A tutorial about SBML and SBML Level 2 Version 2

Michael Hucka

Biological Network Modeling Center,
Beckman Institute
California Institute of Technology
Pasadena, California, USA

Sarah Keating

Science \& Technology Research Institute
University of Hertfordshire
Hatfield, Hertfordshire, UK

Tutorial outline

I. Some background about SBML
2. SBML language basics
3. LibSBML and other SBML software infrastructure
4. Additional SBML features and SBML Level 2 Version 2 differences
5. A brief survey of SBML-compatible software
6. Closing comments and discussions

The background of SBML

Computational modeling is essential

Computational modeling is essential

- Computational modeling is increasingly crucial to biology

Computational modeling is essential

- Computational modeling is increasingly crucial to biology
- Not a new idea!
- Experiencing heightened interest thanks to systems biology

Computational modeling is essential

- Computational modeling is increasingly crucial to biology
- Not a new idea!
- Experiencing heightened interest thanks to systems biology
- Serves the scientific method
- Enables quantitative hypothesis testing
- Forces you to quantify every assumption \& make it testable
- Enables precise knowledge transfer
- Reduces ambiguities

Computational modeling is essential

- Computational modeling is increasingly crucial to biology
- Not a new idea!
- Experiencing heightened interest thanks to systems biology
- Serves the scientific method
- Enables quantitative hypothesis testing
- Forces you to quantify every assumption \& make it testable
- Enables precise knowledge transfer
- Reduces ambiguities
- Sign of rising popularity: new journals starting up
- E.g., PLoS Computational Biology

Computational models

$$
\begin{aligned}
& k_{1}=k_{2}=k_{3}=1 \mathrm{~s}^{-1} \\
& K m_{1}=10^{-7} \mathrm{M}, K m_{2}=10^{-8}, K m_{3}=2.10^{-6} \mathrm{M} \\
& K_{A}=10^{-11}, m=4, n=3, \alpha=0.001 \\
& {\left[C a_{\text {in }}\right]=[I P 3 R]=\left[P L C_{\text {tot }}\right]=[P I P 2]=\left[I P 3_{\text {ase }}\right]=0.001 \mathrm{M}} \\
& {\left[G_{q}\right]=0.01 \mathrm{M},\left[C a_{\text {out }}\right]=[I P 3]=\left[P L C_{\text {act }}\right]=0 \mathrm{M}}
\end{aligned}
$$

$$
\frac{d\left[C a_{\text {out }}\right]}{d t}=\frac{k_{1}[I P 3 R] *\left(\left[C a_{\text {in }}\right]-\left[C a_{\text {out }}\right]\right)}{K m_{1}+\left|\left[C a_{\text {in }}\right]-\left[C a_{o u t}\right]\right|} * \frac{[I P 3]^{m}}{K_{A}+[I P 3]^{m}}
$$

$$
\frac{d[I P 3]}{d t}=\frac{k_{2}\left[P L C_{a c t}\right] *[P I P 2]}{K m_{2}+[P I P 2]}-\frac{k_{3}\left[I P 3_{\text {ase }}\right] *[I P 3]}{K m_{3}+[I P 3]}
$$

$$
\frac{d\left[P L C_{a c t}\right]}{d t}=\frac{\left[G_{q}\right]^{n^{n}}}{\alpha+\left[G_{q}\right]^{n}} *\left[P L C_{t o t}\right]
$$

Software tools to aid modeling

Software tools to aid modeling

- General-purpose environments
- Mathematica, MATLAB, etc.

Software tools to aid modeling

- General-purpose environments
- Mathematica, MATLAB, etc.
- Special-purpose software
- model editing
- simulation
- analysis
- visualization

Software tools to aid modeling

- General-purpose environments
- Mathematica, MATLAB, etc.
- Special-purpose software
- model editing
- simulation
- analysis
- visualization

Software tools to aid modeling

- General-purpose environments
- Mathematica, MATLAB, etc.
- Special-purpose software
- model editing
- simulation
- analysis
- visualization

Software tools to aid modeling

- General-purpose environments
- Mathematica, MATLAB, etc.
- Special-purpose software
 Branch 2 * AcAld + 3 * NAD -> Succinate +

Ability to exchange models is critical

Ability to exchange models is critical

- Simply publishing equations is not enough
- Don't want to transcribe equations from papers
- Want a common file format

Ability to exchange models is critical

- Simply publishing equations is not enough
- Don't want to transcribe equations from papers
- Want a common file format
- Not an earth-shattering idea!
- But curiously, such a format hadn't existed before year 2000
- Each tool had its own unique proprietary format

SBML = Systems Biology Markup Language

SBML = Systems Biology Markup Language

- Machine-readable format for representing computational models

SBML = Systems Biology Markup Language

- Machine-readable format for representing computational models
- Suitable for reaction networks
- Arbitrary rate functions

$$
\begin{gathered}
2 A+B \rightharpoonup C \\
C \rightleftharpoons D+F
\end{gathered}
$$

SBML = Systems Biology Markup Language

- Machine-readable format for representing computational models
- Suitable for reaction networks
- Arbitrary rate functions

$$
\begin{gathered}
2 A+B \rightharpoonup C \\
C \rightleftharpoons D+F
\end{gathered}
$$

- Declarative, not procedural

SBML = Systems Biology Markup Language

- Machine-readable format for representing computational models
- Suitable for reaction networks
- Arbitrary rate functions

$$
\begin{gathered}
2 \mathrm{~A}+\mathrm{B} \rightharpoonup \mathrm{C} \\
\mathrm{C} \rightleftharpoons \mathrm{D}+\mathrm{F}
\end{gathered}
$$

- Declarative, not procedural
- Models can also include
- Compartments (i.e., where chemical substances are located)
- Mathematical "extras" (assignments, explicit different eq's)
- Discontinuous events with arbitrary triggers

Fundamentally an exchange format

- For transferring models between software tools
- Not meant as a system's internal format
- Not suited for representing-
- Experimental results
- Numerical simulation results

Now the de facto standard

- Supported by >100 systems
- Simulators, databases, analysis tools, editing tools
- Accepted by journals
- Nature
- PLoS Computational Biology
- BMC
- Used in texbooks \& courses

home - contacts • documents • downloads • FAQs - forums • Level 3 - models • news
The Systems Biology Markup Language (SBML) is a computer-readable format for representing models of biochemical reaction networks. SBML is applicable to metabolic networks, cellsignaling pathways, regulatory networks, and many others.
Internationally Supported and Widely Used
SBML has been evolving since mid-2000 through the efforts of an international group of software developers and users. Today, SBML is supported by over $\mathbf{1 0 0}$ software systems, including the following (where "*' indicates SBML support in development):

BALSA	DBsolve	MMT2	SBMLmerge
BASIS	Dizzy	Modesto	SBMLR
BIOCHAM	E-CELL	Moleculizer	SBMLSim
BioCharon	ecellJ	Monod	SBMLToolbox
ByoDyn	ESS	Narrator	SBliD
BioCyc	FluxAnalyzer	NetBuilder	SBToolbox
BioGrid	Fluxor	Oscill8	SBW
BioModels	Gepasi	PANTHER Pathway	SCIpath
BioNetGen	Gillespie2	PathArt	Sigmoid
BioPathway Explorer	HSMB	PathScout	SigPath
Bio Sketch Pad	HybridSBML	PathwayLab	SigTran
BioSens	INSILICO discovery	Pathway Tools	SIMBA
BioSPICE Dashboard	JACOBIAN	PathwayBuilder	SimBiology
BioSpreadsheet	Jarnac	PATIKAweb	Simpathica
BioTapestry	JDesigner	PaVESy	SimWiz
BioUML	JigCell	PET	SloppyCell
BSTLab	JSim	PNK	SmartCell
CADLIVE	JWS Online	Reactome	SRS Pathway Editor
CelIDesigner	Karyote*	ProcessDB	StochSim

