
www.incf.org 

1st INCF Workshop 

on

Large-scale Modeling  
of the Nervous System

December 12–13, 2006 - Stockholm, Sweden

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

07
.2

62
.1

 : 
P

os
te

d 
27

 J
un

 2
00

7



[    �    ]

1st INCF Workshop on Large-scale Modeling of the Nervous System 

December 12–13, 2006

International Neuroinformatics Coordinating Facility Secretariat

Stockholm, Sweden

Authors

Mikael Djurfeldt and Anders Lansner

Scientific Organizer

Anders Lansner, KTH, Stockholm, Sweden

Workshop Participants

David Beeman, University of Colorado at Boulder, Boulder, CO, USA
Andrew Davison, UNIC, Gif-sur-Yvette, France
Markus Diesmann, RIKEN Brain Science Institute, Wako, Japan
Rodney Douglas, UNI–ETH, Zürich, Switzerland
Jens Eberhard, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
Frederick Harris, University of Nevada, Reno, NV, USA
Michael Hines, Yale University, New Haven, CT, USA
Thomas Natschläger, Software Competence Center Hagenberg, Hagenberg, Austria
Charles Peck, IBM Research Division, Yorktown Heights, NY, USA
Shiro Usui, RIKEN Brain Science Institute, Wako, Japan
Gabriel Wittum, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
Rapporteur: Mikael Djurfeldt, KTH, Stockholm, Sweden

Supported by the INCF Central Fund and the Swedish Foundation for Strategic Research

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

07
.2

62
.1

 : 
P

os
te

d 
27

 J
un

 2
00

7



[    �    ]

Contents

1 Executive Summary 5

2 Introduction 6

3 Concepts 6

3.1 What do we mean by “model”? 6

3.2 Model complexity 6

3.3 Abstraction and level of description 7

3.4 Detailed versus abstract models 7

3.5 Realism 7

4 Directions in modeling of the nervous system - scientific needs 8

4.1 The role of the model in current neuroscience 8

4.2 Top-down and bottom-up approaches 8

4.3 Explicitness 9

4.4 Large-scale models 9

4.5 Simulation versus emulation 11

4.6 Upscaling 12

5 Software for large-scale simulations 12

5.1 Important properties of simulator software 12

5.2 Diversity of simulators 13

5.3 Software interoperability 13

5.4 Accuracy of simulation 15

5.5 Preprocessing and specification of large-scale network models 15

5.6 Declarative versus procedural model description 16

5.7 Postprocessing and visualization 16

6 Infrastructure 17

6.1 The role of the INCF with regard to large-scale modeling 17

6.2 Verification of simulator function 17

6.3 Model verification 18

6.4 Model reproducibility 18

6.5 Method development in computational neuroscience  19

6.6 A cyber infrastructure for computational neuroscience? 19

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

07
.2

62
.1

 : 
P

os
te

d 
27

 J
un

 2
00

7



[    �    ]

Contents

Appendix A: Summary of existing and planned tools relevant to  
          large-scale modeling

21

A.1 Model construction 21

A.2 Simulators and environments 21

A.3 Languages and language tools 22

A.4 Visualization 22

A.5 Databases and Database tools 22

A.6 GRID computing 23

Appendix B: Workshop program 24

References 25

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

07
.2

62
.1

 : 
P

os
te

d 
27

 J
un

 2
00

7



[    �    ]

1  Executive Summary

The goal of this workshop was to survey current demands, on-
going activities, and plans relating to development of tools for 
scalable neural network simulation. Areas covered included 
software components for preprocessing/model setup, as well 
as for storage, analysis, and visualization of results. Partici-
pants discussed the need for coordinated action in the field 
with regard to model, method and tool development.

In the following summary, we present three major findings and 
seven recommendations developed by workshop participants.

Findings
The workshop participants reported: 

•	on difficulties in reproducing simulations from pub-
lished articles

•	that the current diversity of simulators creates vigor 
in the field and has benefits for the validation of 
models

•	on the importance of facilitating software interoper-
ability and re-use of simulation software components

Recommendations
The following recommendations were made by the workshop 
participants: 

•	Arrange an annual workshop on large-scale model-
ing with the aim of developing standards for improv-
ing reusability of software. A workshop in the same 
format as the Telluride Workshops on neuromorphic en-
gineering would give an opportunity to teach large-scale 
simulation technology while simultaneously presenting 
an optimal environment for practitioners and students 
to discuss, test, and evaluate approaches to software 
interoperability. 

•	Implement a standard simulator test suite. 1. INCF 
should promote development of a set of simulator 
“benchmarks” for the purposes of verifying correctness 
of computation and serving as a standard for simulator 
performance. These should preferably be selected with 
respect to published models not contrived by the simula-
tor developers. 2. INCF should coordinate and contrib-
ute to raising funding for the implementation of the test 
suite by members of the labs that have developed the 
simulators. 3. INCF should maintain web pages with the 
results of the test suite for each simulator. These pages 

should be updateable so that old information can be 
superseded by current best practices in each simulator. 

•	Implement an experimental framework for connect-
ing software components. A feasibility study should be 
performed regarding the possibility of on-line communi-
cation between different software modules, for example 
two parallel simulators. INCF should allocate resources 
for implementing a software library with the communi-
cation interface. 

•	Develop publication guidelines for ensuring the 
reproducibility of simulations. INCF should develop 
guidelines for publications with computer simulations 
and publish these on the INCF homepage as a reference 
for authors. INCF should also encourage publishers 
to implement policies for making models available in 
conjunction with publication. 

•	Encourage, support and fund work on method de-
velopment within computational neuroscience. INCF 
should inform funding agencies about the need for 
research on methods in computational neuroscience, and 
on methods for large-scale simulation in particular. 

•	Encourage, support and fund the production of pub-
lications on concepts and techniques for large-scale 
simulations. INCF should inform publishers about the 
need for published work on methods within the field of 
large-scale simulations and computational neuroscience 
in general, and about the current growth in this area. 

•	Continue work on defining areas in need of support 
and coordination. Workshop participants agreed that 
the 1st INCF Workshop on Large-scale Modeling of the 
Nervous System was successful. However, there is still 
a great need for further work on coordination within the 
field. INCF should therefore arrange further workshops 
with the aim of defining areas in need of support and 
coordination. 
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2 Introduction 

Computer simulation is an increasingly important tool in neu-
roscience research. As computational modeling techniques 
become integrated with experimental neuroscience, more 
knowledge can be extracted from existing experimental data. 
Quantitative models help to explain experimental observations 
and seemingly unrelated phenomena. They assist in generating 
experimentally testable hypotheses and in selecting informa-
tive experiments.

Supercomputers are becoming ever-more powerful. It has even 
become possible to simulate models of a scale corresponding to 
substantial parts of a small mammal’s neocortex with biologi-
cally detailed compartmental neuron models. At the same time, 
recent progress in experimental techniques holds the promise 
of supplying modelers with data of an unprecedented level of 
detail. Large-scale models are becoming an essential tool in 
bridging multiple levels of organization in the description and 
understanding of the nervous system. However, large-scale 
modeling brings many new challenges, and there is a sense in 
the community that we could benefit from coordination efforts 
in areas such as standardization, interoperability and verifica-
tion.

The purpose of this report is to summarize discussions and rec-
ommendations of the workshop and to answer the question of 
how INCF can support the large-scale modeling community. 
To this end, section 4 surveys the current status of large-scale 
modeling in neuroscience and the scientific needs. Section 5 
reviews the status of current tools for large-scale modeling and 
discusses topics in need of development with regard to these 
tools. Finally, section 6 discusses how INCF can support the 
community directly or contribute to changes with regard to 
other organizations and scientific infrastructure.

3  Concepts

In the following, some basic concepts with regard to modeling 
and simulation of the nervous system will be restated and clari-
fied. This will provide a basis for a discussion of the various 
current developments in the field.

3.1  What do we mean by “model”? 
Mathematical models are the language of science. According 
to Wikipedia, a mathematical model is an abstract model ex-
pressed in mathematical language. Further:

An abstract model is a theoretical construct that represents 
something, with a set of variables and a set of logical and 
quantitative relationships between them. Models in this sense 
are constructed to enable reasoning within an idealized logical 
framework and are an important component of scientific theo-
ries. Idealized here means that the model may make explicit 
assumptions that are known to be false (or incomplete) in some 
detail. Such assumptions may be justified on the grounds that 
they simplify the model while, at the same time, allowing the 
production of acceptably accurate solutions. 

It should be remembered that a mathematical model of reality 
should always be regarded as idealized in the sense above. At 
least this holds true for all types of model considered in this 
report.

3.2  Model complexity
The golden standard with regard to model building is well cap-
tured by words often attributed to a certain famous physicist: 
“Everything should be made as simple as possible, but not 
simpler.” Model complexity can be measured in many ways. 
For this discussion, two measures are particularly important: 
1. the number of model parameters, and 2. the number of state 
variables in the model, which will here be denoted as model 
dimension.

