SEGUID and GCG Checksum: New
checksum algorithms for
Biopython

Sebastian Bassi
sbassi(@clubdelarazon.org
Virginia Gonzalez
vgonzalez(@ung.edu.ar

Universidad Nacional de Quilmes, Argentina

What is a checksum?

“A checksum 1s a form of redundancy check, a simple way to protect the
integrity of data by detecting errors in data that are sent through space
(telecommunications) or time (storage). It works by adding up the basic
components of a message, typically the asserted bits, and storing the
resulting value. Anyone can later perform the same operation on the data,
compare the result to the authentic checksum, and (assuming that the sums
match) conclude that the message was probably not corrupted.”

Source: Wikipedia contributors. Checksum. Wikipedia, The Free
Encyclopedia. June 7, 2007, 20:30 UTC. Available at:

http://en.wikipedia.org/w/index.php?title=Checksumé&oldid=136678031.
Accessed June 24, 2007.

Why using a checksum for
biological sequences?

There are different reasons:

Data integrity validation: To be sure you are dealing with
the same sequence after extensive manipulation or
retrieving from multiples sources.

genes, proteins and splicing variants: To give an
unique ID of each sequence.

Most used checksum algorithms In
Biology

CRC64: Proteins in Uniprot.
GCG-Checksum: DNA and Protein sequences 1n
the file format of GCG and compatible programs.

SEGUID: “A SEquence Globally Unique
[Dentifier” Proteome Database

CRC64

Used by Uniprot.
Provides “only” 1.8x10" different possibilities.
There are collisions:

>immunoglobulin lambda light chain variable region [Homo sapiens]
QSALTQPASVSGSPGQSITISCTGTSSDVGSYNLVSWYQQHPGKAPKLMIYEGSKRPSGVSNRF
SGSKSGNTASLTISGLQAEDEADYYCSSYAGSST VFGGGTKLTVL

>immunoglobulin lambda light chain variable region [Homo sapiens]
QSALTQPASVSGSPGQSITISCTGTSSDVGSYNLVSWYQQHPGKAPKLMIYEGSKRPSGVSNRF
SGSKSGNTASLTISGLQAEDEADYYCCSYAGSST ' VFGGGTKLTVL

Both sequences share the same CRC64 checksum: 44CAAD88706CC153

Already implented in BioPerl and BioPython

GCG-Checksum

Used by GCG software suite (and compatible
programs).

Very low number of combinations: 10°.

Used by several sequence file formats.

BioPerl implementation available.

Introducing BioPython implementation (based on
BioPerl version).

GCG-Checksum: Python Code

Main program

def gcg(seq):
import sys
if sys.version_info >= (2,4):
import gcg24
return gcg24.gcg(seq)
else:
#slower version for Python 2.3
index = checksum = 0
if type(seq)!=type("aa"):
seq=seq.tostring().upper()
else:
seq=seq.upper()
for char in seq.upper():
index += 1
checksum += index * ord(char)
if index == 57: index =0
return checksum % 10000

gcg24.py

def gcg(seq):
from itertools import cycle, izip
return sum(n*ord(c.upper()) for (n,c) in\
1zip(cycle(range(1,58)),seq)) % 10000

gcg24.py is a module that is imported
from the main program when Python
version is =2.4. It can't be included in
main program because this code
can't be parsed under Python 2.3

SEGUID: The problem

There are many sequence databases. Each one
has its own ID and is not easy to make cross-
references between them.

Database Name Identifier Syntax

NCBI: (Release 152)

GenBank gb|accession|locus

EMBL Data Library emb |accession]| locus
DDBJ, DNA Database of Japan dbj|accession|locus
NBRF PIR pir| |entry

Protein Research Foundation prf| |name

SWISS-PROT splaccession|entry name
Brookhaven Protein Data Bank pdb|entry|chain

Patents pat|country|number
GenInfo Backbone Id bbs | number

General database identifier gnl |database|identifier
NCBI Reference Sequence ref|accession|locus

Local Sequence identifier lcl|identifier

SEGUID: Proposed solution

“We propose the use of a unique sequence i1dentifier (SEGUID) that 1s
derived from the primary sequence itself and easily generated by
any user. SEGUIDs are resilient to changes 1n public and private
databases as they remain constant throughout the lifetime of a given
protein sequence. The SEGUID Proteome Database
(http://bioinformatics.anl.gov/seguid/) provides aliases for the
annotated entries available from several public databases and can be
downloaded or generated easily at remote sites. SEGUIDs have been
used 1n our proteomics laboratory for years and proved to be useful
Integrating mass spectrometry results, two-dimensional gel
electrophoresis data, and bioinformatics information”™

Source: SEGUID: Overview.
http://bioinformatics.anl.gov/seguid/overview.aspx
For more information: http://dx.doi.org/10.1002/pmic.200600032

SEGUID: Code

def seguid(seq):
try:
import hashlib
m = hashlib.shal()
except:
import sha
m = sha.new()
import base64
if type(seq)!=type("aa"):
seq=seq.tostring().upper()
else:
seq=seq.upper()
m.update(seq)
try:
return base64.b64encode(m.digest()).rstrip("=")
except:
import 0s
return base64.encodestring(m.digest())\
xreplace(os.linesep,"").rstrip("=")

SEGUID Application: Check for matchs
from two FASTA files.

from Bio import SeqlO

segl=set()

handle=open("FILE1","r")

for record in SeqlO.parse(handle,"fasta"):
segl.add(seqguid(record.seq))

handle.close()

seg2=set()

handle=open("FILE2","r")

for record in SeqlO.parse(handle,"fasta"):
seg2.add(seqguid(record.seq))

handle.close()

shared_elements=seql.intersection(seq2)

handle=open("FILE1","r")

for record in SeqlO.parse(handle,"fasta"):
if sequid(record.seq) in shared_elements:

print record.id
handle.close()

Code availability

All code 1n this presentation was submitted to Biopython project
(Bug #2323), and may be available in next Biopython version
(1.447)

Biopython 1s freely available from under a very

http://bugzilla.open-bio.org/show_bug.cgi?id=2323
http://www.biopython.org/
http://www.biopython.org/DIST/LICENSE