SBML"Levels"

- Levels are meant to coexist
- Level I: mostly basic compartmental modeling
- Level 2: significantly more features-e.g.:
- User-defined functions
- Events
- "Types" for chemical species and compartments
- Initial conditions, constraints, other "fiddly bits"
- Level 3: now (back) in development

Latest: SBML Level 2 Version 2

- Final version released September 26
- Embodies years of discussions and practical experience
- Most software currently only supports L2VI, not L2V2 yet
- But L2V2 support will come soon

Systems Biology Markup Language (SBML) Level 2: Structures and Facilities for Model Definitions

Andrew Finney afinney@sbml.org
Physiomics PLC
Magdalen Centre
Oxford Science Park
Oxford, OX4 4GA, UK

Michael Hucka mhucka@sbml.org Biological Network Modeling Center Beckman Institute, Mail Code 139-7 California Institute of Technology Pasadena, CA 91125, USA

Nicolas Le Novère
lenov@ebi.ac.uk
European Bioinformatics Institute Wellcome Trust Genome Campus, Hinxton

Cambridge, CB10 1SD, UK

SBML Level 2, Version 2, Revision 1
26 September 2006

Corrections and other revisions of this SBML language specification may appear over time Notifications of revisions are broadcast on the mailing list sbml-announce@caltech.edu

The latest revision of the SBML Level 2 Version 2 specification is available at http://sbml.org/specifications/sbml-level-2/version-2/

This revision of the SBML Level 2 Version 2 specification is available at
http://sbml.org/specifications/sbml-level-2/version-2/revision-1/
The list of errata for all revisions of the SBML Level 2 Version 2 specification is available at http://sbml.org/specifications/sbml-level-2/version-2/errata/

The XML Schema for SBML Level 2 Version 2 is available at http://sbml.org/xml-schemas/

A general overview of SBML

How is SBML used?

How is SBML used?

- Meant to provide an exchange language for software tools

How is SBML used?

- Meant to provide an exchange language for software tools
- Don't write SBML by hand if you can help it
- (SBML is in XML, so you could write it by hand if you had to)

```
<listOfReactants>
        <speciesReference species="MKKK"/>
    </listOfReactants>
    <listOfProducts>
        <speciesReference species="MKKK_P"/>
    </listOfProducts>
    <listOfModifiers>
        <modifierSpeciesReference species="MAPK_PP"/>
    </listOfModifiers>
    <kineticLaw>
        <math xmlns="http://www.w3.org/1998/Math/MathML">
        <apply>
            <divide/>
            <apply>
                <times/>
                <ci> V1 </ci>
                <ci> MKKK </ci>
            </apply>
            <apply>
                <times/>
            <apply>
```


How is SBML used?

- Meant to provide an exchange language for software tools
- Don't write SBML by hand if you can help it
- (SBML is in XML, so you could write it by hand if you had to)
- Software tools that "speak" SBML provide a higher-level interface

How is SBML used?

- Meant to provide an exchange language for software tools
- Don't write SBML by hand if you can help it
- (SBML is in XML, so you could write it by hand if you had to)
- Software tools that "speak" SBML provide a higher-level interface
- Applications usually have their own native format
- Import/export SBML rather than natively save as SBML

Some important SBML constructs

- Basic elements
- species
- compartment
- parameter
- reaction
- Additional useful elements
- unit definition
- "rule"
- function definition

- event
- initial assignment
- constraint

Example \#I

- One reaction, $2 A \quad B+C$, where rate is given as $k[A(t)]^{2}$ - Initial conditions: $[\mathrm{A}(0)]=3,[\mathrm{~B}(0)]=0,[\mathrm{C}(0)]=0$.

Basic SBML document structure

> | SbmI |
| :--- |
| level: positivelnteger $\{$ use="required" fixed="2" $\}$ |
| version: positivelnteger $\{$ use="required" fixed="2" $\}$ |
| model: Model |

<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns="http://www.sbml.org/sbml/level2/version2" level="2" version="2">
</sbml>

- Format: plain text (technically UTF-8)
- Extension: usually .xml (not .sbml)

The Model container

```
Model
id: SId { use="optional" }
name: string { use="optional" }
sboTerm: SBOTerm { use="optional" }
functionDefinition: FunctionDefinition[0..*]
unitDefinition: UnitDefinition[0..*]
compartmentType: CompartmentType[0..*]
speciesType: SpeciesType[0..*]
compartment: Compartment[0..*]
species: Species[0..*]
parameter: Parameter[0..*]
initialAssignment: InitialAssignment[0..*]
rule: Rule[0..*]
constraint: Constraint[0..*]
reaction: Reaction[0..*]
event: Event[0..*]
```


Overall structure of the XML rendition of a Model instance

<model id="m" name="Example">
<listOfFunctionDefinitions>
</listOfFunctionDefinitions>
<listOfUnitDefinitions>
</listOfUnitDefinitions>
<listOfCompartmentTypes>
</listOfCompartmentTypes>
<listOfSpeciesTypes>
</listOfSpeciesTypes>
<listOfSpecies>

</listOfSpecies>

Overall structure of the XML rendition of a Model instance

<model id="m" name="Example"> <listof?ünctionDefinitions>
</listOfFunctionDefinitions>
<listOfUnitDefinitions>
</listOfUnitDefinitions>
<listOfCompartmentTypes>
</listOfCompartmentTypes>
<listOfSpeciesTypes>
</listOfSpeciesTypes>
<listOfSpecies>
</listOfSpecies>

Overall structure of the XML rendition of a Model instance

<model id="m" name="Example">
<listofrünctiondefiñíions>
</listOfFunctionDefinitions>
<listOfUnitDefinitions>
</listOfUnitDefinitions>
<listOfCompartmentTypes>
</listOfCompartmentTypes>
<listOfSpeciesTypes>
</listOfSpeciesTypes>
<listOfSpecies>
</listOfSpecies>

Overall structure of the XML rendition of a Model instance

Overall structure of the XML rendition of a Model instance

order is significant
<model id="m" name="Example" $>$
<listofrunctionvefinitions>

</listOfFunctionDefinitions>

<listOfUnitDefinitions>
</listOfUnitDefinitions>
<listOfCompartmentTypes>
</listOfCompartmentTypes>
<listOfSpeciesTypes>
</listOfSpeciesTypes>
<listOfSpecies>
</listOfSpecies>

listOf

- Lists like Parameter[0..*] in the definition are translated into
<listOfParameters>
<parameter ... />
<parameter ... />
</listOfParameters>
- listOf s are derived from SBase
- Therefore, can have metaid, <notes>, <annotation>

SBase

SBase
metaid: ID $\{$ use="optional" $\}$ notes: $($ any : $\{$ namespace="http://www.w3.org/1999/xhtml" $\})$ annotation: $($ any $)\{$ minOccurs="0" maxOccurs="1" $\}$

- Abstract type
- Most object structures in SBML are derived from SBase
- <notes> allows human-readable annotations to be added
- Format is XHTML
- <annotation> allows machine-readable annotations to be added
- Applications can put their own data into it-just needs to be XML
- Guidelines are discussed later in this tutorial
- metaid is for references by annotations

Common feature: identifiers and names

- Most elements have both an id and a name field
- Identifier field has restricted syntax: abcl23 or _abcl23 or a_b_c_I etc.
- The id is what you use in expressions

Identifier	Meaning
species id	quantity of the species
compartment id	size of the compartment
parameter id	numerical value
function id	a call to that function
reaction id (L2v2)	rate of the reaction