A model is always tailored to answer a specific set of ques-
tions. For a physicist, the ideal is to pick the model with the 
smallest number of parameters which will still be sufficient to 
answer the scientific questions posed. This has several good 
consequences:

1. A simple model can be analyzed and understood. More 
complex aspects of nature can be understood through 
the strategy of divide-and-conquer. 

2. A simpler model expresses a simpler scientific hypoth-
esis in the sense of Occam’s razor. It cuts away elements 
that are irrelevant to the problem studied. 
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3. A model with fewer parameters is better constrained, 
making it easier to falsify. A model with many param-
eters can easily be adapted to the results of any experi-
ment. 

Of the two dimensions of simplicity mentioned, the first one 
is most important. A model which has few parameters is more 
likely to express a well defined piece of scientific knowledge 
in the form of a strong, i.e. falsifiable, hypothesis, while the 
lack of this kind of simplicity threatens all three of the benefits 
above. A large model dimension can make the model harder to 
analyze and understand but there are many techniques avail-
able for handling this kind of complexity.

In addition, it is important to make a distinction between free 
parameters—parameters which are tuned by the modeler or 
software to achieve a certain model behavior—and parame-
ters constrained by experimental data. A model should have 
few free parameters in order not to lose benefit 3 above. Also, 
all model behavior which is used to tune parameters is trans-
formed from an “output” of the model to an “input”, i.e., it can 
no longer be claimed as a result, or prediction, of the model.

3.3  Abstraction and level of description
The tool used to achieve a simple model is abstraction. The 
system is described at a certain level and elements which are 
not believed to be important for answering the scientific ques-
tions asked are taken away.

Neuroscience spans many levels of description from molecules 
to behavior. But what does level mean?  Churchland and Se-
jnowski (1992) discuss three categories of levels. The structure 
of the nervous system has many different spatial scales with 
substructures such as molecules, synapses, neurons, micro-
circuits, networks, regions and systems (list slightly modified 
from Churchland). We call these levels of organization. With 
some good will, behavior could be added at the top of this 
hierarchy.

Marr (1982) described levels along a different dimension in his 
levels of analysis: 1. the computational level of abstract prob-
lem analysis, 2. the algorithmic level, specifying a formal pro-
cedure to perform the task so that a given input will yield the 
correct output, 3. the level of physical implementation. Marr 
argued that a higher-level question was largely independent of 
the levels below and could be analyzed independently of the 
lower level. However, it should be noted that Marr used, to a 
large extent, neurobiological considerations to constrain and 
inspire his computational theories and algorithms.

Churchlands third category, levels of processing, will not be 
discussed here.

For a model of the primate primary visual cortex, V1, Marr’s 
computational level would correspond to what computations 
are being performed in V1 and why. The algorithmic level 
would correspond to how the information being processed on 
the computational level is represented and how the computa-
tions are carried out, while the level of physical implementa-
tion describes the actual computational elements performing 
these computations.

A typical large-scale network model, with single- or multicom-
partment units, thus belongs to the level of physical implemen-
tation, since it deals with neurons and synapses. But it can still 
be inspired, and constrained, from the other two levels, and can 
embody principles from the “higher” levels.

So far, we have discussed levels of organization and levels of 
analysis. An abstract model leaves out aspects of the descrip-
tion of reality in order to achieve simplicity. Sometimes this 
means leaving out elements from a lower level of organization, 
but it can also mean describing something at a higher level of 
analysis. A model of visual processing in terms of filter banks 
and kernels is considered more abstract than a model of neu-
ronal populations in V1. Thus, we also talk about level of ab-
straction.

3.4  Detailed versus abstract models
A detailed model is often considered the opposite of an ab-
stract model. In this report, a detailed model is defined to mean 
a model which spans several levels of organization. A model 
which spans the levels from networks to behavior can thus si-
multaneously be more abstract and more detailed compared to 
a model restricted to a single but lower level of organization. 
A model of brain imaging data which incorporates networks 
of simple units can be more detailed than a statistical model of 
an ion channel. Yet, because it leaves out so much of the detail 
beneath the level of networks, it can also be more abstract than 
the latter model.

3.5  Realism
In order to say something about reality, and in order for a cor-
responding hypothesis to be falsifiable, a model needs to be 
well rooted in empirical data, i.e. formulated in a way that is 
consistent with a large set of experimental data.

It should now be made clear that, just as a model can be for-
mulated on all of the levels of organization discussed in sec-
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tion 3.3, empirical data can be obtained on different levels of 
organization. It should also be pointed out that models can be 
formulated on higher levels of analysis (in the sense of sec-
tion 3.3): A cognitive psychologist can retrieve behavioral data 
and construct models at the algorithmic level, without a direct 
reference to how these processes are physically implemented 
in the brain. Brain imaging retrieves data at the levels of net-
works, regions and systems. Electrophysiology collects data at 
many levels of organization and this data can be used to con-
struct models at the level of physical implementation.

A model based on data from a lower level of organization, or 
formulated in terms of elements from multiple lower levels of 
organization, is not necessarily more realistic than data formu-
lated and rooted at a higher level. Rather, a model is realistic 
if it is well rooted in empirical data at the given level, if its pa-
rameters are well constrained by these data, and if it correctly 
predicts data which has not been used to tune the model.

Not only the parameters of a model, but also the equations, 
represent assumptions about reality. Some models are based on 
first principles, that is, their equations are established laws of 
physics. Models based on first principles, or models with equa-
tions which can be derived from the laws of physics, can be 
trusted to a larger extent than other models, because they rely 
less than other models on assumptions in the form of peculiari-
ties of the model equations or fitting of parameters.

4  Directions in modeling of 
the nervous system - scientific 
needs

4.1  The role of the model in current neuroscience
This section contains a brief discussion of the various roles 
that models currently have in neuroscience. As stated above, 
models are the language of science. We use models to 

•	formulate hypotheses regarding the function of the ner-
vous system 

The activity of formulating a hypothesis in terms of a model 
requires collection of experimental data. It is often discovered 
that crucial data are missing. In this respect a model could be 
considered 

•	a tool to identify what we don’t know 

Often, hidden contradictions and inconsistencies are revealed 
during the formulation process, and it happens that models 
don’t yield expected results so that a further role of the model 
is 

•	validating self-consistency of the description of a phe-
nomenon or function 

If the confidence in the model is strong but the predictions dif-
fer from experiment the model can be used to 

•	falsify hypotheses 

If phenomena in the model are unexpected or unobserved a 
model can 

•	suggest new experiments 

Finally, a model can be used as a 

•	platform for integrating knowledge 

unifying experimental data from many sources in a consistent 
manner.

4.2  Top-down and bottom-up approaches
The top-down approach to modeling most often means using 
hypotheses on the computational or algorithmic levels as a 
starting point when approaching the formulation of a model at 
the level of physical implementation. These functional hypoth-
eses guide the formulation of the model at the implementation-
al level in terms of what elements are included in the model 
and which experimental data are considered important. A func-
tional hypothesis can also complement experimental data in 
the sense of giving additional constraints. For example, if we 
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have limited experimental data on the functional connectivity 
between inhibitory and excitatory connectivity, an additional 
functional constraint would be that the activity in the network 
must not be allowed to grow in an uncontrolled manner.

A top-down approach can also start with an abstract model, 
neglecting detail below the level of organization at which the 
model is formulated. Succeeding models can then increase the 
amount of detail, enabling them to account for a larger set of 
experimental data. For example, a connectionist, rate-based 
model can be developed into a spiking network model, fol-
lowed by a Hodgkin-Huxley style model. However, it should 
be noted that models are more typically developed outside of 
such sequences, at a specific level of abstraction and detail 
suitable to the scientific questions posed.

The bottom-up approach, in contrast, means using the level of 
physical implementation as a starting point with the hope of 
capturing function. For example, what does the anatomy of the 
cerebral cortex mean?  If we can, from the physical level of 
synapses, dendrites, neurons and networks, identify computa-
tional primitives of the cortex such primitives can be abstracted 
and we can move up one level of analysis. This is one goal of 
projects like DAISY (Kennedy, 2005), FACETS (Meier, 2005) 
and Blue Brain (Markram and Peck, 2004).

As with the top-down approach, a bottom-up approach can be 
concerned with levels of organization. In this case, it means to 
take a lower level of organization as a starting point for under-
standing the higher level.

In practise, the approach of a modeller is usually neither pure-
ly top-down nor purely bottom-up, as was already evident in 
Marr’s work. Also, in the bottom-up approach, the focus of 
experiments and the choice of elements to include in the model 
is largely guided by functional hypotheses.

4.3  Explicitness
We define model explicitness to mean the degree to which the 
model is isomorphic with reality, or, how directly state vari-
ables of the model can be mapped to empirical data.

The degree of detail in a multi-compartment, Hodgkin-Huxley, 
model of a neuron aids in making this type of model transpar-
ent in the sense above. During intracellular recording of a neu-
ron, it is often possible to block a subset of the ion channels in 
order to directly measure the current of another channel subset, 
or, in order to study the effect on cell behavior. The explicit-
ness of the Hodgkin-Huxley formalism then makes it easy to 
perform a corresponding manipulation in the model. It is also 

easy to identify and display individual currents in the model.

