammary epithelial cells 

(28).  

We also questioned how allosteric modulation promoted structural repair in 

emphysematous lungs. The two main events in lung morphogenesis are branching of the 

conducting airways and alveolar septation. In emphysema, the complexity of individual 

alveoli is lost. Additionally, it is known that the formation of new septa slows with 

advancing age, and it is feasible that emphysema in the adult may reflect a defect in 

septation. Alveolar septation is regulated by transcription factors such as GATA-6 and 

TTF-1 (29;30). Septation involves the subdivision of the large, primitive airspace via 

the budding of type II progenitor cells from the primary septa into the alveolar space. 

These new secondary septa may meet with one another before differentiating into the 

thin, squamous type I epithelial cells typical of mature septa (31;32). By virtue of their 

importance during alveolarisation in the postnatal lung, it is possible that the expression 

levels of GATA-6 and TTF-1 may highlight restrictions on new septa formation in adult 

lung. To address this issue, we employed image processing techniques including 3D 

reconstructions of TTF-1 and GATA-6 expression patterns and automated stereological 

counting methods as a means of assessing whether there is a relationship between the 

expression of these transcription factors and the incidence of septation in after elastse-

induced injury. We demonstrated that GATA-6 expression is increased following 

elastase-injury and associates with a decrease in the number of alveolar septal junctions 

and contiguous airspaces. In addition, allosteric modulation of β1 integrin induced a 

marked hyperplasia of TTF-1 expressing cells, and attenuated the GATA-6 upregulation 
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associated with elastase-injury. GATA-6 regulates differentiation of the alveolar type II 

cell, and may distinguish an intermediate cell type with characteristics of both the type 

II and type I cell (33). Our observation that GATA-6 is highly expressed in the 

thickened septa that surround enlarged airspaces in antibody-treated lungs is consistent 

with this possibility, and may reflect epithelial cells in the process of differentiating 

from type II to type I cells. However, it is additionally possible that the existence of 

these thick, cable-like cells highlights a possible failure of septal cells to differentiate 

into thin, type I cells in emphysematous areas. It has been recently suggested that newly 

transdifferentiated cells in the lung are more prone to cell death and may be a 

mechanism for limiting physiologic repair after injury (34). Notwithstanding this, it is 

noteworthy that in all instances GATA-6 was expressed in only a portion of alveolar 

epithelial cells, and that these were not connected with one another.  

Analysis of TTF-1 in vehicle-treated lungs revealed that TTF-1 was expressed in 

alveolar corner cells and cells of the free septal ends. The former are most likely type II 

epithelial cells whereas the latter may reflect type II cells in the process of 

transdifferentiating into myofibroblasts (34-36). Epithelial-mesenchymal transitions are 

a feature of the alveolus and it is feasible that the type II cell may migrate to a free 

septal end whereby it differentiates into a myofibroblast. The myofibroblast, committed 

to ECM deposition and tissue repair, may present as a considerable boon to a 

remodelling alveolus. 3D reconstructions revealed that TTF-1 expression patterns in 

elastase-injured lungs were similar to those of vehicle-treated lungs. By contrast, the 

number of TTF-1 expressing cells increased following antibody treatment and 3D 

reconstructions revealed a marked hyperplasia of TTF-1 expressing cells in both 

emphysematous and repaired regions. These findings suggest that modulating β1 

integrin function allows septation to proceed in damaged lungs by altering the pool of 

GATA-6 and TTF-1 expressing cells.  
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On the basis of these findings and the in vivo TUNEL data, we investigated the 

cellular mechanism of epithelial-mesenchymal response to emphysematous injury in 

vitro. Butler and colleagues reported that ligand or antibody-induced activation and/or 

clustering of integrins promotes actin polymerisation in a dose-dependent manner (19). 