- Value of name is unrestricted (exception: no newlines or carriage returns)
- Must assign a value to id on most objects, but name is always optional
- Some tools let you use names \& auto-generate id's (e.g., COPASI)

Representation of mathematical expressions in SBML

- SBML Level I:mathematical expressions encoded as text strings
- In the XML, have formula="2*S1"
- SBML Level 2: math expressions encoded using MathML 2.0
- Standard XML format for encoding mathematical expressions
- SBML uses only a subset of the content portion of MathML
- MathML content always must be placed in a <math> element

MathML operators in SBML

- Most common operators available:
- plus, minus, power, exp, etc.
- relational operators: eq, neq, gt, lt, geq, leq
- piecewise
- pi, exponentiale
- many others
- Complete list on p. 21 of L2V2 specification document

References in MathML

- References to numbers are through the <cn> element:

```
<math xmlns="http://www.w3.org/1998/Math/MathML">
    <apply>
            <times/>
            <cn type="integer"> 42 </cn>
            <cn type="real"> 3.3 </cn>
    </apply>
</math>
```

- References to identifiers are through the <ci> element:
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<times/>
<cn> 0.014 </cn>
<ci> S1 </ci>
</apply>
</math >

References in MathML

- References to numbers are through the <cn> element:

```
<math xmlns="http://www.w3.org/1998/Math/MathML">
    <apply>
        <times/>
```

 <cn type="integer"> 42 </cn>
 <cn type="real"> 3.3 </cn>
 </apply>
 </math $>$

- References to identifiers are through the <ci> element:
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<times/>
<cn> 0.014 </cn>
<ci> S1 </ci>
</apply>
</math >

References in MathML

- References to numbers are through the <cn> element:

```
<math xmlns="http://www.w3.org/1998/Math/MathML">
    <apply>
        <times/>
```

 <cn type="integer"> 42 </cn>
 <cn type="real"> 3.3 </cn>
 </apply>
 </math>

- References to identifiers are through the <ci> element:
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<times/>
<cn> 0.014 </cn>
<ci> S1 </ci>
</apply>
</math >

References in MathML

- References to numbers are through the <cn> element:

```
<math xmlns="http://www.w3.org/1998/Math/MathML">
    <apply>
        <times/>
```

 <cn type="integer"> 42 </cn>
 <cn type="real"> 3.3 </cn>
 </apply>
 </math>

- References to identifiers are through the <ci> element:
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<times/>
<cn> 0.014 </cn>
<ci> S1 </ci>
</apply>
</math>

Compartment basics

- id \& name
- spatialDimensions
- 3, 2, 1, 0 (default: 3)
- size
- Floating-point number giving the compartment size (volume or other)
- units
- Identifier of the units of measure for the size
- outside
- Identifier of the compartment outside of this one
- constant
- Boolean: is the compartment size constant? (Default: true)

Compartment example

<listOfCompartments>
\[
\begin{aligned}
& \text { <compartment id="cytoplasm" size="5"/> } \\
& \text { <compartment id="nucleus" size="1" } \\
& \text { outside="cytoplasm" /> }
\end{aligned}
\]
</listOfCompartments>
<listOfSpecies>
\[
\begin{gathered}
\text { <species id="x" compartment="nucleus" } \\
\text { initialAmount="1" /> }
\end{gathered}
\]
<species id="Y" compartment="cytoplasm"
</listOfSpecies>

Species basics

Species basics

- id \& name
- compartment
- Identifier of compartment where species is located
- initialAmount
- Floating-point number giving initial quantity as molecular/item count
- initialConcentration
- Floating-point number giving initial quantity as concentration - More precisely: (units of substance)/(units of size)

Species basics

- id \& name
- compartment
- Identifier of compartment where species is located
- initialAmount
- Floating-point number giving initial quantity as molecular/item count
- initialConcentration
- Floating-point number giving initial quantity as concentration - More precisely: (units of substance)/(units of size)

Species basics

- id \& name
- compartment
- Identifier of compartment where species is located
- initialAmount
- Floating-point number giving initial quancity as molecular/item count
- initialConcentration
- Floating-point number giving initial quantity as concentration
- More precisely: (units of substance)/(units of size)
- boundaryCondition
- Boolean: should a rate of change equation be constructed for the species based on the system of reactions? (Default: false)
- constant
- Boolean: is the species quantity constant? (Default: false)

More about species

- Think of species as a pool of molecules of the same type
- Species must be located in some compartment
- If have the same species in multiple compartments, must have separate species definitions for each
- ... but in L2V2, can use SpeciesType to relate them together
- If doing stochastic model, best define species in terms of amounts

Species example

<listOfSpecies>
<species id="S1" initialConcentration="0" compartment="c1" boundaryCondition="true" />
<species id="S3" initialConcentration="10" compartment="c2" constant="true"/>
<species id="S4" initialConcentration="4.5" compartment="c2"/>
</listOfSpecies>

Parameter basics

- id \& name
- value
- The floating-point value of the parameter
- units
- Identifier of the units of measure for the value
- constant
- Boolean: is the value of the parameter constant? (Default: true)

Parameter example

<listOfParameters>
<parameter id="k1" value="0.5"/> <parameter id="k2" value="0.1"/> </listOfParameters>

Reaction basics

\}
References to defined species

Reaction basics

- id \& name
- <listOfReactants> (optional)
- <listOfProducts> (optional) References to defined species
- <listOfModifiers> (optional)
- <kineticLaw> (optional)

Reaction basics

- id \& name
- <listOfReactants> (optional)
- <listOfProducts> (optional) References to defined species
- <listOfModifiers> (optional)
- <kineticLaw> (optional)
- reversible
- Boolean: is the reaction reversible? (Default: true)

About reactants, products and modifiers

About reactants, products and modifiers

- All species must be defined in the model's top-level list of species
- Reactions simply refer back to the species definitions

About reactants, products and modifiers

- All species must be defined in the model's top-level list of species
- Reactions simply refer back to the species definitions
- Reaction can have any number of reactants or products, but must have at least one reactant or product

About reactants, products and modifiers

- All species must be defined in the model's top-level list of species
- Reactions simply refer back to the species definitions
- Reaction can have any number of reactants or products, but must have at least one reactant or product
- A species can appear in both the list of reactants \& list of products
- Effective stoichiometry is then: (stoich.-as-react.) - (stoich.-as-prod.)
- E.g.: $2 A \quad A+B \quad==>$ effective stoichiometry of A is +1

About reactants, products and modifiers

- All species must be defined in the model's top-level list of species
- Reactions simply refer back to the species definitions
- Reaction can have any number of reactants or products, but must have at least one reactant or product
- A species can appear in both the list of reactants \& list of products
- Effective stoichiometry is then: (stoich.-as-react.) - (stoich.-as-prod.)
- E.g.: $2 \mathrm{~A} \quad \mathrm{~A}+\mathrm{B} \quad==>$ effective stoichiometry of A is +1
- A species labeled as modifier may also appear in list of reactants and/or products-not an either/or situation

About reactants, products and modifiers

- All species must be defined in the model's top-level list of species
- Reactions simply refer back to the species definitions
- Reaction can have any number of reactants or products, but must have at least one reactant or product
- A species can appear in both the list of reactants \& list of products
- Effective stoichiometry is then: (stoich.-as-react.) - (stoich.-as-prod.)
- E.g.: $2 \mathrm{~A} \quad \mathrm{~A}+\mathrm{B} \quad==>$ effective stoichiometry of A is +1
- A species labeled as modifier may also appear in list of reactants and/or products-not an either/or situation
- A "modifier" species appears in the rate expression but is neither created nor destroyed in that reaction

