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Abstract 

Objective 

We have assessed the utility of a pre-publication validation policy in reducing the 

probability of publishing false positive research findings.  

Study design and setting 

The large database of the Sylvia Lawry Centre for Multiple Sclerosis Research was split 

in two parts: one for hypothesis generation and a validation part for confirmation of 

selected results. We present case studies from 5 finalized projects that have used the 

validation policy and results from a simulation study. 

Results 

In one project, the “relapse and disability” project as described in section II (example 3), 

findings could not be confirmed in the validation part of the database. The simulation 

study showed that the percentage of false positive findings can exceed 20% depending 

on variable selection.  

Conclusion 

We conclude that the validation policy has prevented the publication of at least one 

research finding that could not be validated in an independent data set (and probably 

would have been a “true” false-positive finding) over the past three years, and has led to 

improved data analysis, statistical programming, and selection of hypotheses. The 

advantages outweigh the lost statistical power inherent in the process.  

 

188 words 
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I Introduction  

The validity of published research findings is receiving appropriate scrutiny [1-4]. 

Erroneous conclusions are commonplace [1-4]. Analyses performed on datasets prior to 

focus on specific hypotheses or models do hazard the generation of hypotheses filtered 

through unwitting bias. Hypothesis-generating experiments are necessary but multiple 

model selection may not be capable of identifying valid conclusions. Pre-publication 

validation aims to reduce the number of false positive findings. 

 

Multiple sclerosis is a disease of the nervous system with highly variable outcomes. 

Relapses are characteristic and average 0.5/year [5] in the relapsing phase. Half of 

patients need aid for walking or are worse after 15 years [6]. In clinical trials annualized 

relapse rates and disease progression (as measured by the Expanded Disability Status 

Scale or EDSS) have been used as endpoints. Magnetic resonance imaging (MRI) of 

the brain detects inflammatory activity and change in brain volume. MRI-related 

endpoints include new gadolinium-enhancing lesions and total brain lesion volume (T2 

weighted image) but remain unvalidated surrogates for long-term outcome.  

 

Several medications reduce relapse rate and/or MRI lesions but are uncertain 

suppressors of disease progression. The Sylvia Lawry Centre for MS Research (SLC) 

was developed to improve outcome-based trial research in MS.  We describe the 

background of the SLC, its framework for statistical validation and studies demonstrating 

the Centre’s policies.  

 

The validation policy of the Sylvia Lawry Centre for MS Research 

 

The validation policy of the SLCMSR prescribes a random split into two parts for 

hypothesis generation and validation, a variant of independent replication by split 

sample validation. 

 

Training and validation parts contain 40% and 50% of the data respectively. When new 

databases are added, the remaining 10% of data is used for mixing purposes. The 

training part is available to researchers/statisticians for exploration and investigation and 
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important findings are selected for validation. Approved proposals go to the “data-

trustee”, who evaluates the validation dataset, and summarizes the result for the 

publication/validation committee, the analyst and collaborative researchers. Results 

obtained from the training part of the database, annotated by confirmation information 

are published [7]. 

 

Proactive application of this process applied to SLC projects coming to the final 

validation step is described [8-11]. A common goal in chronic diseases is to find 

predictors of an outcome variable of interest among larger sets of potential explanatory 

variables. These variables can be continuous, binary or count variables and lead in turn 

to linear, logistic, or Poisson regression models. After identification of significant 

predictors in the training portion of the database in a multiple regression model, we 

attempted to confirm these in the validation part of the database. By “successful 

validation” we meant that the same predictors remained significant on a 5% level in a 

multiple regression model in the closed part (see, e.g., Altman). 

 

A simulation study assessed the influence of variable selection on the overall 

significance level. In practice, the distribution of key variables and number of patients in 

the specific subgroups are determined within the validation step to ensure 

correspondence of the datasets. 

 

II Methods 

 

a) Case studies and examples 

 

Example 1 

Relevant to the use of T2 lesion volume as a surrogate marker for disability, we 

investigated the relationship between this MRI outcome variable, and a set of 

continuous, ordinal and binary clinical determinants as potential explanatory variables. 

Unexpectedly, a non-linear plateauing relationship between the ordinal predictor 

“Expanded Disability Status Scale” (EDSS), and the MRI outcome for a set of 1312 
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placebo patients with MS from randomized clinical trials was found (Fig. 1, see [8] for 

details on the variables and results of this project).  