Changes in cytomechanics is a determinant of cell fate (21;37). Evidence that F-actin 

aggregates are involved in cellular injury leading to death comes from studies where 

cisplatin-induced loss of cell-cell contacts was associated with the increased formation 

of F-actin stress fibres and subsequently apoptosis (38). Changes in actin dynamics also 

affect mitochondrial function and release of reactive oxygen species eliciting death 

signals (reviewed in detail in (39)). Retro-retinoids (a metabolite of retinol) trigger 

apoptosis mediated by F-actin aggregate formation (40). Indeed, several serine proteases 

including elastase have been shown to decrease mitochondrial membrane potential, 

release of cytochrome c to the cytosol, and cleavage of caspases-9 and -3 in both lung 

fibroblasts and bronchial epithelial cells (18;41;42). Lipopolysaccharide has been 

reported to increase integrin function and cell-matrix adhesion, leading to impaired 

enterocyte migration in necrotizing enterocolitis (18;43). 

We have found that in our in vitro epithelial mesenchymal cultures, elastase induced 

caspase activation. The effect was accompanied by an increase in F-actin. The live cell 

imaging provides a stronger evidence of de novo increase in the formation of actin 

aggregates since the phalloidin staining fails to demonstrate the newly formed 

aggregate. We used an experimental strategy in which cells were loaded with labelled 

monomeric actin just prior to the onset of injury. Furthermore, we were able to show 

caspase activation in real-time. Both, elastase-induced caspase activation and actin 

aggregate formation were inhibited by the allosteric modulation of β1 integrin. Under 

ATP depletion conditions, there is a net conversion of monomeric G-actin to polymeric 

F-actin resulting from an alteration in the ratio of ATP-G-actin and ADP-G-actin with 

the resultant F-actin forming dispersed aggregates. Actin polymerisation consumes 50% 
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of total cellular ATP. We chose to characterise ATP dynamic changes in vitro following 

elastase induced-injury. We found not only the levels were reduced after prolonged 

exposure but preceding this reduction, abnormal fluctuations were detected at the onset 

of exposure to elastase. These responses were inhibited by allosteric modulation of β1 

integrin. Recent report has indicated that the addition of ATP to lung epithelial cells 

inhibited injury (44).   

Recent reports have shown that the administration of β4 thymosin, an actin-

sequestering protein, promoted cardiac repair after ischemia-reperfusion injury (22). 

Additionally, gene disruption of caveolin-1, which is known to be involved in integrin 

clustering and activation, results in pulmonary fibrosis and impairment in liver 

regeneration after partial hepatectomy which was reversible by treatment with glucose 

(45), indicating the probable importance of energy preservation. Furthermore, Bhatia et 

al. proposed that abnormal integrin-cytoskeletal interaction restricts the mobility of 

integrin receptors and results in defective integrin function (46), and that the Abi1 

pathway is required for Bcr-Abl to stimulate actin cytoskeleton remodelling, integrin 

clustering and cell adhesion (47). Interestingly, previous reports have shown that β1 

integrin-mediated adhesion regulate cholesterol-rich membrane microdomain 

internalisation mediated by phospho-caveolin-1 (48) and caveolar endocytosis can be 

blocked by small interfering RNA knockdown of β1 integrin (49). Our findings that 

allosteric modulation inhibits elastase-induced caveolin phosphorylation reinforces the 

idea that, in injury, abnormal integrin activation, clustering and the resulting changes in 

the cytoskeleton could be key to cellular damage in emphysema. 

In conclusion, we propose that elastase-induced progressive damage is partly due to 

anoikis resulting from an increase in cytoskeletal tension caused by increased actin 

polymerisation, rendering the cell rigid and susceptible to physiological forces. 
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More importantly, we have shown for the first time the potential therapeutic effect of 

allosteric modulation of β1 integrin in tissue repair in emphysema. We suggest a 

paradigm for the pathogenesis and treatment of emphysema based upon β1 integrin and 

its effect on cell survival, mediated by alteration of adhesion and cytoskeletal tethering 

and energy preservation. We propose that an initial insult changes the mechanical 

tethering of cells to ECM, perhaps due to ECM degradation (50) thus changing cell 

mechanosensing, leading to ATP depletion and eventual cell death.  
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Figure Legends 

 
Figure 1. The effect of allosteric modulation of β1 integrin using JB1a on 

metalloproteinases and tissue inhibitors of metalloproteinases (MMPs) in primary 

human lung alveolar/mesenchymal co-cultures. a. shows the effect of JB1a on MMP1 

levels and activity at two different time points when added alone and in the presence of 

APMA, cyloheximide (CXH), neutralising antibodies against MMPs 7 and 9 and broad 

spectrum MMP inhibitor. b. demonstrates the effects JB1a on tissue inhibitor of 

metalloproteinase-1 (TIMP1). c. shows the effect of JB1a on the levels of inactive 

MMP9 (pro-MMP9). The experiment was repeated 3 times using cells derived from 

different patients. 