About reactants, products and modifiers

- All species must be defined in the model's top-level list of species
- Reactions simply refer back to the species definitions
- Reaction can have any number of reactants or products, but must have at least one reactant or product
- A species can appear in both the list of reactants \& list of products
- Effective stoichiometry is then: (stoich.-as-react.) - (stoich.-as-prod.)
- E.g.: $2 \mathrm{~A} \quad \mathrm{~A}+\mathrm{B} \quad==>$ effective stoichiometry of A is +1
- A species labeled as modifier may also appear in list of reactants and/or products-not an either/or situation
- A "modifier" species appears in the rate expression but is neither created nor destroyed in that reaction
no specific role assumed for modifiers

Lists of reactants, products and modifiers

- Most import common field: species
- species value must be id of existing species defined in the model
- ModifierSpeciesReference does not add any more fields
- SpeciesReference adds fields for stoichiometry

Lists of reactants, products and modifiers

- Most import common field: species
- species value must be id of existing species defined in the model
- ModifierSpeciesReference does not add any more fields
- SpeciesReference adds fields for stoichiometry

Lists of reactants, products and modifiers

- Most import common field: species
- species value must be id of existing species defined in the model
- ModifierSpeciesReference does not add any more fields
- SpeciesReference adds fields for stoichiometry

Stoichiometries

- Normally a stoichiometry is an integer or floating-point scalar value
- Default value is " 1 "
<reaction id="Dimerization" reversible="false">
<listOfReactants>
<speciesReference species="P" stoichiometry="2"/>
</listOfReactants>
<listOfProducts>
<speciesReference species="P2" />
</listOfProducts>
- For more complicated stoichiometries, use stoichiometryMath
- MathML expression
- Mutually exclusive with stoichiometry, use one or the other

Stoichiometries

- Normally a stoichiometry is an integer or floating-point scalar value
- Default value is " 1 "
<reaction id="Dimerization" reversible="false"> <listOfReactants>
<speciesReference species="P" stoichiometry="2"/>
</listOfReactants>
<listOfProducts>
<speciesReference species="P2" />
</listOfProducts>
- For more complicated stoichiometries, use stoichiometryMath
- MathML expression
- Mutually exclusive with stoichiometry, use one or the other

Stoichiometries

- Normally a stoichiometry is an integer or floating-point scalar value
- Default value is " 1 "
<reaction id="Dimerization" reversible="false"> <listOfReactants> <speciesReference species="P" stoichiometry="2"/> </listOfReactants>
<listOfProducts>
<speciesReference species="P2" />
</listOfProducts>
- For more complicated stoichiometries, use stoichiometryMath
- MathML expression
- Mutually exclusive with stoichiometry, use one or the other

KineticLaw basics

- <math>
- MathML expression for the speed of the reaction
- Units must be substance/time
- <listOfParameters>
- Defines parameters whose identifiers have scope local to the reaction only
- Not visible from any other reaction, or rest of model
- Identifiers shadow global identifiers
- Data type is same Parameter as for global parameters

KineticLaw basics

- <math>
- MathML expression for the speed of the reaction
- Units must be substance/time

not concentration/time

- <listOfParameters>
- Defines parameters whose identifiers have scope local to the reaction only
- Not visible from any other reaction, or rest of model
- Identifiers shadow global identifiers
- Data type is same Parameter as for global parameters

Interpreting reactions

- Why are SBML rate expression not identical to rate laws?
- Consider simple example:

$$
\begin{aligned}
S_{1} & \rightarrow S_{2} \\
\text { rate law } & =k \cdot\left[S_{1}\right]
\end{aligned}
$$

- What does this mean?

$$
\frac{d\left[S_{2}\right]}{d t}=-\frac{d\left[S_{1}\right]}{d t}=k \cdot\left[S_{1}\right]
$$

- But what if $V_{1} \neq V_{2}$? For example, what if $V_{2}=3 V_{1}$?
- Look at number of molecules of each species in each compartment:

$$
n_{S_{1}}=\left[S_{1}\right] \cdot V_{1} \quad n_{S_{2}}=\left[S_{2}\right] \cdot V_{2}
$$

- How molecules leave \& enter each compartment?
- $k \cdot\left[S_{1}\right] \cdot V_{1}$ molecules leave the first compartment
- $3 \cdot k \cdot\left[S_{1}\right] \cdot V_{1}$ molecules enter the second compartment

"Kinetic law" in SBML

- Rate expressions are substance/time, not substance/size/time
- Conversion for basic cases is simple:
- Multiply by volume of compartment where reactants are located:

$$
\text { rate }=k \cdot\left[S_{1}\right] \cdot V_{1}
$$

- Express rates of changes of reactants \& products in terms of substances:

$$
\begin{aligned}
& \frac{d n_{S_{1}}}{d t}=-k_{1} \cdot\left[S_{1}\right] \cdot V_{1} \\
& \frac{d n_{S_{2}}}{d t}=k_{1} \cdot\left[S_{1}\right] \cdot V_{1}
\end{aligned}
$$

- Can easily recover concentrations:

$$
\left[S_{1}\right]=\frac{n_{S_{1}}}{V_{1}} \quad\left[S_{2}\right]=\frac{n_{S_{2}}}{V_{2}}
$$

"Kinetic law" in SBML

- Rate expressions are substance/time, not substance/size/time
- Conversion for basic cases is simple:
- Multiply by volume of compartment where reactants are located:

$$
\text { rate }=k \cdot\left[S_{1}\right] \cdot V_{1}
$$

- Express rates of changes of reactants \& products in terms of substances:

$$
\begin{aligned}
& \frac{d n_{S_{1}}}{d t}=-k_{1} \cdot\left[S_{1}\right] \cdot V_{1} \\
& \frac{d n_{S_{2}}}{d t}=k_{1} \cdot\left[S_{1}\right] \cdot V_{1}
\end{aligned}
$$

- Can easily recover concentrations:

$$
\left[S_{1}\right]=\frac{n_{S_{1}}}{V_{1}} \quad\left[S_{2}\right]=\frac{n_{S_{2}}}{V_{2}}
$$

Example \#2

$$
S_{1} \rightarrow S_{2} \rightarrow S_{3}
$$

Rate laws:

$$
r_{1}=k_{1} \cdot\left[S_{1}\right]
$$

$$
r_{2}=k_{2} \cdot\left[S_{2}\right]
$$

Compartments:

Compartment volumes: $\begin{array}{lll}V_{1} & V_{2} & V_{3}\end{array}$

Initial concentrations:
Volumes:
$S_{1}=4 \quad S_{2}=10 \quad S_{3}=0$
$V_{1}=1 \quad V_{2}=0.5 \quad V_{3}=2$
Constants:
$k_{1}=0.2 \quad k_{2}=0.7$

Example \#2: interpretation of differential equations

Express rates of change of species quantities (as amounts, not concentrations):

$$
\begin{array}{ll}
\frac{d n_{S_{1}}}{d t}=-r_{1} & =-k_{1} \cdot\left[S_{1}\right] \cdot V_{1} \\
\frac{d n_{S_{2}}}{d t}=+r_{1}-r_{2} & =+k_{1} \cdot\left[S_{1}\right] \cdot V_{1}-k_{2} \cdot\left[S_{2}\right] \cdot V_{2} \\
\frac{d n_{S_{3}}}{d t} & =+r_{2} \\
= & +k_{2} \cdot\left[S_{2}\right] \cdot V_{2}
\end{array}
$$

LibSBML and other SBML software infrastructure

Software

infrastructure

supporting
 use of SBML

http://sbml.org/wiki/icsb2006_tutorial
libSBML

Ben Bornstein and Sarah Keating
Application Programming Interface

- read
- write
- validate
- manipulate
- translate

Languages

- ISO C and C++
- java
- python
- perl
- lisp
- MATLAB
- octave (coming in libSBML-3)

XML Parsers

- Xerces
- Expat
- libXML $\underset{\text { (coming in }}{\text { libSBML-3) }}$

Platforms

- Linux
- Windows
- Mac OS

Whive
Memory efficient

Why use libSBML?