 

 

Figure 1. Plateauing relationship between EDSS and T2 lesion volume in the open part 
of the SLC database [8] 
 

We validated this finding in steps, the key step being whether the EDSS predictor led to 

improvement (p<0.05) of model fit when entered in a nonlinear (as compared to linear) 

fashion. We then calculated Spearman’s correlation coefficient over the range of EDSS 

values and considered the validation of the plateauing relationship successful, if the 

overall correlation with EDSS was positive and significant (p<0.05), and if the correlation 

coefficient for EDSS >4 was not significantly different from zero, (95% confidence 

interval included zero). The size of the validation sample corresponding to this project 

contained 848 patients. The distributions with respect to the key variables were similar in 

training and validation sets, indicating comparability and suitability for validation. All 

predictors assessed were validated in the multiple regression fits. The major finding of a 

plateauing relationship between EDSS and transformed T2 lesion burden was 

unequivocally confirmed – T2 lesion volume does not seem to be a good surrogate for 

disability in MS patients.  

 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
07

.4
33

.1
 : 

P
os

te
d 

12
 J

ul
 2

00
7



 6 

Example 2 

The development of gadolinium enhancing lesions is often used in phase II clinical MS 

trials to evaluate the potential efficacy of new drugs. The presence of these lesions is 

interpreted as an indicator of acute disease activity in MS patients (see [9]). Predictors of 

enhancement status could be useful for the selection of patients for MRI monitored trials.  

 

In a multiple regression model with clinical and demographic predictors (“disease 

course”, “age at disease onset” and “disease duration”, see [9] for details), the MRI 

predictor “T2 lesion burden” significantly improved the prediction of enhancement status 

in the open part of the SLC database. We then defined the validation to be successful if 

the values of several statistics in the closed part of the database, most importantly the 

positive predictive value, are above the lower endpoints of approximate one-sided 95% 

prediction (99% for “excellent” validation) intervals for the anticipated value in the 

validation part of the database. We found that the increase in positive predictive value 

over the a priori chance of enhancement in the closed database when T2 lesion burden 

was included as predictor exceeded the prespecified level defining “excellent” validation.  

 

Example 3 

We investigated within trials whether relapses contribute to the development of 

subsequent sustained increase of impairment and disability in patients with MS as 

measured by the EDSS (see [10] for details). On-study relapse data was collected in so-

called “sacrifice” periods of 80, 120, 160, or 200 days. Confirmed increase in EDSS was 

defined as at least one point rise confirmed by another visit at least 135 days later. In 

two comparison groups with two different cut-point splits: a) 0 versus at least 1 relapse 

during the sacrifice period, and b) 0 or 1 relapse versus at least 2 relapses during the 

sacrifice period, analysis was based on a two-sided log rank test to determine whether 

time to confirmed rise in EDSS is the same for two groups. Results are displayed in 

terms of hazard ratio and 95% confidence interval. There were 256 relapsing remitting 

MS patients in the training database for this analysis. Combining the four different 

sacrifice periods, and the two different cutpoint splits results in eight tests. The test with 

the smallest p-value was the one for 120 days sacrifice period and cut-point split 0 

versus at least 1 relapse during sacrifice period (likelihood ratio test p-value was 0.0012, 
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estimated hazard ratio = 2.26, 95% confidence interval [1.36; 3.75]). Such a result – if 

validated – would support the assumption that reduction of relapses slows down the 

accumulation of disability.  

 

In the 320 patients available in the validation sample comparable to the training sample 

for distribution of the key variables (p-value of the one-sided Wald test was 0.109) 

findings could not be validated. We concluded that “there is no consistent effect of on-

study relapses on the subsequent development of sustained EDSS score increase 

during a typical clinical study observation period”. 

 

b) Simulation studies and validation cost 

In simulation studies to determine the effect of variable selection on the significance 

level of global F-tests in multiple regression analysis (data not shown), observed error 

rates were found to exceed 20% for both forward and backward selection. With only one 

or two variables in the model, forward selection has more flexibility to identify 

“significant” predictors, leading to more false positive findings than backward selection. 

Forward selection and backward selection produce comparable error rates with 3 or 

more variables. With six predictors in the regression model, forward selection maintains 

the significance level of 5%. 

 

To assess the “cost” of splitting the database we used a one-sided, one-sample Gauss-

test situation with 900 observations, (400 would be available in the training database, 

and 500 for confirmation).  
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Figure 2 displays the power for four different validation scenarios plotted against shift in 
percent of standard deviation: the first for the complete dataset on a 5% significance 
level; the second for testing on the validation stage only (N=500 patients) on 5% 
significance level; the third for testing on the training set (N=400 patients) with 10% and 
on the validation set (N=500) with 5%; and the fourth scenario for testing on a 5% 
significance level in the training data (N=400 patients) and in the validation data (N=500 
patients). There is a sacrifice in power using this validation scheme. 
 