Figure 2. The effect of porcine pancreatic elastase (PPE) on respiratory function in 

mice and its reversal using the anti-β1 integrin antibody JB1a. a. the effect of PPE on 

mean respiratory pressure-volume curves in mice 35 days (35d) after instillation and its 

reversal by JB1a (JB) (Vehicle=Veh). b. Reversal of PPE-induced increase in the 

constant k by JB1a treatment at different time points post injury. JB1a treatment once or 

twice following PPE-induced injury reversed the time-dependent effect on (c) peak 

respiratory pressure from the pressure-volume curves and (d) the quasi-static elastase 

derived from a. n=5-6 in 35d groups and n=10 in 21d groups. 

Figure 3. The effect of PPE on lung structure and its reversal by JB1a treatment. a. 

Haematoxylin and eosin staining of lung sections from veh, PPE and JB instilled mice 

from 21d and 35d groups. b. Mean linear intercept (MLI) measurements from the 21d 

and 35d groups. Automated stereological estimates of the number of (c) contiguous 

airspaces, (d) septal junctions, and (e) septal ends from the 21 day group (n=5). 
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Figure 4. Automated image processing of the septal junctions, septal ends, and 

contiguous airspaces in the pulmonary acinus in the 21 day group. (1a-c) RGB images 

from JB (a) PPE (b), and veh lungs (c) were preprocessed with morphological filters (d-

f) to aid automated edge detection and to remove noise. (g-i) A 200mm x 200mm frame 

was superimposed over preprocessed images. Only events completely inside the frame 

or intersecting the two inclusion edges (South-West boundaries) are considered and any 

event intersecting the exclusion lines (North-East boundaries) is not sampled. The 

number of contiguous airspaces (g-i, red), septal branches (j-l, white dots), and free 

septal ends (m-o, white dots) was determined in reticulin-stained sections of lung.   

Figure 5. The effect of allosteric modulation of β1 integrin GATA-6 and TTF-1 

expression after PPE-induced. a. 3D reconstructions of PPE-injured lung in the 21 day 

group of lung parenchyma (blue, Column I), and the expression patterns of GATA-6 

(yellow) and TTF-1 (red, Column II). Column III: An overlay of parenchyma and 

expression patterns of GATA-6 and TTF-1. Column IV: Detail of (Column I) at higher 

magnification. Column V: Detail of (Column II) at higher magnification.  

Figure 6. a. TUNEL staining of lung tissue sections from 21d and 35d group 

demonstrating the effect of JB1a treatment after PPE-induced lung injury. b. 

quantification of TUNEL positive cells following PPE-induced injury and JB1a 

treatment. n=5-6 per group.  

Figure 7. The effects of PPE-induced injury and JB1a treatment on (a) capase levels, 

(b) F-actin and (c) 3D reconstruction of images of human lung co-culture after injury 

using elastase (b, 0.6 U/ml) demonstrating the formation of F-actin (blue) and caspase 
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3/7 activation (red). (Ganglioside GM1 for the cell membrane-green) and its inhibition 

by JB1a (c, 2μg/ml). Vehicle (a) 

Figure 8. The effects of PPE-induced injury and JB1a treatment on ATP levels in vitro 

using human lung co-culture during with mechanical stretch for 6 hours.  

Figure 9. The effects of PPE-induced injury alone and in the presence of JB1a 

treatment on (b) β1 integrin (c) caveolin-1 and (d) phosphorylated caveolin-1 levels in 

membrane fractions. Representative blots from n=4. Loading controlled by total amount 

of protein before gradient separation.  