In comparison, an integrate-and-fire model is less transparent. 
While recent versions (e.g. Brette and Gerstner) of this type of 
model can faithfully reproduce a spike train, some state vari-
ables correspond to the phenomenological effect of the coor-
dinated action of multiple channel types in the real neuron. In 
this case, it is easy to compare the spike trains, but it is not 
as easy to map the dynamics of the model to the individual 
currents of the real neuron. On the other hand, the simplicity 
of the integrate-and-fire model makes it easier to analyze and 
understand.

Another aspect of explicitness is that it supports the role of 
the model as a platform for integrating knowledge. A transpar-
ent model is more likely to connect well to a wider range of 
experimental data, even data which were not targeted when 
constructing the model.

Workshop participants commented that, in the past, there have 
been many sacrifices in explicitness in order to achieve per-
formance. Early connectionist models used simple rate-coding 
units, enabling the simulation of models of networks on the 
personal computers of the 1980s, while Hodgkin-Huxley type 
models could only be simulated one neuron at a time. Today, 
we can simulate large networks of neurons with thousands of 
compartments. 

4.4  Large-scale models
For the purposes of this report, a large-scale model is a model 
with a high dimension, i.e. a model with a large number of 
state variables (on the order of hundreds of millions or more). 
Thus, a detailed model of one cortical column can be large-
scale while an abstract model of a large network encompassing 
multiple columns is not necessarily large-scale.

4.4.1  Integrate-and-fire models
The classical integrate-and-fire model (MacGregor and Oliver, 
1974; Tuckwell, 1988) has one state variable per neuron, rep-
resenting the membrane potential. It is basically a linear leaky 
integrator with a voltage threshold and a reset mechanism. The 
main advantage of this type of model compared to Hodgkin-
Huxley type models is its simplicity. For example, it has far 
fewer parameters, while it still captures essential features of 
the neurons. Because it has fewer parameters it is easier to 
adapt this type of model to experimental data. In this sense, it 
is easier to achieve a certain level of realism with an integrate-
and-fire model than with a Hodgkin-Huxley type model, while, 
with more effort and more data, the latter model can reach an 
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even higher degree of realism. Its simplicity also makes it pos-
sible to develop automated procedures for extracting param-
eters from data (Jolivet et al., 2004; Keat et al., 2001; Paninski 
et al., 2004). Because of the low dimension and mathematical 
tractability, it is easier to analyze and understand this type of 
model. Finally, the simulation of this type of models require 
fewer computational resources making it possible to simulate 
larger networks given the same hardware. For examples of 
large integrate-and-fire-based network models, see Mehring 
et al. (2003); Aviel et al. (2003); Tetzlaff et al. (2004); Kumar 
et al. (2007); Morrison et al. (2007a).

The integrate-and-fire paradigm has recently been developed 
in three directions (Brette and Gerstner, 2005):

•	the addition of a quadratic or exponential term, yield-
ing a smooth spike initiation zone (Latham et al., 2000; 
Fourcaud-Trocme et al., 2003); 

•	the addition of a second state variable, enabling model-
ing of subthreshold resonances or adaptation (Izhikev-
ich, 2003; Richardson et al., 2003); 

•	using active conductances to model synaptic inputs 
(Destexhe et al., 2003). 

4.4.2  Hodgkin-Huxley models
A network model with multi-compartmental Hodgkin-Huxley 
type units is more detailed than its integrate-and-fire counter-
part. It is more complex, both by having more parameters and 
a larger model dimension. As has been discussed in section 
4.4.1, this requires more labor to determine parameters from 
experimental data. Sometimes, not all data is available so that 
parameters need to be determined more indirectly. The disad-
vantage is that this turns an output of the model into an input 
(3.2). For example, if we tune the conductance of a KCa chan-
nel in order to obtain the correct time course of an AHP, instead 
of measuring this conductance, we can no longer claim that our 
model predicts a correct AHP. In this case, however, the kind 
of predictions which are of interest in a network model appear 
at another level of organization within the model.

In section 4.3, the explicitness of HH-type models was dis-
cussed. The higher level of detail allows this type of model 
to be connected to a wider range of experimental data. The 
presence of ionic currents allows for comparatively easy mod-
eling of pharmacological manipulations. The 3D extent of a 
compartmental model allows for the synthesis of EEG and LFP 
signals (Einevoll et al., 2007).

4.4.3  The bottom-up approach to the cortical 
column
Regardless of whether we use integrate-and-fire or Hodgkin-
Huxley type units in a network model, an important set of 
parameters that currently largely lacks an experimental basis 
is the set of connectivity parameters. Data from, for example, 
Thomson et al. (2002) and Binzegger et al. (2004) gives the 
statistics of connectivity between pairs of cell types. This type 
of data has led to the use of random Gaussian (e.g. Brunel) 
or random uniform (e.g. Haeusler and Maass) connectivity in 
network models, consistent with such statistics. However, it is 
reasonable to assume that the microcircuitry of a column has 
more structure than that. Also, there is very limited data on the 
structure of long-range connectivity.

The Blue Brain project (Markram and Peck, 2004) aims to col-
lect data on individual cells, for example acquisition of cell 
morphology through cell labeling and 2-photon microscopy, 
and then using database techniques and specialized software to 
reconstruct a virtual column. The superposition of reconstruct-
ed cells in 3D-space may give additional constraints needed to 
get a more complete picture of microcircuitry. The aim is also 
to simulate a large-scale network model of a complete column 
with multicompartmental Hodgkin-Huxley-type units without 
reference to functional hypotheses about the network. Thus, 
the approach is essentially hard-core bottom-up.

Workshop participants commented on the difficulty in experi-
mentally determining the existence of a synaptic contact be-
tween cortical neurons since axonal processes can pass close to 
the dendritic processes of neurons without forming a synapse. 
In essence, the only way to determine anatomically if there is 
a contact is by looking at it with an electron microscope. It is 
also possible to determine the existence of a connection elec-
trophysiologically by recording from pairs of neurons (e.g., 
Thomson et al.).

One particularly interesting development with regard to the ac-
quisition of connectivity data was discussed at the workshop. 
Denk and Horstmann (2004) have developed a method called 
“serial block-face scanning electron microscopy” or SBFSEM. 
A microtome is placed in the chamber of a scanning electron 
microscope. The face of the tissue sample is scanned and 50–
70 nm slices cut away, generating stacks of thousands of im-
ages from which a bulk 3D volume can be reconstructed. The 
acquired data has enough resolution to trace thin axons and 
identify synapses. This method holds the promise of geometri-
cally reconstructing an entire neocortical minicolumn and ex-
tracting its circuitry.
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Workshop participants concluded that the acquisition of data 
at multiple levels of organization leads to a new scale of proj-
ects—a development which parallels the study of the genome 
and studies in particle physics. There will be new kinds of 
challenges associated with industrial-scale data acquisition in 
projects of thousands of man-years.

4.4.4  Combining the top-down and bottom-up 
approaches
A survey of existing literature in computational neuroscience 
shows that the pure bottom-up approach to understanding net-
work function is very rare. Part of the explanation is that miss-
ing empirical data need to be complemented with functional 
hypotheses in order to make progress possible. But a top-down 
approach may have importance in other ways than replacing 
lacking knowledge. During the workshop, the question arose 
whether a correctly implemented, detailed computer replica of 
the cortical column would by itself say very much about net-
work function. Because a detailed model can be complex and 
hard to analyze and understand, modellers tend to see func-
tional hypotheses and abstract models as a necessary comple-
ment in dissecting cortical function. It should still be noted that 
a computer replica is much more accessible to experimentation 
than the living tissue in the sense that any set of state variables 
can be logged and an arbitrary set of variables can be simulta-
neously perturbed in a precise fashion.

An example of how a top-down approach can be combined 
with the bottom-up approach is given by the model of Lun-
dqvist et al. (2006) (see Djurfeldt et al. for a large-scale ver-
sion of the model). The model is mainly designed to target the 
question: Is neocortical microarchitecture consistent with the 
hypothesis of attractor memory network function?  Here, most 
parameters of the neuron models are determined from experi-
mental data in a bottom-up manner. However, the connectivity 
parameters are determined by combining a long-range connec-
tivity structure required for attractor memory network function 
with the currently existing empirical constraints on connectiv-
ity mentioned in section 4.4.3.

Another aspect of this model, and most or all other network 
models, is that the parameters of a neuron type are replicated 
over the population of model neurons, with or without random 
perturbation, in a crystal-like manner. This means that even if 
a large-scale model of this type has a large model dimension, it 
can still have a comparatively small number of parameters and, 
thus, be simple in the important sense (c.f. section 3.2).