 

III Results  

Since the SLCMSR validation policy was put in place, ten larger scientific projects have 

been finalized using the training portion of the database. In five of them, the findings of 

the training data were selected for confirmation in the validation part of the database. In 

four of these, training dataset findings were replicated in the validation dataset. In one, 

the “relapse and disability” project as described in section II (example 3), findings could 

not be confirmed in the closed portion of the database – without the validation policy this 

would have lead to publication of a false-positive finding. The other five projects were 

finalized without result validation. In each case the authors, committee members and 

journal reviewers agreed that the findings obtained in the training set were sufficient for 
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answering the question at hand. In some cases the hypothesis had clearly been 

formulated before touching the training set. In another example only a rough estimate of 

the upper bound of the mortality rate was proposed to decide about the feasibility of a 

trial design [12,13].  

 

IV Discussion 

 

Exploratory data analysis typically starts with data description entailing comparisons, 

and often generating statistical hypotheses. Ideally, however, all hypotheses should be 

formulated prior to descriptive analysis (or even before data collection). In practice data 

description leads to new questions, to investigation of new relationships by formulating 

hypotheses, and then formal testing. Descriptive statistical analyses can substantially 

endanger the validity of formal statistical inference by destroying the probabilistic basis 

of inferential statistics. 

 

Substantial statistical methodology has been dedicated to overcoming this problem 

including replication, cross-validation, limits for family-wise error rates and Bonferroni-

adjustment for multiple testing [14, 15]. These methods could be applied to control the 

overall significance level for a type I error, but it is usually impossible to quantitate prior 

“data dredging” [15-17]. 

 

Significance levels can be controlled by dividing the data set into separate parts prior to 

data analysis. Hastie et al. [16], for example, recommend randomly splitting the 

database into 1) a training set, 2) a validation set, and 3) a test set to evaluate the 

predictive accuracy of the model. Van Houwelingen and le Cessie [18] suggest using 

one part of the database to select the covariates, a second to estimate the regression 

coefficients, and a third to assess the prediction rule. 

 

The SLCMSR hosts a large database on multiple sclerosis patients from clinical trials 

and natural history studies. Data donors do not influence the publication process, and 

SLCMSR follows strict rules guaranteeing non-identifiability of individual data sets. 
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Anonymization and splitting of the trials make it impossible for SLCMSR and 

collaborative researchers to identify patients and trials with individual data donors.  

 

Splitting the large SLC database into two parts yields one training part for hypothesis 

generation, and a second for validation purposes. Only large databases are suitable for 

splitting, because in secondary analyses patient numbers drop considerably. The 

validation part of the database is reserved for confirmation of single pre-specified 

hypotheses. The major finding of one otherwise finalized project could not be validated, 

and the publication of a false-positive finding was prevented. We believe that having this 

validation policy leads to a more sensible and thorough data analysis, programming and 

code checking, and selection of hypotheses to validate. 

 

Simulations of the true significance level under the null hypothesis of global F-tests after 

forward and backward variable selection showed (N=746) that the significance level can 

easily go beyond 20% when only a small number of predictor variables are included in 

the model.  

 

The price to pay for splitting the database is a reduction in statistical power. We 

simulated power levels similar to a typical study at the SLC, and we demonstrated that 

the shift in percent of standard deviation for a one-sided Gauss-test detected with 80% 

power needs to be nearly double the size with result validation than without result 

validation. In other words, statistically significant findings need to be detected twice: in 

the training sample and in the validation sample. However, the price of publishing false 

positive research findings in a field with many false dawns justifies validation efforts. 

 

Is the proposed method of result validation generally suitable for research questions or 

databases? We think that properly designed randomized controlled clinical trials do not 

need result validation. Even when additional hypotheses are to be tested at the end of 

the trial, Bonferroni adjustments can be sufficient to control the significance level. 

Epidemiological studies, however, are not scientific experiments, and, the study design 

is less structured than in clinical trials, and often lacking randomization. In addition false-

positive findings from large-scale studies cannot be disproved since other studies are 
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 11 

typically smaller and do not have the power to do so. When a large group of researchers 

works on a scientific field using the same database, result validation is a powerful way to 

reduce the probability of publishing false positive findings.  

 

Ioannidis [1] states that there is no “gold-standard” for validation in general, but that the 

percentage of published false positive findings can be reduced by better-powered 

studies, i.e. large-scale studies, low-bias meta-analyses, registration of studies and 

networking of data collections – similar to randomized controlled trials, and a split-team 

approach. 

 

Words 2342 
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