Supplementary Material. Time-lapse movies showing the effect of vehicle (a) elastase 

(b, 0.6 U/ml) on F-actin (blue) and caspase 3/7 activation (red) in vitro using human 

lung co-culture during mechanical stretch and its inhibition by JB1a (c, 2 μg/ml). Syto 

16-green. A figure of the select frames from the recording is provided for the initial 

submission. 
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Methods. 

Human lung explant culture and human lung cell isolation Human lung tissue 

specimens were obtained (and approved by NHS ethics committee and with consent) 

and cultured as either 20-30 mg explant strips or cells. Alveolar epithelial cells were 

isolated as described before (Elbert et. al., 1999 and Murphy et al., 1999). The cells 

were then plated onto Transwells of 0.3um pore size (Sigma) and maintained in culture 

using 1:1 DMEM/F12:Small airway growth media (Cambrex BioScience Wokingham 

Ltd.) containing 1% fetal calf serum. The remaining tissue was treated with DMEM 

containing 40% fetal calf serum to inactivate the digestive enzymes and then washed 

using HEPES buffer. To isolate fibroblasts and smooth muscle cell populations, the 

tissue was then incubated in DMEM containing 1mg/ml collagenase, 0.5% trypsin and 

200U/g DNAsI and maintained at 5% in an CO2 incubator. The cell suspension was 

washed as above and cells seeded on multiwell culture plates and maintained in DMEM 

containing 10% fetal calf serum.  

Cultures were subjected to serum starving overnight in a medium containing 0.1% fetal 

calf serum. Some collagenase digested plated cells were co-cultured with isolated 

alveolar epithelial cells Transwells at the time of commencing the starvation.  

Functional modifying antibody against β1 integrin (Chemicon, clone JB1a, IgG1 ) was 

added to the cultures at a concentration of 1.44 and 0.48 μg/ml. The β1 integrin 

stimulatory antibody clone TS2/16 (IgG1) was also added at 0.9 μg/ml for 1 hour to 

demonstrate the specificity of the JB1a action. After antibody addition to the cells in 

culture, the medium was aspirated and the cell layer rinsed twice with ice-cold PBS. 

The media was aspirated and preserved after the addition of protease inhibitors at –
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80oC. In additional experiments, the effect of protein synthesis inhibition on β1 integrin 

mediated proteoglycan increase was tested by pretreating the human lung derived cells 

with 25μM cycloheximide. The effect of non-specific activation of metalloproteinases 

on β1 integrin mediated proteoglycan increase was tested by pretreating the human lung 

derived cells with 0.5M APMA (aminophenylmercuric acetate). To investigate the 

involvement of selected metalloproteinases in initiating the response observed with β1 

integrin, specific neutralising antibodies for metalloproteinase-7 (1:1000, goat IgG, 

R&D systems) and metalloproteinase-9 (1:1000 of clone 6-6B, mouse IgG1, Oncogene 

Research Products) were used.  A broad spectrum inhibitor of metalloproteinases was 

also used at 2.3nM (metalloproteinase inhibitor III, Calbiochem). 

SDS-PAGE was also used to separate the denatured proteoglycan and proteins from the 

tissue concentrated tissue culture supernatants. Perlecan antibody immunoreactive to 

non-degraded forms of perlecan was used (7B5, mouse IgG1, Zymed Laboratories). 

metalloproteinase-1 (clone 41-1E5, IgG2a against amino acids 332-350 of human 

metalloproteinase-1), inactive metalloproteinase-9 (clone 7-11C, mouse IgG1) and 

TIMP1 (clone 7-6C1, mouse IgG1) antibodies were all from Oncogene Research 

Products. 