4.4.5  Volume simulation
Until now, Hodgkin-Huxley type models have represented the 
most basic level of organization at which we simulate neurons 
and circuits, with the exception of hybrid models also includ-
ing biochemical processes inside the cell. Data from the SBF-
SEM method mentioned in section 4.4.3 opens up the prospect 
of a full 3D volume simulation of a cortical column. During 
the workshop, Gabriel Wittum presented initial attempts in this 
direction at the level of a single cell. In the Hodgkin-Huxley 
approach, the neuron is modelled as an electrical circuit. Here, 
instead, the 3D volume in which the neuron is embedded is de-
scribed in its entirety by partial differential equations (PDEs) 
and simulated using the solver µG (Bastian et al., 1997; Wit-
tum, 2007).

A model of the 3D volume can be based on first principles in 
the sense discussed in section 3.5. In this case, the model is 
based on Maxwell’s equations which describe the dynamics of 
the electromagnetic field. 

4.4.6  Simulation of growth processes
In order to fully understand the cortical architecture, it is neces-
sary to understand the development and growth processes from 
which it results. Within the DAISY project, initial steps are 
currently taken to simulate the migration of neuroblasts. This 
adds a requirement on the simulator which is not yet fulfilled 
by standard neuron simulators such as Neuron and Genesis: 
there is a need to quantize space. Simulation tools are being de-
veloped within DAISY to meet this demand. The solver µG is 
based on a communication layer, DDD (Dynamic Distributed 
Data), which allows computational loads to migrate within a 
parallel computer during simulation. This layer could also be a 
suitable substrate for the simulation of growth processes.

4.5  Simulation versus emulation
Alan Turing used the term simulation in a very specialized 
sense. The term referred to the simulation by a digital com-
puter of a subject discrete-state machine, defined by a set of 
state transitions, inputs and outputs.

In computational neuroscience, the term usually refers to the 
computation of the numerical approximation of a solution over 
time to the equations of a mathematical model. When per-
formed on a digital computer, such computations are subject 
to the limitations of the computer. For example, some quantum 
mechanical processes can not be simulated on a digital com-
puter. However, such limitations do not seem to be of any rele-
vance to current computational models of the nervous system.
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By an emulation, we refer to a model of the nervous system 
in the shape of a physical realization, for example in terms of 
an electronic circuit. The projects DAISY and FACETS both 
implement VLSI chips emulating neural circuits.

During the workshop, participants commented that while most 
simulations are slower than real-time (time simulated is shorter 
than the wall-clock time required to compute the solution), it 
is possible to construct an artefact which can emulate a neural 
circuit in real-time. The important consequence is that the arte-
fact can interact with the environment in real time and react to 
a continuous flow of events occurring asynchronously. In some 
cases this is also achievable with a simulation on a digital com-
puter, as exemplified by the dynamic-clamp technique (Sharp 
et al., 1993) or the goal of the Blue Brain project to simulate a 
cortical column on a super-computer in real time.

4.6  Upscaling
A model of the bulk 3D volume of neural tissue using PDEs 
(section 4.4.5), if well-rooted in empirical data, can be consid-
ered more realistic than the Hodgkin-Huxley model. It is based 
on first principles (sections 4.4.5, 3.5) while the Hodgkin-
Huxley model is partly based on simplifying assumptions and 
curve fitting. This means that we can use the 3D volume model 
to validate the multicompartmental Hodgkin-Huxley model.

Gabriel Wittum reported on simulations of a single cell where 
ephaptic interactions could be observed between two of the 
dendritic processes of the cell itself. Such a phenomenon 
would not arise in the Hodgkin-Huxley model. It is also clear 
that the surrounding interstitial fluid, neuropil, and dendritic 
processes have substantial effects on the electric behavior of 
the cell membrane, diverging from the Hodgkin-Huxley mod-
el. Clearly, however, the 3D volume simulation is not a good 
replacement for the Hodgkin-Huxley model, because it is com-
putationally heavier. The question then arises what alternatives 
we have to the HH model.

An important answer is given by the 3D model itself: There 
exist mathematical techniques for deriving a model at a coarser 
scale from a model at a finer scale. This methodology is called 
upscaling (Eberhard et al., 2004). Through upscaling tech-
niques it might be possible to derive a candidate model which 
might serve as a better replacement for the Hodgkin-Huxley 
model.

5  Software for large-scale 
simulations

5.1  Important properties of simulator software
When judging software for large-scale simulation, there are 
many criteria that need to be examined, some of which will be 
mentioned in this section. Brette et al. (2007) reviews existing 
tools for simulation of networks of spiking neurons.

•	Model types supported What neuronal/synaptic/plas-
ticity models can be simulated?  

•	Accuracy Does the simulator give correct results?  
Recent work (Brette, 2006; Rudolph and Destexhe, 
2006; Morrison et al., 2007b) has presented methods for 
determining spike times in a simulator more precisely, 
and has shown that this can have effects on discharge 
statistics and temporal precision in resolving synaptic 
inputs. This is discussed further in section 5.4 below. 

•	Scalability In general, it is difficult to write efficient 
parallel implementations. How does speedup (simula-
tion time divided by simulation time on one processor) 
scale with the number of processors used?  Ideally it 
should grow linearly. How does simulation time scale as 
a function of the size of the model?  

•	Documentation How good is the documentation?  

•	Support How quickly will the developers respond to 
bug-reports or feature requests?  

•	License and availability of source code In a research 
environment, it is an advantage to have the source code 
for the simulator available, and to have permission to 
modify it. This is guaranteed for all software covered by 
the GPL license from the Free Software Foundation and 
some related licenses. 

•	Adaptability How easy is it to adapt the simulator to 
your purpose?  How easy is to to add new mechanisms?  

•	Portability Does it run on my preferred platform?  

•	Interoperability How easy is it to collaborate with oth-
ers using a different simulator?  This is discussed further 
in section 5.3 below. 

•	Is there a graphical interface?  

•	What analysis/post-processing tools are available?  
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5.2  Diversity of simulators
During the workshop, it was discussed whether it is sensible 
for the community to split efforts into the large and growing 
set of neuron simulators available today rather than focussing 
on one or a few tools. However, it was also noted that there is 
currently a strong ongoing development of simulation technol-
ogy, and that simulators tend to have unique strong points not 
shared by others.� 

The workshop also identified the reproducibility of models as 
a major problem (see section 6.4). The diversity of simulators 
might allow for simulating the model on a different platform 
from that on which it was originally developed, thereby verify-
ing the reproducibility of results. This leads to the first major 
finding:

Workshop participants agreed that the current diversity of 
simulators creates vigor in the field and has benefits for the 
validation of models. 

5.3  Software interoperability
Given the diversity of simulators, it is important to find ways 
to share the gains produced by the efforts, of both developers 
and users, put into individual simulators. During the workshop 
some approaches to simulator-independent modeling environ-
ments were discussed, which allow a model to be simulated 
using more than one simulation engine. This is important for 
verification of simulator accuracy, for the reproduction, test-
ing and extension of published models, and for collaboration 
between modellers using different simulation tools. The ap-
proaches discussed were graphical environments, declarative 
model specifications using XML, and procedural model speci-
fications using an API implemented in the Python program-
ming language (see sections 5.3.4 and 5.6). Another conclu-
sion was that more effort should be put into the development of 
such simulator-independent environments (‘meta-simulators’). 
Thus, the second major finding of the workshop was:

Workshop participants agree upon the importance of fa-
cilitating software interoperability and re-use of simulation 
software components. 

5.3.1  Modularity
The practise of dividing software into modules with well-de-
fined roles has many advantages. It eases development and 

� Michael Hines noted that “The reason why we keep rein-
venting the wheel is that we haven’t got it quite round yet.”

increases maintainability of the code. If such modules have 
well-defined interfaces, modules can be re-used in other cir-
cumstances. Such an interface can be in the form of 

1. an application programming interface (API), enabling 
a module in the form of a compilation unit or a library 
to be linked into an application. This includes the defini-
tion of data structures required to pass information 
through the interface. 

2. a communication interface, enabling modules in the 
form of processes to communicate while running simul-
taneously on the same or on different machines 

3. a file format, allowing the output of a module in the 
form of an application to be read as input to another 
application. Here, “input” can be a model specification. 
In this case, the interface takes the shape of a model 
specification language. 

As an example of the first form of modularity, a simulator can 
be divided into a simulator kernel, responsible for the dis-
tribution and allocation of data structures over a cluster, for 
building the model on the nodes, and for performing the com-
putations during a simulation, and other modules required for 
module specification, input and output. The simulator kernel 
can be further divided into a solver, with the sole responsibility 
of performing computations, and modules required for alloca-
tion, distribution etc.

Workshop participants discussed the possibility of on-line in-
teraction between simulators (see section 5.3.2). This would 
entail modularity of the second type.

An example of the third type of modularity is neuroConstruct 
which is a software application for creating 3D models of 
networks of biologically realistic neurons through a graphi-
cal user interface (GUI) (7.1.3). neuroConstruct can import 
morphology files in Genesis, Neuron, Neurolucida, SWC and 
MorphML formats for inclusion in network models and can 
generate model specification files for Genesis and Neuron. Ef-
forts put into developing neuroConstruct further will thus ben-
efit both the Genesis and Neuron communities. Note, though, 
that the choice of two output formats is forced by the current 
lack of a standard format for model description. This will be 
discussed further in section 5.3.3.