SBML validation

- XML checks
- ordering checks
- syntax checks
- consistency checks

Why use libSBML? High level interface

Query a model
Model->getNumReactions()
Compartment->isSetSize()
Retrieve information from a model
Model->getSpecies("s1")
Species->getInitialConcentration()

Why use libSBML? High level interface

Add information to a model
Species->setInitialConcentration(2.0)
Compartment->setSize(5.6)
Create a model
Model->create("my_model")
Model->addCompartment(Compartment\&)

Why use libSBML?

Math support

Infix (Level 1)

k* A *

MathML (Level 2)
<apply>
<times/>
<ci> k </ci>
<ci> A </ci>
<ci> B </ci>
</apply>

Getting started ...

http://sourceforge.net/project/showfiles.php?group_id=7 1971\&package_id=71670

		libsbml-2.3.4-docs.zip	8618311	540	PlatformIndependent	zip
		libsbml-2.3.4-win-expat.exe	1548945	456	i386	$\begin{aligned} & \text { exe (32-bit } \\ & \text { Windows) } \end{aligned}$
		libsbml-2.3.4-win-xerces.exe	4588356	599	i386	.exe (32-bit Windows)
		libsbml-2.3.4.zip	7211202	1392	PlatformIndependent	Source .zip
Totals:	1	4	21966814	2987		

http://sbml.org/wiki/icsb2006_tutorial

Download libSBML

\square
Welcome to the libSBML Setup Wizard

Ben Bornstein, Sarah M. Keating, Ben Kovitz, Stefan Hoops

Distributed freely under the terms of the GNU LGPL.

This will install libSBML 2.3.4 on your computer.
It is recommended that you close all other applications before continuing

Click Next to continue, or Cancel to exit Setup.

The Systems Biology Markup Language

㸾 Setup - libSBML

Customise setup

Select the following optionsCopy libraries to system directoryInstall Java binding libraries to system directoryInstall Python binding libraries to system directoryInstall MATLAB binding function
libsbml-2.3.4-xerces
bindings
javamatlab

python -1 docs
examples
-1. c c+

- java

1 perl

- README.txt
win32
rab
- include $\square \mathrm{sbml}$ xercesc
- AUTHORS.txt
- COPYING.html
- COPYING.txt
- FUNDING.txt
- NEWS.txt
- README.txt

※ Command Prompt

ilicrosoft Windows XP [Dersion 5.1.26[1]]
(C) Gopyright 1985-201Di Microsoft Gorp.

C:\Documents and Settings \backslash Sarah〉cd.
C: \Documents and Settings >ed ..
G:\ไcd libshml-2.3.4-xerces \backslash win $32 \backslash$ bin
C:\lihshml-2.3.4-xerces \backslash win $32 \backslash$ bin $>$ validateSBrill test.xml
filename: test.xml
file size: 27545
read time (ms): 110
error (s): 1
1 Epror(s):
18: (1307) A Compartment with spatialDimensions='3' must have units of 'volume , 'litre', or the id of a UnitDefinition that defines a variant of 'metre' with exponent=' 3 ' or a variant of 'litre' (L2vi Section 4.5.4).