PPE-induced air space enlargement model in mice. Female C57/BL6 mice (6-8 

weeks old) were instilled intra-tracheally with porcine pancreatic elastase as detailed 

before (11). All procedures were approved by the UK Home Office and the Institutional 

Ethics Committee. At day 14 or 21, mice were treated intra-tracheally with the anti-

integrin antibody JB1a at 3mg/kg in sterile PBS. The dose chosen is equivalent to the 

dose of clinically used antibodies against α4β1 integrin (Miller DH, et al. 2003). 
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Control group was instilled initially with PBS and at day 14 or 21 with PBS. For the 

group treated at day 14, the animals were terminated at day 21 as follows: The animals 

were anaesthetised using sodium pentobarbitone (45mg/kg), paralysed using 

pancuronium bromide (0.8mg/kg) and tracheostomised and ventilated using a small 

animal ventilator (Flexivent, SCIREQ, Montreal) at 8ml/kg and a rate of 150 

breaths/minute and positive end expiratory pressures (PEEP) of 3.5 cmH2O. 

The pressure-volume curve was obtained during inflation and deflation in a stepwise 

manner by applying volume perturbation incrementally during 16 seconds. The pressure 

signal was recorded and the pressure-volume (P-V) curve calculated from the plateau of 

each step. The constant K was obtained using the Salazar-Knowles equation and reflects 

the curvature of the upper portion of the deflation P-V curve. Quasi-static elastance 

reflects the static elastic recoil pressure of the lungs at a given lung volume. It was 

obtained by calculating the slope of the linear part of P-V curve. 

After the measurements, the animals were sacrificed and bronchoalveolar lavage 

collected.  

Histochemistry. The lungs were removed and formalin-fixed at a pressure of 25cm 

H2O, paraffin-embedded and sectioned at 4μm thickness. Sagittal sections were used 

from each animal for histological and immunohistochemical assessment of damage, and 

morphometric analysis (mean linear intercept, Lm). Images from 10 fields per section 

were digitised using Image-Pro plus (version 5.1) and micropublisher 3.3 RTV camera 

connected to a Zeiss axioskope with 10x objective. The field size was 0.83 μm x 0.63 

μm. Mean linear intercept was calculated from each field (horizontal and vertical) by 

dividing the length of the line by the number of alveolar intercepts. 
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Gordon and Sweet’s Reticulin stain was performed as a method of visualising collagen 

distribution in both injured and vehicle-treated lung. Briefly, sections were oxidised 

with 0.5% potassium permanganate, bleached with 1% oxalic acid, and treated with 

2.5% ammonium iron (III) sulphate and a 5% silver nitrate/1.5% sodium hydroxide 

solution prior to reduction with 10% unbuffered formaldehyde. Visualisation of 

reticulin fibres was accomplished via treatment with 0.1% sodium chloroaurate and 3% 

sodium thiosulphate solutions. Sections were counterstained with neutral red prior to 

mounting.  

Image Processing and Stereological Analysis. Colour images of reticulin-stained 

sections were subjected to automated image processing methods developed in-house 

using Image Pro Plus (Media Cybernetics). Briefly, a greyscale image representing the 

green channel (which shows the highest differentiation from background) was obtained 

by splitting the RGB channels. Sobel edge detection operators, dilation-erosion and 

erosion-dilation algorithms were used to enhance the image and to remove ‘salt and 

pepper’ noise. An area of interest measuring 200μm x 200μm was overlaid over a 

digitally-captured image of a reticulin-stained section and only events completely inside 

the frame or intersecting the two inclusion edges of the frame’s left and lower aspects 

(South-West) were included. Events intersecting the right and upper aspects (North-

East) of the frame were excluded, as were blood vessels other than the capillaries of the 

alveolus. These stereological methods are similar to those described previously (Ochs et 

al., 2004). 2D objects that were counted using this method included alveolar septal 

junctions, free septal ends, and contiguous airspaces. A total of 15 non-overlapping 

frames were included per section as this was sufficient to achieve a running mean. The 

mean number of events on sections obtained from vehicle-treated (n=5), PPE-treated 
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(n=5), and JB1a-treated (n=5) mice were scored as a function of area (counts per 200μm 

x 200μm field of view). 