David Beeman presented how the next generation of Gene-
sis, Genesis 3 (7.2.2), aims to foster collaborative modeling 
through a rich set of interfaces.
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We cannot gain fully from a modularization of simulation soft-
ware until we have developed standard interfaces between 
software components.

When facing the need to develop standards, there is the pos-
sibility of assigning the task to a standardization committee. 
Workshop participants agreed, however, that there are other 
alternatives which might be preferable. It was suggested that a 
workshop should be arranged with development of interoper-
ability as one goal.

Participants reported on good experiences with the form of the 
Telluride workshops (van Schaik et al., 2006) which includes 
background lectures from leading researchers, practical tuto-
rials from state-of-the-art practitioners, hands-on projects in-
volving established researchers and newcomers/students, and 
special interest discussion groups proposed by the workshop 
participants. The INCF workshop gives the following recom-
mendation:

Arrange an annual workshop on large-scale modeling with 
the aim of developing standards for improving reusability 
of software. A workshop in the format of the Telluride Work-
shops on neuromorphic engineering would give an opportunity 
to teach large-scale simulation technology while simultane-
ously presenting an optimal environment for practitioners and 
student to discuss, test, and evaluate approaches to software 
interoperability. 

5.3.2  On-line interaction between simulators
As was discussed in section 5.2, different simulators have 
different strengths. Workshop participants observed that cur-
rent development is moving in the direction of simulation of 
large systems of networks. The situation could arise that one 
simulation framework is most suitable for one part of the sys-
tem while another framework is needed for another part. For 
example, a retina model could provide input for a model of 
LGN/PGN/V1, or, a medium-sized network of detailed struc-
turally realistic neurons could interact with a very large net-
work of simple integrate-and-fire point neurons. In the former 
example, one solution would be to perform the simulation in 
batch mode, letting the retina model generate spikes and save 
the spike times to file. Such spike files can then be read by the 
second simulator. This would be an example of the third type 
of modularity in section 5.3.1. In the latter example, this is 
not possible due to the need for bi-directional interaction. This 
situation is resolved if the simulators can transfer spikes on-
line through a communication interface.

Even in cases where batch mode simulation is possible, it may 
be desirable to let such a simulation interact with the environ-
ment in real time. Another argument for preferring on-line 
communication between simulators over batch mode simula-
tion is if the amount of data generated is of such a large mag-
nitude that it is undesirable or impossible to store intermediate 
data in files.

If both simulators are run on the same parallel computer, some 
further coordination may be required with regard to allocation 
of nodes, initialization of MPI, etc. This could be achieved if 
the communication interface has the form of a communica-
tions library, providing services like initialization of MPI and 
the option of external communication. There is also a need for 
a naming or addressing mechanism to allow for flexible con-
nectivity between modules through multiple communication 
links.

The development of such an interface may or may not result in 
a software component that will be generally adopted, but has 
value in itself as an exploration of the concept. The workshop 
gives the following recommendation:

Implement an experimental framework for connecting soft-
ware components. A feasibility study should be performed re-
garding the possibility of on-line communication between dif-
ferent software modules, for example two parallel simulators. 
INCF should allocate resources for implementing a software 
library with a communication interface. 

5.3.3  Common specification language
Different simulator environments have different ways of speci-
fying a model. For example, Neuron and Genesis have distinct 
specification languages. The translation of a model description 
from one environment to another can entail substantial effort. 
This is especially true in the case that environments use dif-
ferent formalisms. If the differential equation for the activa-
tion factor in the Hodgkin-Huxley model of a channel has dif-
ferent forms in the two environments, the translation of the 
model will even involve finding a new set of parameters. This 
situation creates barriers between laboratories using different 
simulators, makes it harder for one laboratory to freely choose 
the tool suitable for the problem at hand, and threatens the re-
producibility of scientific results. A common, standard speci-
fication language, supported by all simulators, would alleviate 
such problems and increase the utility of model repositories 
such as ModelDB (7.5.1) and databases such as NeuronDB 
(7.5.2).
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NeuroML (7.3.1) was discussed as one viable candidate for a 
model description standard. NeuroML is a collection of proj-
ects with the aim of developing standards for specification of 
neuroscience models in XML. It is organized into four levels 
of scale, where each succeeding level extends the features of 
the language. The first level covers the neuronal level of or-
ganization while the last level (level 4) covers all levels of or-
ganization from biochemical networks to systems. It includes 
the XML schemas MorphML, ChannelML and NetworkML. 
Workshop participants noted that NetworkML is currently the 
least developed schema and needs input from simulator devel-
opers.

PyNN, discussed in section 5.3.4, was also proposed as a can-
didate for a standard model description.

5.3.4  Common scripting language
A scripting language is an interpreted language which is used 
to control an application. It is often embedded in the sense that 
much of the functionality of the application is available as 
function or procedure calls in the language—a language bind-
ing. If it is possible to add new functionality to the application 
in terms of code written in the scripting language, it is also 
called an extension language. The use of a full-fledged general 
purpose programming language as scripting/extension lan-
guage has emerged as a powerful concept. Scripting languages 
such as Emacs Lisp, TCL, Matlab and Python have each given 
rise to prolific user communities and rich sets of software tools 
and libraries, and can provide a backbone in a framework with 
multiple modules.

Within the FACETS project (Meier, 2005), Andrew Davison 
has proposed the PyNN framework (7.3.2) as a standard script-
ing language binding for neuronal network simulators. This 
abstracts differences between simulators and provides a com-
mon way to specify models and run simulations. The goal is 
that simulation scripts in PyNN for simulator A will run on 
simulator B without modification.

PyNN is based on the Python programming language and in-
cludes the development of an API and the binding to individual 
simulation engines. The API has two parts, a low-level, proce-
dural API, and a high-level, object-oriented API. The low-level 
API can be used for small networks, and gives more flexibility 
than the high-level API. The high-level API hides details and 
book-keeping, and is intended to have a one-to-one mapping 
with NeuroML, i.e. a population element in NeuroML will cor-
respond to a Population object in PyNN, etc. Another require-
ment for a common scripting language is standard cell models. 
PyNN translates standard cell-model names and parameter 
names into simulator-specific names.

The use of Python in PyNN results in a free, Matlab-like en-
vironment with tools for data analysis, plotting, mathematical 
libraries, etc., leveraging the efforts of the Python user com-
munity.

5.4  Accuracy of simulation

5.4.1  Combining off-grid spike events with time-
driven global scheduling
Very large networks of spiking neurons can be simulated ef-
ficiently in parallel under the constraint that spike times are 
bound to an equidistant time grid. Within this scheme, the sub-
threshold dynamics of a wide class of integrate-and-fire type 
neuron models can be integrated exactly from one grid point 
to the next. However, the loss in accuracy caused by restrict-
ing spike times to the grid can have undesirable consequences, 
which has led to interest in interpolating spike times between 
the grid points to retrieve an adequate representation of net-
work dynamics. Markus Diesmann demonstrated during the 
workshop how the exact integration scheme can be combined 
naturally with off-grid spike events found by interpolation 
(Morrison et al., 2007b). By exploiting the existence of a mini-
mal synaptic propagation delay, the need for a central event 
queue is removed, so that the precision of event-driven simu-
lation on the level of single neurons is combined with the ef-
ficiency of time-driven global scheduling. Further, for neuron 
models with linear subthreshold dynamics, even local event 
queuing can be avoided, resulting in much greater efficiency 
on the single neuron level. A measure of the efficiency of net-
work simulations in terms of their integration error shows that, 
for a wide range of input spike rates, these novel techniques are 
both more accurate and faster than standard techniques.

5.5  Preprocessing and specification of 
large-scale network models
Section 4.4.3 discussed the bottom-up approach to large-scale 
modeling of the cortical column using data from the SBFSEM 
method. For a 3D volume simulation (section 4.4.5), a corre-
sponding 3D volume of dielectric properties must be generated 
as part of the model specification. For a more traditional simu-
lation based on compartment model neurons, the data must be 
analyzed with respect to cell morphology and a list of network 
connections be generated.

Section 4.4.4 discussed a combined top-down/bottom-up 
approach where the connectivity is based on functional hy-
potheses regarding cortical function. The Brunel (2000) and 
Haeusler and Maass (2007) models also belong to this type. In 
such models, there is a large contrast between the seemingly 
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complex connectivity of the simulated model and the simple 
ideas upon which the connectivity is based. Usually the con-
nectivity is expressed by a serial algorithm that sets up connec-
tions one by one. On a parallel machine, several simulators use 
the approach of running the serial algorithm in each process 
independently and simply ignoring attempts to set up connec-
tions not belonging to the local process. The advantage is that 
the complexity of parallelism is hidden from the user. How-
ever, this approach does not scale well. Djurfeldt et al. (2005) 
presents an approach which scales well at the same time as 
expressing the connectivity in a form that preserves the under-
lying ideas explicitly in the program code. Projections between 
neuronal populations are described by iterators representing 
infinite connection matrices. Only the relevant finite piece of a 
matrix is used to connect the populations during model setup. 
A basic set of parameterized matrices can be combined through 
a connection matrix algebra to form new connectivity struc-
tures.