C:\libshm1-2.3.4-xerces \backslash win $32 \backslash$ bin \rangle_{-}

```
File Edit View Project Build Debug Iools Window Help
```



```
printSBML.cpp|
    if (!m) return 2;
    level = d->getLevel ();
    version = d->getVersion();
    cout << endl
        << "File: " << filename
        << " (Level " << level << ", version " << version << ")" << endl;
    cout << " ";
    if (level == 1)
    {
    cout << "model name: " << m->getName() << endl;
    -}
    else
    {
    cout <<" model id: " << (m->isSetId() ? m->getId() : "(empty)") << endl
    }
    cout << "functionDefinitions: " << m->getNumFunctionDefinitions() << endl
    cout << " unitDefinitions: " << m->getNumUnitDefinitions() << endl
    cout << " compartments: " << m->getNumCompartments()
    cout << " species: " << m->getNumSpecies()
    cout << " parameters: " << m->getNumParameters()
    cout << " reactions: " << m->getNumReactions()
    cout << " rules: " << m->getNumRules()
    cout << " events: " << m->getNumEvents()
    cout << endl;
    delete d;
    rotirn n.
                Output

\section*{@ Command Prompt}

File: testi.xml (Level 2, version 1)
model id: Tyson1991GellModel_2
functionDefinitions: ©
unitDef initions: 0
compartments: 1
species: 3
parameters: 0
reactions: 3
rules: 0
events:

C:\libshml-2.3.4-xerces \(\backslash\) win32 3 bin

\section*{© Command Prompt}

C: \lihshml-2.3.4-xerces \(\backslash\) win32 \(\backslash \mathrm{bin}>\) printMath test1.xm1
Reaction 1, kappa
Reaction 2, \(k 6\) * u
Reaction 3, \(\mathrm{k} 4 * \mathrm{z} *\) (k4prime \(/ \mathrm{k} 4+\operatorname{pow}(\mathrm{u}, 2)\) )

C:\libshml-2.3.4-xerces \win32\bin>.

\section*{aiv Command Prompt－translateMath}

C：\libshml－2－3－4－xerces \win32\bin＞translateMath
This program translates infix formulas into MathML and vice－uersa．Enter or return on an empty line triggers translation．Ctr－l－G quits

Enter infix formula or MathML expression（Ctri－G to quit）：
\(>\mathbf{a}+b\)
Result：
〈？xml version＝＂1．0＂encoding＝＂UTF－8＂？＞
＜math xmlns＝＂http：／／www－w3．org／1998／Math／MathML＂＞〈apply＞

〈plus／＞
〈ci＞a＜／ci＞
＜ci＞b＜／ci＞ ＜／apply＞
＜／math＞

Enter infix formula or MathML expression（Ctri－G to quit）：
＞〈apply＞
〈minus／＞
〈ci＞d＜／ci＞
〈ci＞g \(\langle/ c i\rangle\)
＜／apply＞
Result：
\(\mathbf{d}-\mathbf{g}\)

Enter infix formula or MathML expression（Gtri－G to quit）：
\(>\)

\section*{Online validator}

Ben Bornstein
http://sbml.org/validator/

\section*{COML \(\begin{aligned} & \text { Systems Biology } \\ & \text { Markup Language }\end{aligned}\) \\ COML S Systems Biology}

\section*{Validate Your SBML}

Se ect the SBML file on your computer that you wantto upload and validate，ortype the URL \(0^{*}\) an SBML fle localed on another corrputer．You can bundle this validator in your program or use it remotely over the web．


\section*{Validate Your SBML}



\section*{Results}

1301-fail-01-01.xmI

\section*{This document is not valid SBML!}

\section*{1 Error}

Line 11 Column 61: Compartment units must not be set if spatialDimensions is zero (L2v1 Section 4.5.4). <compartment id="c" spatialDimensions="0" units="ml"/>

\section*{Document Listing}
1. <? xml version \(=\) " \(1.0^{\text {" }}\) encoding="UTF-8"?>
3. \(\leqslant 1-\)

Fail (1301) Compartment units must not be set if spatialDimensions is
zero
6. -
<sbml xmlns="http://www.sbml.org/sbml/level2" level="2" version="1"> smodel>
10. <listOfCompartments>
11. <compartment id="c" spatialDimensions="0" units="ml"/>

\title{
SBMLToolbox
}

\author{
Sarah Keating
}

An SBML toolbox for MATLAB users

\section*{Why use SBMLToolbox ?}


\section*{Why use SBMLToolbox?}

\section*{Reaction}

File Edit View Favorites Tools Help
- mimic libSBML API
- examples of simulation
\begin{tabular}{|c|c|c|}
\hline ( Back - © A \(\bigcirc\) Search & \multicolumn{2}{|c|}{(10)} \\
\hline Address © C:\SBMLToolbox\libSBML & API \Reaction & \\
\hline Name & Type - & Date Modified \\
\hline CVS & File Folder & 17/10/2005 07:39 \\
\hline \% Contents & MATLAB M-file & 12/02/2005 13:40 \\
\hline 4Reaction_addModifier & MATLAB M-file & 09/02/2005 16:26 \\
\hline \&Reaction_addProduct & MATLAB M-file & 09/02/2005 16:26 \\
\hline 2Reaction_addReactant & MATLAB M-file & 09/02/2005 16:26 \\
\hline \#Reaction_create & MATLAB M-file & 17/10/2005 07:39 \\
\hline 2Reaction_getFast & MATLAB M-file & 09/02/2005 16:26 \\
\hline 4 Reaction_getId & MATLAB M-file & 09/02/2005 16:26 \\
\hline 2Reaction_getKineticLaw & MATLAB M-file & 09/02/2005 16:26 \\
\hline EReaction_getListOfModifiers & MATLAB M-file & 09/02/2005 16:26 \\
\hline 4Reaction_getListOfProducts & MATLAB M-file & 09/02/2005 16:26 \\
\hline Q Reaction_getListOfReactants & MATLAB M-file & 09/02/2005 16:26 \\
\hline 4Reaction_getModifier & MATLAB M-file & 09/02/2005 16:26 \\
\hline 4 Reaction_getModifierById & MATLAB M-file & 09/02/2005 16:26 \\
\hline 4Reaction_getName & MATLAB M-file & 09/02/2005 16:26 \\
\hline *Reaction_getNumModifiers & MATLAB M-file & 09/02/2005 16:26 \\
\hline 4Reaction_getNumProducts & MATLAB M-file & 09/02/2005 16:26 \\
\hline 4Reaction_getNumReactants & MATLAB M-file & 09/02/2005 16:26 \\
\hline 4Reaction_getParameterNamesAn... & MATLAB M-file & 12/02/2005 12:55 \\
\hline EReaction_getParameterUniqueN... & MATLAB M-file & 12/02/2005 12:55 \\
\hline 2Reaction_getProduct & MATLAB M-file & 09/02/2005 16:26 \\
\hline EReaction_getProductById & MATLAB M-file & 09/02/2005 16:26 \\
\hline 4Reaction_getReactant & MATLAB M-file & 09/02/2005 16:26 \\
\hline 4Reaction_getReactantById & MATLAB M-file & 09/02/2005 16:26 \\
\hline 2Reaction_getReversible & MATLAB M-file & 09/02/2005 16:26 \\
\hline QReaction_isSetFast & MATLAB M-file & 17/10/2005 07:39 \\
\hline 4Reaction_isSetId & MATLAB M-file & 09/02/2005 16:26 \\
\hline 2Reaction_isSetKineticLaw & MATLAB M-file & 09/02/2005 16:26 \\
\hline 4.Reaction_isSetName & MATLAB M-file & 09/02/2005 16:26 \\
\hline QReaction_moveIdToName & MATLAB M-file & 09/02/2005 16:26 \\
\hline 4Reaction_moveNameToId & MATLAB M-file & 09/02/2005 16:26 \\
\hline QReaction_setFast & MATLAB M-file & 17/10/2005 07:39 \\
\hline - Reaction_setId & MATLAB M-file & 09/02/2005 16:26 \\
\hline 4Reaction_setKineticLaw & MATLAB M-file & 09/02/2005 16:26 \\
\hline 4Reaction_setName & MATLAB M-file & 09/02/2005 16:26 \\
\hline *Reaction_setReversible & MATLAB M-file & 09/02/2005 16:26 \\
\hline - Reaction_unsetFast & MATLAB M-file & 17/10/2005 07:39 \\
\hline *Reaction_unsetKineticLaw & MATLAB M-file & 09/02/2005 16:26 \\
\hline *Reaction_unsetName & MATLAB M-file & 09/02/2005 16:26 \\
\hline
\end{tabular}

\section*{Why use SBMLToolbox?}
- GUI Model inspector/creator
- save/load models to MATLAB data files
- Species

Species: S1

Compartment compartmentOne
\(\nabla\) Boundary Condition
T Constant
Charge \(\quad \square\)

- NOT a systems biology toolbox
- provides import/export between SBML and MATLAB
- provide examples of how MATLAB functionality can be applied to SBML models

\section*{Acknowledgements}
- Ben Kovitz
- Stefan Hoops

Anyone who
- Christoph Flamm
- Rainer Machne
- Martin Ginkel
caught bugs,
made suggestions,
discussed ...
- Mike Hucka
-••Break •••

Additional SBML features and SBML Level 2 Version 2 differences

\section*{Units in SBML}
- All mathematical entities can have units defined or implied. 2 ways:
- Key object structures have explicit fields for setting units:
\begin{tabular}{|l|l|}
\hline Structure & Units fields \\
\hline Compartment & units \\
\hline Species & substanceUnits, spatialSizeUnits \\
\hline Parameter & units \\
\hline Event & timeUnits \\
\hline KineticLaw & substanceUnits, timeUnits \(\quad\) removed in L2V2 \\
\hline
\end{tabular}
- Built-in default units
\begin{tabular}{|l|l|l|}
\hline Identifer & Default & Possible scalable units \\
\hline substance & mole & mole, item, gram, kilogram, dimensionless \\
\hline volume & litre & litre, cubic metre, dimensionless \\
\hline area & square metre & square metre, dimensionless \\
\hline length & metre & metre, dimensionless \\
\hline time & second & second, dimensionless \\
\hline
\end{tabular}

\section*{Redefining units}
- Same mechanism for defining new units and redefining the built-ins:
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ UnitDefinition } \\
\hline \begin{tabular}{l} 
id: UnitSId \\
name: string \(\{\) use="optional" \(\}\) \\
unit: Unit[1.."]
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Unit } \\
\hline kind: UnitKind \\
exponent: int \(\{\) use="optional" default="1" \(\}\) \\
scale: int \(\{\) use="optional" default="0" \(\}\) \\
multiplier: double \{ use="optional" default="1" \(\}\) \\
\hline
\end{tabular}
- Unit definition creates a new unit identifier (the value of id)
- Unit identifier namespace is global but different from space of other id's
- Approach is multiplicative composition
- E.g., moles/(litre • second) \(=\)


\section*{The meaning of fields in Unit}
\[
y_{b}\left\{u_{b}\right\}=y\{u\}\left(\frac{w\left\{u_{b}\right\}}{\{u\}}\right)
\]

\section*{The meaning of fields in Unit}
\[
y_{b}\left\{u_{b}\right\}=y\{u\}\left(\frac{w\left\{u_{b}\right\}}{\{u\}}\right)
\]

Quantity y in original

\section*{The meaning of fields in Unit}

Units you want to convert into

\section*{The meaning of fields in Unit}

\section*{Resultant quantity}
\[
y_{b}\left\{u_{b}\right\}=y\{u\}\left(\frac{w\left\{u_{b}\right\}}{\{u\}}\right)
\]

Quantity y in original

\section*{The meaning of fields in Unit}

\section*{Resultant quantity}

SBML lets you define this

Units you want to convert into

Quantity y in original

\section*{The meaning of fields in Unit}
\[
y_{b}\left\{u_{b}\right\}=y\{u\}\left(\frac{w\left\{u_{b}\right\}}{\{u\}}\right)
\]

\section*{The meaning of fields in Unit}
\[
y_{b}\left\{u_{b}\right\}=y\{u\}\left(\frac{w\left\{u_{b}\right\}}{\{u\}}\right)
\]
\[
\{u\}=\left(\text { multiplier } \cdot 10^{\text {scale }}\left\{u_{b}\right\}\right)^{\text {exponent }}
\]

\section*{The meaning of fields in Unit}
\[
y_{b}\left\{u_{b}\right\}=y\{u\}\left(\frac{w\left\{u_{b}\right\}}{\{u\}}\right)
\]
\[
\{u\}=\left(\text { multiplier } \cdot 10^{\text {scale }}\left\{u_{b}\right\}\right)^{\text {exponent }}
\]
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ UnitDefinition } \\
\hline \begin{tabular}{l} 
id: UnitSId \\
name: string \(\{\) use="optional" \(\}\) \\
unit: Unit[1...]
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Unit } \\
\hline kind: UnitKind \\
exponent: int \(\{\) use="optional" default="1" \(\}\) \\
scale: int \(\{\) use="optional" default="0" \(\}\) \\
multiplier: double \(\{\) use="optional" default="1" \(\}\) \\
\hline
\end{tabular}
- UnitKind is an enumeration of base units (SI + a few extras)
- mole, kelvin, second, metre, litre, gram, kilogram, item, dimensionless, etc.

\section*{Example unit definition}
- Definition of "foot":
\[
\begin{gathered}
\text { foot }=\left(0.3048 \cdot 10^{0} \cdot \text { metre }\right)^{1} \\
y_{\mathrm{b}} \text { metres }=0.3048 \cdot \mathrm{y} \text { feet }
\end{gathered}
\]
<listOfUnitDefinitions>
<unitDefinition id="foot">
<listofunits>
<unit kind="metre" multiplier="0.3048"
exponent="1"
scale="0"/>
</listOfUnits>
</unitDefinition>
</listOfUnitDefinitions>

\section*{More on using units}
- Default model-wide units
- Redefine the special units "time", "substance"," "volume","‘length","area"
```