Immunohistochemistry. Paraffin-embedded were deparaffinised, reydrated, and 

washed in water. For TTF-1 (clone 8G7G3/1, DAKO) immunohistochemistry, a 

microwave antigen retrieval method was used (3 x 5 minute 700W microwave 

treatments, in 10mM citrate buffer, pH 6.0). GATA-6 (H-92 rabbit polyclonal IgG, 

Santa Cruz) immunohistochemistry required proteinase K pretreatment (20μg/ml, 20 

minutes, 37°C). Endogenous peroxidase activity was blocked with 3% hydrogen 

peroxide in water. Endogenous biotin was blocked with Avidin/Biotin Blocking Kit 

(Vector). Sections were blocked with either M.O.M IgG Blocking Reagent (Vector) or 

DAKO Protein Block Serum-Free (used for rabbit polyclonal antibodies) prior to 

incubation with primary antibody (diluted 1:50) overnight at 4°C. The following day, 

sections were washed 5 times in TBST (Tris-Buffered Saline pH 7.6, with 0.1% Tween 

20) prior to incubation with biotinylated secondary antibody (30 minutes) and DAKO 

StreptABComplex/HRP (20 minutes). Immunohistochemical staining was visualised 

using DAB chromogen, a haematoxylin counterstain was used for sections other than 

those used to generate 3D reconstructions. Sections were washed, dehydrated and 

mounted in DPX. Negative controls omitted primary antibody step. 

3D Reconstructions. 10 consecutive 3μm sections were used to generate 3D 

reconstructions of tissue parenchyma. Odd (1, 3, 5…) sections were labelled with 

GATA-6 whilst even (2, 4, 6…) sections were labelled with TTF-1. Digitally captured 

images were obtained with a QCapture Pro imaging system and a brightfield 

microscope (Zeiss Axioskop, 20x objective lens) and were patched into larger images 
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(3x3), which were interleaved to form their original order in an image stack prior to 

alignment using Adobe Photoshop 7.0.1. TIFF images were cropped, resized 

(6000x6000 pixels) and image stacks were imported into Amira 4.0 for isosurface 

rendering, which was accomplished at threshold values sufficient to detect either 

immunohistochemical label or tissue parenchyma. Isosurfaces were coloured either red 

(TTF-1), blue (parenchyma) or yellow (GATA-6) for enhanced visualisation. 

Apoptosis measurement. Terminal Deoxyribonucleotidyl Transferase (TdT)-Mediated 

dUTP Nick End Labelling (TUNEL) was assessed in sections using the Red 

ApopTagTM Kit (Chemicon). Data for the quantification of positively stained apoptotic 

nuclei was acquired using the x40 oil objective of a Zeiss 510 Axiovert confocal 

microscope system (Carl Zeiss Ltd, UK). The stage-tiling utility was employed for the 

collection of 4x4 tiled images, equivalent to a total area of  0.921mm x 0.921mm, 

imaged from a lung section of ~8mm x 8mm (two tiles each  from right and left lobes). 

Images of mainly alveolar tissue were constructed. The images were then converted to 

8-bits grey scale and ImageJ was used to count total number of cells. TUNEL positive 

cells were counted manually. 

Human mesenchyme and epithelial cell co-culture in vitro. Adult human lung 

fibroblasts (CCD-8Lu) were seeded onto collagen I coated BioFlex 6 well plates at 0.5 

X 106/well. The following day, NCI-H441 were seeded on top of the fibroblasts at the 

same density. NCI-H441 cells possesses alveolar type II cell characteristics. Cells were 

starved with media containing 0.1% FCS. The plates were subjected to stretching at 0-

5%, 0-10% or 2-10% sinusoidal stretch at 1Hz for 6 hours. Control plates on plastic or 

bioflex plates without stretch were also included. PPE was added at 0.06 or 0.3U/ml 
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alone or in combination with JB1a (2μg/ml) and ZVAD-fmk at 10 or 20 μM. At the end 

of the 6 hour period, the media was aspirated and caspase 3 activity assayed using 

Caspase-GloTM 3/7 (Promega) according to the manufacturers’ instructions. Separate 

experiments were performed at up to 6 hours of stretching where the cells were fixed 

with 4% paraformaldehyde and stained using Alexa-fluor phalloidin and TO-PRO3 

(Molecular Probes). Images were aquired using Zeiss Axioskope using a x63 water 

achroplan objective and analysed using LSM 5 Image software. 