A third way to specify networks is to generate them based on 
empirical structure parameters. Regarding automatic genera-
tion of realistic, large-scale neural networks, there is a need to 
distinguish between generation and growing of cells. Grow-
ing of cells might depend on local or global parameters in the 
network. Further, an open question is how to specify and gen-
erate spatial connectivity. The easiest way of generating con-
nectivity is using experimental data about the localization of 
different neuron types in the brain. This approach is commonly 
used in the available software tools. During the workshop, Jens 
Eberhard presented an assessment of existing tools and evalu-
ated features such as interfaces and used formats, “large-scale” 
capability, expandability, and postprocessing/visualization. 
The following tools were evaluated: L-Neuron (7.1.1), Arbor-
Vitae (7.1.2), A-Cell-3D, NeuroConstruct (7.1.3), and NeuGen 
(7.1.4). Based on the features mentioned above, only Neuro-
Construct and NeuGen could be recommended for the specifi-
cation of large-scale network models. These tools are capable 
of generating detailed three-dimensional neuron geometry for 
networks up to about 10000 cells.

5.6  Declarative versus procedural model 
description
One of the discussions during the workshop concerned the 
relative merits of declarative versus procedural model speci-
fication. Model definitions based on NeuroML are basically 
declarative, although it is in principle possible to specify algo-
rithmic elements in XML. In contrast, a model description in a 
Python-based scripting language is often procedural.

A declarative description is often easier to read and understand 
than a procedural description. It also usually gives a software 
tool more leeway for internal optimizations.

However, workshop participants commented that, in a cer-
tain respect, a declarative description is “un-human”. This is 
because it throws away structural knowledge about the prob-
lem already available to the researcher. This knowledge is ex-
pressed in algorithms which can be close to the mathematical 
formulation of the model. We should look for a good high-
level description that allows a human reader to see from the 
code what the point is.

5.7  Postprocessing and visualization
The kind of large-scale simulations which are the subject of 
this workshop have, by definition, a large number of state vari-
ables. When the number of variables is in the order of hundreds 
of millions or more, the problem how to visualize network ac-
tivity becomes important. One of the tools discussed during 
the workshop was DAVIS (7.4.1). However, there seems to 
be a great need of further tool development in this area. For 
example, for sufficiently large data volumes, the visualization 
tool needs to be parallelized.

A large-scale model spans many levels of organization, and, 
thus, needs to connect to experimental data on many levels. 
There is, therefore, a need for tools which can transform logged 
data from model state variables, such as cell membrane volt-
ages, into synthetic versions of common brain imaging meth-
ods such as fMRI, VSD and EEG.

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

07
.2

62
.1

 : 
P

os
te

d 
27

 J
un

 2
00

7



[    17    ]

6  Infrastructure

6.1  The role of the INCF with regard to 
large-scale modeling
There was a consensus among workshop participants that the 
field of large-scale modeling of the nervous system has reached 
a level of maturity where it would benefit from coordination 
efforts, for example with regard to simulation tools, databas-
es and publication of results. Various specific ways in which 
INCF could assist such efforts were discussed, some of which 
are summarized in the following sections.

One of the roles suggested for the INCF was to develop an 
expert definition of where things stand in the field and iden-
tify complementarity between research groups, i.e. make an 
inventory of what is available in different places, define areas 
in which it is important to achieve progress, and facilitate this. 
The workshop gives the following recommendation: 

Continue work on defining areas in need of support and 
coordination. Workshop participants agreed that the 1st INCF 
Workshop on Large-scale Modeling of the Nervous System 
was successful. However, there is still a great need for further 
work on coordination within the field. INCF should therefore 
arrange further workshops with the aim of defining areas in 
need of support and coordination. 

It was also suggested that the INCF could have a staff of ex-
perts available who understand various software applications 
and components fully, and know how to run tools on a refer-
ence set of problems. This could provide a resource both with 
regard to development of software interoperability (c.f. section 
5.3) and teaching.

With regard to databases and platforms (see section 6.6), it was 
suggested that the INCF should promote and coordinate data 
archives. What data are there?  What is missing? 

Workshop participants reported on a general feeling in the 
modeling community that we need and can achieve synergy ef-
fects if money were to be allocated for people to guide the de-
velopment of software interoperability and common platforms. 
The comment was also made that administrators of funding 
agencies would surely recognize this need if it was properly 
communicated to them. It was concluded that there is a com-
munication problem between researchers and funding agen-
cies in this respect and it was suggested than the INCF could 
aid in this communication, for example vis-a-vis the European 
Union. More generally, it was suggested that the INCF could 
assist in networking people in the field.

6.2  Verification of simulator function
In science, an individual experiment carries little weight, but 
when the result is reproduced in other laboratories, by different 
people, in slightly different ways, this gives strong validation. 
One of the major discussion topics during the workshop was a 
parallel need for validation of simulator function.

It is an established software engineering fact that any suffi-
ciently complex program does contain errors, regardless of the 
quality of the developer team. For a simulator, there can be 
errors at the level of a model built in implicitly in a simula-
tor—e.g. the Hodgkin-Huxley neuron model, at the level of the 
numerical method used, and at the level of its implementation. 
Furthermore, different simulators can have different accuracy 
and vary in their efficiency.

Section 5.2 discusses the diverse set of existing neuron simu-
lators. One of the ways in which to draw advantage from this 
diversity is to use the fact that different simulators are pro-
grammed differently to cross-validate simulators: If simula-
tion results can be reproduced using a differently programmed 
simulator, this gives a relatively strong verification of the cor-
rectness of both simulators.

For such cross-validation to work well, there is a need to agree 
on a common set of simulator “benchmarks”. Such a frame-
work could also make possible comparisons of accuracy and 
efficiency. This could work as an inspiration and driving force 
for simulator developers, and help in focussing development. 
Without quantitative comparison data it is difficult for devel-
opers to know what is practically feasible.

If a benchmark suite is published on web pages maintained by 
the INCF this would be of great community value. It is impor-
tant that such benchmarks be with respect to published models 
not contrived by the developers. Workshop participants men-
tioned cases where essentially good methods were neglected 
because they had poor performance in artificial benchmarks. 
This experience parallels that in software engineering, where 
the trend during the previous two decades has been from arti-
ficial contrived benchmarks towards more application-like. It 
is also important that the data on the web pages be updateable 
so that old information can be superseded by current best prac-
tices in each simulator.

Examples of possible benchmarks are the DeSchutter Purkinje 
cell model (Schutter, 1998) and the model of Vogels and Ab-
bott (2005). ModelDB (7.5.1) contains 280+ such published 
models from which a selection could be drawn. The workshop 
gives the following recommendation:
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Implement a standard simulator test suite. 1. An INCF 
staff member should propose a set of simulator “benchmarks” 
for the purposes of verifying correctness of computation and 
serving as a standard for simulator performance. These should 
preferably be selected with respect to published models not 
contrived by the simulator developers. 2. INCF should allocate 
funding for and coordinate the implementation of the test suite 
by members of the labs that have developed the simulators. 3. 
INCF should maintain web pages with the results of the test 
suite for each simulator. These pages should be updateable so 
that old information can be superseded by current best prac-
tices in each simulator. 

6.3  Model verification
In section 6.2, the verification of the simulation tools was dis-
cussed. During the workshop there was also a discussion about 
the verification of models and the reproducibility of modeling 
results.

A crucial point for a simulation is: How do you know that what 
you’re simulating is correct?  As was discussed in section 3.5, 
the model needs to be well rooted in empirical data. This can 
be achieved if test problems are chosen with care. Such prob-
lems should deal with basic traits of the domain under study 
and be chosen so that many aspects of the problem are easily 
accessible through experimental measurement. The test prob-
lems can validate the simulation technique so that simulations 
can then be extrapolated to other problems with some degree 
of confidence. The comment was made that some areas in the 
brain are easier to work with, with regard to model validation, 
than others. It is especially important to look at a region with 
well-defined inputs and outputs, such as, for example, the bar-
rel cortex.

Section 3.5 also discussed how models based on first princi-
ples, such as a 3D volume model of the electromagnetic field 
in neural tissue, increase confidence in the model; section 4.6 
discussed how this gives the possibility of validating the Hodg-
kin-Huxley model and how upscaling techniques could be used 
to derive, from the 3D volume model, a new model at the same 
level of organization as the Hodgkin-Huxley model.

From the top-down perspective, doubt was raised whether a 
3D volume model of an entire network, such as those discussed 
in section 4.4.3, would really say anything, and, in particular, 
that such very detailed network models lack measures of veri-
fiability. The approach suggested to the latter problem was to 
verify the simulation tool on simpler problems, such as the test 
problems discussed above.

In order to develop good test problems, there is a need for ex-
periments tailored towards simulation. It was pointed out that 
there is a sociological, or structural problem in the field such 
that experimentalists will not go very far in answering such 
needs. On the other hand, there are now some experimental 
laboratories which use modeling as a fundamental research 
tool.