<listOfUnitDefinitions>
 <unitDefinition id="volume">
 <listOfUnits>
 <unit kind="litre" scale="-3"/>
 </listOfUnits>
 </unitDefinition>
 <unitDefinition id="substance">
 <listOfUnits>
 <unit kind="mole" scale="-3"/>
 </listOfUnits>
 </unitDefinition>
</listOfUnitDefinitions>
```
- Tools usually provide a more direct way


\section*{Changes to unit system in L2V2}
- No offset on UnitDefinition
- No predefined unit "Celsius"
- Modeler needs to include necessary conversions explicitly
- Could use a function definition
- Could use an assignment rule

\section*{AssignmentRule, RateRule, AlgebraicRule}
- "Rules" in SBML define extra mathematical expressions
- E.g.: if need to express additional mathematical relationships beyond what is implied by the system of reactions
- 3 subtypes:
\begin{tabular}{|c|c|c|}
\hline Rule type & General form & Example \\
\hline algebraic & \(0=f(\mathbf{W})\) & \(0=\mathrm{SI}+\mathrm{S} 2\) \\
\hline assignment & \(x=f(\mathbf{V})\) & \(\mathrm{x}=\mathrm{y}+\mathrm{z}\) \\
\hline rate & \(d x / d t=f(\mathbf{W})\) & \(\mathrm{d} / \mathrm{dt}=10.5\) \\
\hline
\end{tabular}
- Rules define relationships that hold at all times

Rules in the context of the overall system
\[
\begin{aligned}
d S_{1} / d t & =r_{1}+r_{2}+r_{3}+\ldots \\
d S_{2} / d t & =-r_{1}+r_{5}+\ldots \\
\ldots & \\
0 & =f_{1}(\mathbf{W}) \\
0 & =f_{2}(\mathbf{W}) \\
\ldots & \\
x & =g_{1}(\mathbf{W}) \\
y & =g_{2}(\mathbf{W}) \\
\ldots & \\
d m / d t & =h_{1}(\mathbf{W}) \\
d q / d t & =h_{2}(\mathbf{W})
\end{aligned}
\]

\section*{Rules in the context of the overall system}

Equations derived from reaction definitions
\[
\begin{aligned}
& 0=f_{1}(\mathbf{W}) \\
& 0=f_{2}(\mathbf{W}) \\
& \ldots \\
& x=g_{1}(\mathbf{W}) \\
& y=g_{2}(\mathbf{W}) \\
& \cdots \\
& d m / d t=h_{1}(\mathbf{W}) \\
& d q / d t=h_{2}(\mathbf{W})
\end{aligned}
\]

\section*{Rules in the context of the overall system}
\[
\begin{aligned}
& d S_{1} / d t=r_{1}+r_{2}+r_{3}+\ldots \\
& d S_{2} / d t=-r_{1}+r_{5}+\ldots \\
& \ldots \\
& 0=f_{1}(\mathbf{W}) \\
& 0=f_{2}(\mathbf{W}) \\
& \cdots \\
& x=g_{1}(\mathbf{W}) \\
& y=g_{2}(\mathbf{W}) \\
& \ldots \\
& d m / d t=h_{1}(\mathbf{W}) \\
& d q / d t=h_{2}(\mathbf{W})
\end{aligned}
\]

\section*{Rules in the context of the overall system}
\[
\begin{aligned}
& d S_{1} / d t=r_{1}+r_{2}+r_{3}+\ldots \\
& d S_{2} / d t=-r_{1}+r_{5}+\ldots \\
& \ldots \\
& 0=f_{1}(\mathbf{W}) \\
& 0=f_{2}(\mathbf{W}) \\
& \ldots \\
& x=g_{1}(\mathbf{W}) \\
& y=g_{2}(\mathbf{W}) \\
& \ldots \\
& d m / d t=h_{1}(\mathbf{W}) \\
& d q / d t=h_{2}(\mathbf{W})
\end{aligned}
\]

Assignment rules

\section*{Rules in the context of the overall system}
\[
\begin{aligned}
d S_{1} / d t & =r_{1}+r_{2}+r_{3}+\ldots \\
d S_{2} / d t & =-r_{1}+r_{5}+\ldots \\
\ldots & \\
0 & =f_{1}(\mathbf{W}) \\
0 & =f_{2}(\mathbf{W}) \\
\ldots & \\
x & =g_{1}(\mathbf{W}) \\
y & =g_{2}(\mathbf{W})
\end{aligned}
\]
\[
d m / d t=h_{1}(\mathbf{W})
\]
\[
d q / d t=h_{2}(\mathbf{W})
\]

\section*{Rules in the context of the overall system}
\[
\begin{aligned}
d S_{1} / d t & =r_{1}+r_{2}+r_{3}+\ldots \\
d S_{2} / d t & =-r_{1}+r_{5}+\ldots \\
\ldots & \\
0 & =f_{1}(\mathbf{W}) \\
0 & =f_{2}(\mathbf{W}) \\
\ldots & \\
x & =g_{1}(\mathbf{W}) \\
y & =g_{2}(\mathbf{W}) \\
\ldots & \\
d m / d t & =h_{1}(\mathbf{W}) \\
d q / d t & =h_{2}(\mathbf{W})
\end{aligned}
\]

\section*{SBML object structures for rules}

- E.g.:
<assignmentRule variable="k">
<math xmlns="http://www.w3.org/1998/Math/MathML"> <apply>
<divide/>
<ci> k3 </ci>
<ci> k2 </ci>
</apply>
</math>
</assignmentRule>

\section*{Rule semantics and restrictions}
- AssignmentRule
- Assignment to a species, compartment or parameter overrides the initial value given in the definition
- Variable must not be set by both an AssignmentRule and a RateRule
- Variable must not be set by both an AssignmentRule and an InitialAssignment
- RateRule
- Variable must not be set by both an AssignmentRule and a RateRule
- Overall restrictions on the whole model:
- The model must not contain algebraic loops
- The model must not be overdetermined
- Can only happen if model contains algebraic rules
- Can be assessed statically (L2V2 spec contains one possible approach)

\section*{User-defined functions}
```

