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Whole Genome Association Studies (WGASs)  offer a systematic strategy to assess the 

influence of common (minor allele frequency ≥ 5%) genetic variants on phenotypes 

(Risch and Merikangas 1996). Most variants tested will not be associated to any 

particular phenotype, but may produce false positive association signals, masking 

potential true positives. Forecasting these null-distribution of false-positives is important 

as a practical guideline for interpreting genomewide association scans, akin to classical 

work (Lander and Kruglyak 1995) directing linkage analysis. The concrete question is, 

given an association signal of a certain nominal p-value, how unlikely is it in a WGAS?  

 

Naïve, Bonferroni (Sidak 1967) corrections for standard testing of multiple, independent 

hypotheses are overconservative in this context: local correlation among these tests 

means that effectively there are considerably less independent tests than Single 

Nucleotide Polymorphisms (SNPs) examined. Theoretical (Tavare et al. 1997) and 

simulation studies (Lin et al. 2004) relate the number of such tests to the number of 

historical recombinations, estimated to be much smaller. Yet, no previous systematic 

evaluation of the testing burden.is available.  

 

Such an evaluation is particularly critical to the standard, two step design for WGASs 

(Thomas et al. 2004; Skol et al. 2006) that does not lend itself to significance evaluation 

by permuting phenotypic labels. In this design common variation is first screened for 

association signals using cost-effective typing of hundreds of thousands of SNPs (Barrett 

and Cardon 2006; Pe'er et al. 2006). Next, regions of potentially positive signals are 

followed-up with denser, saturated SNP sets, in order to validate, refine and strengthen 

the associations. As well worked out in linkage analysis (Kruglyak and Daly 1998), this 

directed increase in marker density around positives alters the null signal distribution 

with the practical effect of mimicking a WGAS of all 6-7 million common SNPs. Hence, 

permuting data with only the smaller, typed set of SNPs underestimates expected false 

positives. 

 

The testing burden associated with examining all common alleles does lend itself to  

empirical evaluation from data, thanks to the Human Haplotype Map (HapMap) 
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ENCODE regions (Altshuler et al. 2005). These regions offer near-complete description 

of common SNPs (Pe'er et al. 2006), and allow simulating association studies with no 

true signal (de Bakker et al. 2005). More specifically, we generate the genetic data for a 

simulated (case or control) individual at an ENCODE region by randomly pairing two of 

the phased chromosomes available from HapMap trios for that region. We repeat this to 

obtain 2000 individuals randomly labeled cases or controls, mimicking a null study. The 

maximal-scoring difference in allele frequencies between “cases” and “controls” across 

all SNPs in such a region is evaluated for significance, and the p-value distribution is 

estimated by repeating the simulation 107 times. This distribution observes more 

significant p-values then theoretically distributed p-values for a single test statistic due to 

multiple testing. We repeat this evaluation procedure for the trio-base HapMap 

populations (CEU and YRI), for all ENCODE regions, and for different cohort sizes. The 

per-region testing burden is the factor by which significance is exaggerated. As 

ENCODE regions represent the genomewide average recombination and mutation rates, 

we can extrapolate to estimate the genomewide testing burden in such an association 

study. 

Figure 1a reports the extrapolated number of independent tests required to mimic the 

expectation of the best p-value in a WGAS, i.e. the empirical testing burden. For all 

common SNPs, we find the testing burden to be considerably lower than available 

bounds1, at half million tests in the HapMap European (CEU) samples. This means, for 

instance, that the probability of a WGAS in a European population that examines all 

common alleles to exhibit, by random chance alone (no true genetic effect), a result with 

p-value<10-7 is smaller than 0.05. In the HapMap African (YRI) samples, that have more 

SNPs, and less linkage disequilibrium, testing burden is higher at one million. Since 

                                                 
1 The formula Log(k)× Ne×R in  

Tavare S, Balding DJ, Griffiths RC, Donnelly P (1997) Inferring coalescence times from DNA sequence 

data. Genetics 145(2): 505-518. esti,mates 1.1million common recombinations in Europeans, where: 

   - k is the number of coalescence branches considered the reciprocal of the minor allele frequency 

threshold for sites considered, i.e.  k = 20 for common SNPs. 

   - Ne is the effective population size , ~10,000 in Europeans 

   - R is the average number of recombination events per meiosis,  36 [8]  
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ENCODE data are still incomplete w.r.t. rare variants, they provide only a lower bound 

on their associated testing burden, showing it to be more than 2-fold higher than for 

common alleles. 

 

ENCODE regions deliberately represent a variety of genomic characteistics (The 

International HapMap Consortium 2003), and also testing burden varies greatly from 

region to region. Yet, testing burden is not strongly correlated with neither the actual 

number of common SNPs in the particular region, nor the regionwide recombination rate 

(Fig 1b).  

 

It is important to realize that testing burden is not constant across p-values: association 

signals with more extreme p-values involve more burden (Fig 1c). This is because the 

power of such signals to distinguish better between partially correlated tests, resulting in 

more testing burden. With weaker signals, correlated tests are undistinguishable, hence 

testing burden is reduced. This means the best practice for correcting a nominal p-value 

for the entire genome is to use a lookup-table, rather than a fixed correction factor. 

Fortunately, the first stage of a WGAS is designed for a true positive to reach only a 

moderate p-value, expected to be achieved be numerous sites (Skol et al. 2006). Such a 

stage would require less correction for multiple testing than the final stage aiming at 

genomewide significance. Finally, studies of larger size show more burden of multiple 

testing (Supplementary fig 1). We hypothesize that this effect is also related to the 

increased power of larger studies to distinguish highly- (but not perfectly-) correlated 

causal variants. 

These and other results offer considrable understanding of the distribution of null signals 

in idealized association studies. Practical association studies may exhibit more extreme p-

values then predicted by our study even without real effects due to demographical and 

genotyping technology differences between cases and controls that create artifactual hits.  

Furthermore only the accumulating experience in such studies will reveal more about the 

complementary parameters describing the alternative hypothesis, which speak to the 

number and strength of true signals. Together, the distribution of null and true signals 

will enable rigorous decision whether a given result indicates true association. 
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Figure 1 legend: A. The empirical testing burden (y-axis) for all common SNPs in 

different ENCODE regions in the HapMap panels of Yorubans from Ibadan, Nigeria 

(YRI; green) and CEPH individuals of European ancestry fro Utah (CEU; orange). 

Testing burden is evaluated as the reciprocal of the best nominal p-value expected in a 

null study of 1000 cases, 1000 controls extrapolate to the entire genome, as extrapolated 

from ENCODE. B. The testing burden (y-axis) of each region as a function of the 

region’s length in centiMorgans (x-axis, left) or of the number of SNPs tested (x,axix, 

right) C. The testing burden (y-axis) of all (smooth) or common (tick-marked) SNPs in a 

typical ENCODE region (ENr213), as a function of the empirically evaluated p-value (x-

axis).  

 
Supplementary Figure 1 legend: 
Testing burden (y-axis) extrapolated to the entire genome from simulated sturies different 
numbers of cases/controls (x-axis) in YRI (green) and CEU (orange) data from 
ENCODE, averaged across all regions. 
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