6.4  Model reproducibility
There was a consensus that published simulation results are, in 
general, very hard to reproduce. Thus, the third major finding 
of the workshop was:

Workshop participants reported on difficulties in repro-
ducing simulations from published articles. 

There seem to be several common reasons for this: 

•	The model description is incomplete. It is often neces-
sary to contact the authors to get additional information 
required to run the simulation. 

•	The model description differs from the model used to 
produce the results. It occurs that last-minute modifica-
tions are made to the model, while the same modifica-
tions do not find their way into the methods section. 

•	The model description uses a formalism not supported 
on the simulator used to reproduce the results. One 
example of this is given in section 5.3.3. 

It may also happen that the simulations described in the ar-
ticle have been carried out on peculiar hardware and/or with 
custom code, entailing substantial re-implementation efforts 
when running the simulation with standard software on stan-
dard hardware.

Since reproducibility is one of the tenets of science, the work-
shop gives the following recommendation:

Develop publication guidelines for ensuring the reproduc-
ibility of simulations. INCF should develop guidelines for 
publications with computer simulations and publish these on 
the INCF homepage as a reference for authors. INCF should 
also encourage publishers to implement policies for making 
models available in conjunction with publication. 

One topic discussed at the workshop was whether the concept 
of reproducibility should include exact quantitative reproduc-
ibility, i.e. reproduction of not only the behavior of the model 
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but also the exact numerical values of simulation output. Such 
a requirement is harsh, because it means not only that identical 
algorithms must be used, but also that numerical operations 
need to be performed in an identical order so that cancella-
tion effects, rounding errors, etc. do not cause noticeable dif-
ferences.

An intermediate requirement would be that every simulation 
of the model with the same simulation software on the same 
machine gives identical results. This kind of reproducibility is 
important, for example during development and debugging. 
Even this is far from trivial on a cluster, since this requires a 
mechanism for seeding the pseudo random number generator 
in each process. It may even be impossible to make the result 
independent of the number of processes, because the uses of 
random numbers occur in a different order depending on how 
the model is distributed over processes.

6.5  Method development in computational 
neuroscience
From a developers point of view, it was pointed out that the 
strong commitment required to develop an application is not 
sufficiently recognized. This is especially the case when mak-
ing the transition from research tool to public tool, because this 
requires documentation, user support and high code quality, at 
least in the case of an open source project. Workshop partici-
pants reported on the difficulty in persuading funding agencies 
to fund simulator development. A quick round through the sim-
ulator developers present at the workshop showed that money 
supporting the development consistently came from a project 
not having simulator development as its main goal.

Large-scale simulation on parallel computers brings a new 
degree of complexity into simulation methodology which in-
creases the need also for more theoretical method development. 
Again, it seems as if such research falls between the chairs 
with regard to funding—it is neither pure computer science 
nor neuroscience. The workshop therefore gives the following 
recommendation:

Encourage, support and fund work on method develop-
ment within computational neuroscience. INCF should in-
form funding agencies about the need for research on methods 
in computational neuroscience, and on methods for large-scale 
simulation in particular. 

In a similar vein, workshop participants reported on the diffi-
culty in publishing simulation methods in peer-reviewed jour-
nals. One of the first peer reviewed journal articles on large-
scale simulation is Morrison et al. (2005). The workshop gives 

the following recommendation:

Encourage, support and fund the production of publica-
tions on concepts and techniques for large-scale simula-
tions. INCF should inform publishers about the need for 
published work on methods within the field of large-scale sim-
ulations and computational neuroscience in general, and about 
the current growth in this area. 

6.6  A cyber infrastructure for 
computational neuroscience? 
Workshop participants recognized the need to collect models 
into model repositories. This is important, not only for simu-
lator verification and benchmarking (section 6.2) but also to 
aid development of large-scale network models. For example, 
there is a need for a library of cell models to draw upon when 
building network models.

Examples of existing model repositories are ModelDB (7.5.1) 
and the RIKEN J-Node portal/server (section 6.6.1). Models in 
these repositories can be coded in any specification language. 
The only requirement is to supply a README file. In the fu-
ture, it may be desirable to develop model repositories con-
forming to a standard model description language (c.f. section 
5.3.3).

6.6.1  The NRV project
The NRV project (Neuroinformation Research in Vision), at 
the Japanese neuroinformatics node (http://www.neuroinf.jp/), 
represents a mathematical modeling approach for understand-
ing the brain as a system through the integration of experimen-
tal data at multiple levels.

The current paradigm for information flow in science today 
involves the use of many types of information technology, but 
what is finally stored on the PC is scientific papers. The NRV 
project aims to extend this paradigm by providing databases 
with peer reviewed content which can be shared in a manner 
similar to the sharing of papers. These databases contain: 

•	source code of models 

•	experimental data 

•	documents 

The Visiome platform (Usui (2003); Usui et al. (2004); 7.5.4) 
is a first example of such a database. Concepts from Visiome 
have been used in development of the XooNIps content man-
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agement system (7.5.5), which can be used as a base platform 
for many types of database from small to large. XooNIps is 
open-source software.

Other platforms at the Japanese neuroinformatics node in-
clude:

•	The Neuron/Glia Platform, which integrates accumulat-
ing knowledge on the complex interactions between 
neuron and glia, including the activities of associated 
functional proteins.

•	The Brain Machine Interface Platform (BMI PF), which 
accumulates BMI (Brain Machine Interface)-related 
experimental data, mathematical models, and tools 
generated in neuroscience, computational theory, and 
robotics.

•	The Invertebrate Brain Platform (IVB PF), which 
integrates experimental data, mathematical models, 
and research tools relevant to the study of invertebrate 
brains, neurons, and behavior.

•	The Cerebellar Development Transcriptome Data-
base (CDT-DB), which provides spatio-temporal gene 
expression profile information on the postnatal develop-
ment of mouse cerebellum. It seeks to reproduce the 
genetic blueprint of cerebellar development. 

Platforms for neuroimaging and integrative brain research are 
currently under development.

Database platforms are integrated through the RIKEN J-Node 
portal/server where the XooNIps system is the key feature for 
inter-database communication.

The NRV project has as one goal to prepare for the arrival of 
a 10 PFLOP next-generation supercomputer expected to be in-
stalled at RIKEN in 2011.

It was observed by workshop participants that legislation in 
some countries, for example Norway and Sweden, requires the 
storage of research data for 10 years. It was suggested that this 
kind of tool might be suitable for this task and such use would 
entail many bonus benefits.

Another observation is that it would be motivating for individ-
ual researchers to contribute if publishing data in this kind of 
digital database would entail an increased likelihood of fund-
ing.

6.6.2  GRID
GRID technology is a method of pooling computing resources, 
such as computing, storage and network resources, so that they 
can be shared on a demand basis. GRID computing was sug-
gested at the workshop as a possibility for sharing cluster re-
sources for large-scale simulations.

Markus Diesmann informed workshop participants about the 
Black Forest Grid (Backofen et al. (2006); 7.6.1), which is a 
collaborative effort of ten faculties of the Albert-Ludwigs Uni-
versity to establish joint grid computing facilities using the 
framework and experience of the largest computing grid in 
the world, the LHC (Large Hadron Collider) Computing Grid. 
Such a framework is highly scalable and the software involved 
has been successfully used at CERN to manage 16000 contrib-
uted CPUs and 4000 TB of storage and to operate clusters of 
more than 2400 nodes. Using the grid infrastructure, the BFG 
has founded the virtual organization (VO) CNS as a starting 
point to explore the sharing of resources in Computational 
Neuroscience (Potjans et al., 2007).

Today, the GRID is not widely used for parallel process-
ing requiring low latency communication between the com-
pute nodes. However, this is just the constraint imposed by 
large-scale simulations of neuronal networks. Thus, from the 
Computational Neuroscience point of view, the grid would be 
mainly used as a grid of high-performance clusters. Here, the 
parallel simulation jobs are distributed across the grid, but each 
job runs at a single site. Whether the global and local sched-
uling mechanisms are already suitable for this type of usage 
needs to be explored.
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Appendix A: Summary of 
existing and planned tools 
relevant to large-scale modeling

A.1  Model construction

A.1.1  L-Neuron
L-Neuron is a modeling tool for generating anatomically ac-
curate neuronal analogues based on Lindenmayer systems. It 
is oriented towards single cell generation.

http://krasnow.gmu.edu/L-Neuron/

A.1.2  ArborVitae
ArborVitae (Senft and Ascoli, 1999) is software for the recon-
struction of networks by algorithmic amplification of morpho-
logical data. It can be used to generate large-scale, anatomi-
cally accurate networks

A.1.3  Neuroconstruct
neuroConstruct has been designed to simplify development of 
complex networks of biologically realistic neurons, i.e. models 
incorporating dendritic morphologies and realistic cell mem-
brane conductances. It is implemented in Java and generates 
output for the NEURON and GENESIS simulators. It uses the 
latest XML-based specifications for neuronal information ex-
change, including MorphML and ChannelML.