In a separate set of experiments lung fibroblasts and epithelial cells were seeded onto 96 

multi-well plates as described above. The cells were starved in media containing 0.1% 

FCS then in DMEM-glucose-free with 0.1% FCS for 45 minutes before treating with (i) 

PPE at 0.3U/ml alone or (ii) PPE preceded by JB1a (2μg/ml). At the end of the 

experiment, ATP levels were measured using a bioluminescent ATP kit (Perkin Elmer). 

Time-lapse studies. Cells were cultured as described in methods at 50,000 

cell/membrane onto collagen I Bioflex membranes using silicone gaskets of 10mm 

diameter. Cells were starved with media contaning 0.1% FCS and Syto 16 (Molecular 

Probes). The media was removed and Alexa-Fluor 647 labelled G-actin from rabbit 

(100μg/membrane) was loaded using Influx (Molecular Probes). The cells were loaded 

with PhiPhiLux-G2D2 for visualisation of caspase activation (OncoImmune). The 

membrane was then mounted onto the StageFlexer (FlexCell), placed on the stage of an 

upright Leica-TCS-NT confocal microscope system (Leica Microsystems GmbH, 

Germany) and subjected to 2-10% cyclic stretch at 1 Hz for up to 6 hours. Images were 

collected simultaneously from 3 channels at 1 minute intervals, using the x10 lens. The 

resulting timelapse movies were collated and analysed with Imaris software (Bitplane 
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AG, Switzerland). At various time points during the study, the membrane was held 

static while serial optical sections were acquired. The three fluorescent channels 

supplemented by the collection of the brightfield channel image. 

Three-dimensional confocal microspy. NCI-H441 cells and human lung fibroblasts 

were cultured as described above onto collagen I-coated glass coverslips at 20,000 cells 

within an area of 5mm in diameter. The media was removed and Alexa-Fluor 647 

labelled G-actin (30μg/coverslip) from rabbit was loaded using Influx (Molecular 

Probes). The cells were loaded with PhiPhiLux-G2D2 for visualisation of caspase 

activation (OncoImmune) and FL-ganglioside 1 (GM1, Molecular probes) to visualise 

the plasma membrane. Images were collected through 4 separate channels (GM1: λ = 

488 ,caspase λ = 568, actin: λ = 647 and brightfield) using x63 water lens and Zeiss 

LSM510 CLSM microscope. The resulting images were analysed with Imaris software 

(Bitplane AG, Switzerland). Three-dimensional images were reconstructed. 

Caveolin-1 extraction and analyses. NCI-H441 cells and human lung fibroblasts were 

cultured as described above. Media was changed prior to the experiment to 0.1% FCS 

containing media. Vehicle, PPE (0.3U/ml) or PPE in the presence of JB1a (2 μg/ml) 

containing media was added onto the cells for 2 hours. Cells were extracted using lysis 

buffer composed of 50 mM Tris-HCl (pH 7.5), 1 mM EDTA, 1 mM Na3VO4 

containing 1% Triton X-100 and protease inhibitors (Roche) for 1 hour at 4oC and 

sheared repeatedly using 22G needle on ice. Total protein was quantified using 

Bradford’s assay method (BioRad). The extracts (1ml) were mixed with equal volume 

of 85% w/v sucrose in extraction buffer without Triton x-100 and layered with 2ml of 

35% w/v sucrose in buffer and then 1 ml of 5% w/v sucrose in buffer. The gradients 
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were prepared at 4oC. The gradients were then centrifuged at 38,000 rpm for 16 hours at 

4oC. Fraction were collected from the top (0.4 ml fractions) and separated onto 13% 

SDS-PAGE and transferred onto nitrocellulose membranes then probed for β1 integrin 

using JB1a (Chemicon), caveolin-1 (BD Biosciences), phosphorylated caveolin-1 (Cell 

Biosciences) and talin (Sigma-Aldrich), and developed with HRP-conjugated secondary 

antibodies using the ECL-plus chemiluminescence system (Amersham Biosciences). 
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Supplementary Figure. An image which highlights the peak activation of caspase (red) 

following elastase-induced injury in vitro, and its presence in high actin aggregate-

containing (blue) cell populations. 
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