http://www.neuroconstruct.org/

A.1.4  NeuGen
NeuGen can generate realistic dendritic and axonal morphol-
ogy of neurons and networks in 3D and construct networks of 
synaptically connected neurons in a cortical column. It uses 
experimental data to extract anatomical “fingerprints” of cells 
for synthetic generation.

http://neugen.uni-hd.de/

A.2  Simulators and environments

A.2.1  Parallel Neuron
The present standard distribution of NEURON, version 5.9, 
supports parallel simulation of network models in which cells 
on different processors are coupled by discrete logical spike 
events.

http://www.neuron.yale.edu/neuron/docs/help/neuron/neuron/
classes/parcon.html#ParallelNetwork

A.2.2  Genesis 3
The GENESIS simulator is undergoing a major redevelopment 
effort that will result in GENESIS version 3. Genesis 3 has 
a modular architecture based on plugins and has multiple in-
terfaces. This allows the use of multiple simulation engines, 
such as modules from MOOSE or Neurospaces, to perform 
the numerical calculations of the simulation. Models can be 
specified in NeuroML, making it possible to easily exchange 
models between simulators that use this standard. Advanced 
Java-based network visualization programs can be used inter-
actively with GENESIS simulations. GENESIS 3 can be di-
rectly interfaced to other simulators, in order to allow simula-
tions to interact. Simulations can be run from other modeling 
environments, such as the Systems Biology Workbench or the 
Modeler’s Workspace. A WWW interface can allow remote 
simulations to be run, using a web browser. Alternate parsers 
can replace the GENESIS Script Language Interpreter to allow 
the use of improved or more standard scripting languages, such 
as Python. Estimated current development status is 1 yr before 
modeling is possible for general users.

http://www.genesis-sim.org/GENESIS
http://moose-g3.sourceforge.net
http://neurospaces.sourceforge.net

A.2.3  NEST
NEST is a simulation system for large networks of biologically 
realistic (spiking) neurons. It is best suited for the simulation of 
large networks of spiking point-neuron models where a realis-
tic number of synapses need to be represented. The internal dy-
namics of these models may be arbitrarily complex (or simple). 
There is software support for heterogeneity in the neuron types 
as well as in synaptic dynamics including short-term plasticity 
and STDP. Neurons can interact by spikes constrained to the 
simulation time grid or in continuous time. NEST uses a hy-
brid multi-threading and message-passing simulation scheme. 
For more details see the corresponding section in Brette et al. 
(2007) as well as the following URLs.

http://www.scholarpedia.org/article/NEST
http://www.nest-initiative.org

A.2.4  NCS
NCS is a brain simulator which is optimized to model the hori-
zontally dispersed, vertically layered distribution of neurons 
characteristic of the mammalian neocortex. The largest simula-
tions to-date have been on the order of a million single-com-
partment neurons and 1 trillion synapses.

http://brain.unr.edu/ncsDocs/

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

07
.2

62
.1

 : 
P

os
te

d 
27

 J
un

 2
00

7



[    22    ]

A.2.5  CSIM and PCSIM
CSIM efficiently simulates medium sized networks of inte-
grate-and-fire neurons. It is extendable and has an interface to 
Matlab. PCSIM provides a powerful environments for setting 
up and simulating large-scale networks, performing data anal-
ysis and visualizing results. In PCSIM the Matlab interface has 
been replaced with a Python interface.

http://www.lsm.tugraz.at/csim/ 
http://sourceforge.net/projects/pcsim

A.2.6  LENS
LENS is a simulation environment designed to support and in-
tegrate a wide range of brain modeling tasks across a variety of 
computational platforms. In contrast to most neural modeling 
environments, LENS supports arbitrary models and levels of 
abstraction, from neural compartments, neurons, and micro-
circuits to brain structures and global brain processes. LENS 
simulations are configured and initialized using a dynamically 
extensible specification language in neuroscience domain 
concepts and terms, which insulates model developers from 
non-model-specific complexity. LENS is developed at Bio-
metaphorical Computing Research, IBM T.J. Watson Research 
Center, Yorktown Heights, N.Y., U.S.A. For further informa-
tion, contact Charles Peck <cpeck@us.ibm.com>.

A.2.7  SPLIT
The SPLIT simulator (Hammarlund and Ekeberg, 1998) was 
developed in the mid 90’s with the aim of exploring how to 
efficiently use the resources of various parallel computer ar-
chitectures for neural simulations. It is a C++ library which is 
linked into the user program, which is serial, and can be linked 
with a serial or parallel version of the library. Parallelism is 
thus completely hidden from the user. SPLIT was recently op-
timized for the Blue Gene/L computer (Djurfeldt et al., 2005) 
and shows linear scaling behavior up to at least 4096 proces-
sors. The largest simulation performed with SPLIT comprised 
22 million neurons and 11 billion synapses. For further infor-
mation, contact Anders Lansner <ala@csc.kth.se>.

A.2.8  Systems Biology Workbench
The Systems Biology Workbench (SBW), is a software frame-
work that allows heterogeneous application components—writ-
ten in diverse programming languages and running on different 
platforms—to communicate and use each others’ capabilities 
via a fast binary encoded-message system.

http://sbw.kgi.edu/research/sbwIntro.htm

A.3  Languages and language tools

A.3.1  NeuroML
NeuroML is an ongoing collaborative effort to support the use 
of XML for software relating to neuroscience modeling. It is 
not a single standard XML language - but rather a collection of 
related XML projects for modeling different aspects and lev-
els of neural systems, from intracellular mechanisms and ion 
channel kinetics to the dynamics of networks of reconstructed 
neurons. 

http://www.neuroml.org/

A.3.2  PyNN
The PyNN framework has been developed within the FACETS 
project (Meier, 2005) as a standard scripting language bind-
ing for neuronal network simulators. This abstracts differences 
between simulators and provides a common way to specify 
models and run simulations. The goal is that simulation scripts 
in PyNN for simulator A will run on simulator B without modi-
fication. PyNN is based on the Python programming language. 
The API has two parts, a low-level, procedural API, and a high-
level, object-oriented API which is intended to have a one-to-
one mapping with NeuroML. 

http://pynn.gforge.inria.fr/

A.4  Visualization

A.4.1  DAVIS
DAVIS is a visualization system for cortical data and models.

http://vip.cs.utsa.edu/research/Davis/

A.5  Databases and Database tools

A.5.1  ModelDB
ModelDB provides an accessible location for storing and ef-
ficiently retrieving computational neuroscience models. Mod-
elDB is tightly coupled with NeuronDB (7.5.2). Models can 
be coded in any language for any environment. Model code 
can be viewed before downloading and browsers can be set to 
auto-launch the models.

http://senselab.med.yale.edu/senselab/modeldb/
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A.5.2  NeuronDB
NeuronDB provides a dynamically searchable database of 
three types of neuronal properties: voltage gated conductances, 
neurotransmitter receptors, and neurotransmitter substances. It 
contains tools that provide for integration of these properties in 
a given type of neuron and compartment, and for comparison 
of properties across different types of neurons and compart-
ments.

http://senselab.med.yale.edu/senselab/NeuronDB/

A.5.3  BioModels
http://www.ebi.ac.uk/biomodels/

A.5.4  Visiome
Visiome Platform is a digital research resource archive for vi-
sion science. The available resources include mathematical 
models, experimental stimuli, experimental data, and analyti-
cal tools.

http://platform.visiome.neuroinf.jp/

A.5.5  XooNIps
XooNIps is an extension of the content management system 
XOOPS for the needs of neuroinformatics. The XooNIps-based 
database stores digital resources such as research articles, ex-
perimental data, mathematical models, and stimulations. It is a 
modular base platform which can support many types of data-
base from small to large.

http://xoonips.sourceforge.jp/

A.6  GRID computing

A.6.1  Black Forest Grid initiative
The BFG is a collaborative effort of ten faculties of the Albert-
Ludwigs University to establish joint grid computing facilities 
using the framework and experience of the largest computing 
grid in the world, the LHC (Large Hadron Collider) Comput-
ing Grid, LHC.

http://www.bfg.uni-freiburg.de
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12.00 – 19.00 Scientific presentations and discussions

Jan Bjaalie About INCF

Anders Lansner Topics and objective of the workshop

Rodney Douglas Vision and demands for large-scale network simulations

Shiro Usui Japan Node: supporting mathematical modeling for understanding brain 
function

Andrew Davison Overview of simulators

David Beeman Parallel simulation with GENESIS-PGENESIS

Michael Hines Parallel simulation with Neuron

Markus Diesmann Continuous spike times and efficiency in parallel simulations with NEST

Fred Harris Parallel simulation with NCS

Mikael Djurfeldt Parallel simulation with SPLIT

December 13: 

08.30 – 13.00 Scientific presentations and discussions, draft report

Charles Peck Parallel simulation with LENS

Thomas Natschäger Parallel simulation with CSIM

Jens Eberhard Specifying networks, growing neurons

Gabriel Wittum Numerics of parallel neural simulations

Appendix B: Workshop program

December 12:
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