FunctionDefinition
id: SId
name: string { use="optional" }
math: (lambda:Lambda) { namespace="http://www.w3.org/1998/Math/MathML" }
sboTerm: SBOTerm { use="optional" }

```
- All references to model variables must be passed as arguments
- References to other user-defined functions must be for functions defined earlier in the file
- I.e., no forward references to functions
- No recursive or mutually-recursive functions
- (Point of all this: can implement functions as macro substitutions)

\section*{User-defined functions: example}
<functionDefinition id="pow3">
<math xmlns="http://www.w3.org/1998/Math/MathML">
<lambda>
<bvar><ci> x </ci></bvar>
<apply>
<power/>
<ci> x </ci>
<cn> 3 </cn>
</apply>
</lambda>
</math>
</functionDefinition>
<listOfReactions>
<reaction id="reaction_1">
<kineticLaw>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<ci> pow3 </ci>
<ci> S1 </ci>
</apply>
</math>
</kineticLaw>
</reaction>
</listOfReactions>

\section*{User-defined functions: example}
<functionDefinition id="pow3"
<math xmlns="http://wno.w3.org/1998/Math/MathML">
<lambda>
<bvar><ci> x </ci></bvar>
<apply>
<power/>
<ci> x </ci>
<cn> 3 </cn>
</apply> </lambda>
</math>
</functionDefinition>
<listOfReactions>
<reaction id="reaction_1">
<kineticLaw>
<math xmlns='http://www.w3.org/1998/Math/MathML">
<apply
<ci> pow3 </ci>
<ci> \(\mathrm{S}_{1}\) </ci>
</apply>
</math>
</kineticLaw>
</reaction>
</listOfReactions>

\section*{User-defined functions: example}
<functionDefinition id="pow3">
<math xmlns="http://www.w3.org/1998/Math/MathML">
<lambda>
<bvar><ci> x </ci></bvar>
<apply>
<power/>
<ci> x </ci>
<cn> 3 </cn>
</apply>
</lambda>
</math>
</functionDefinition>
<listOfReactions>
<reaction id="reaction_1">
<kineticLaw>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<appiy>
<ci> pow3 </ci>
<ciン 51 -!ci>
</apply>
</math>
</kineticLaw>
</reaction>
</listOfReactions>

\section*{User-defined functions: example}
<functionDefinition id="pow3">
<math xmlns="http://www.w3.org/1998/Math/MathML">
<lambda>
<bvar><ci> x </ci></bvar>
<apply>
<power/>
<ci> x </ci>
<cn> 3 </cn>
Uses <bvar> to pass arguments
</apply>
</lambda>
</math>
</functionDefinition>
<listOfReactions>
<reaction id="reaction_1">
<kineticLaw>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<ci> pow3 </ci>
<ci> S1 </ci>
</apply>
</math>
</kineticLaw>
</reaction>
</listOfReactions>

\section*{Events}
```

Event
id: SId
name: string { use="optional" }
trigger: (math : Math { namespace="http://www.w3.org/1998/Math/MathML" })
delay: (math : Math { namespace="http://www.w3.org/1998/Math/MathML" }) { minOccurs="0" maxoccurs="1" }
timeUnits: UnitSId { use="optional" }
eventAssignment: EventAssignment[1..*]
sboTerm: SBOTerm { use="optional" }

```
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ EventAssignment } \\
\hline \begin{tabular}{l} 
variable: SId \\
math: Math \{ namespace="http://www.w3.org/1998/Math/MathML" \(\}\) \\
sboTerm: SBOTerm \{ use="optional" \(\}\)
\end{tabular} \\
\hline
\end{tabular}
- Defines discontinuous changes in model variables
- EventAssignment variable can be
- species
- compartment
- parameter
- Trigger and delay conditions are full mathematical expressions

\section*{Usage points: events}
- Triggered on transition from false to true
- Not possible for event to trigger at \(\mathrm{t}=\mathrm{O}\) - no transition in variable values
- Assignment 'math' expression evaluated when event is fired
- Effect can be delayed (expressed using 'delay’ expression)
- Cannot create or destroy species/compartments/reactions/etc.
- But you could use a variable that acts as a switch: \(x^{*}\) switch
- Warning: not well supported by most software tools (yet)

\section*{Compartments}
```

Compartment
id: SId
name: string { use="optional" }
compartmentType: SId { use="optional" }
spatialDimensions: int { maxInclusive="3" minInclusive="0" use="optional" default="3" }
size: double { use="optional" }
units: UnitSId { use="optional" }
outside: Sld { use="optional" }
constant: boolean { use="optional" default="true" }

```
- There is no default size!
- Extremely good practice to always set the size
- Can use size field, assignment rules, or (in L2V2) initial assignments
- size value only allowed if spatialDimensions != 0
- Units of size must be consistent

\section*{Species}
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Species } \\
\hline id: SId \\
name: string \(\{\) use="optional" \(\}\) \\
speciesType: SId \(\{\) use="optional" \(\}\) \\
compartment: SId \\
initialAmount: double \(\{\) use="optional" \(\}\) \\
inintialConcentration: double \(\{\) use="optional" \(\}\) \\
substanceUnits: UnitSId \(\{\) use="optional" \} \\
spatialSizeUnits: UnitSId \(\{\) use="optional" \(\}\) \\
hasOnlySubstanceUnits: boolean \(\{\) use="optional" default="false" \(\}\) \\
boundaryCondition: boolean \(\{\) use="optional" default="false" \(\}\) \\
charge: int \{ use="optional" \} deprecated \\
constant: boolean \{use="optional" default="false" \(\}\) \\
\hline
\end{tabular}
- Units of substance and spatial size can be set separately
- hasOnlySubstanceUnits
- Boolean: should species quantity always be as substance or substance/size?
- Important: setting initialAmount or initialConcentration does not imply units will be substance or substance/size, respectively

\section*{Species}
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Species } \\
\hline id: SId \\
name: string \(\{\) use="optional" \(\}\) \\
speciesType: SId \(\{\) use="optional" \(\}\) \\
compartment: SId \\
initialAmount: double \(\{\) use="optional" \(\}\) \\
inintialConcentration: double \(\{\) use="optional" \(\}\) \\
substanceUnits: UnitSId \(\{\) use="optional" \} \\
spatialSizeUnits: UnitSId \(\{\) use="optional" \(\}\) \\
hasOnlySubstanceUnits: boolean \(\{\) use="optional" default="false" \(\}\) \\
boundaryCondition: boolean \(\{\) use="optional" default="false" \(\}\) \\
charge: int \{ use="optional" \} deprecated \\
constant: boolean \{use="optional" default="false" \(\}\) \\
\hline
\end{tabular}
- Units of substance and spatial size can be set separately
- hasOnlySubstanceUnits
- Boolean: should species quantity always be as substance or substance/size?
- Important: setting initialAmount or initialConcentration does not imply units will be substance or substance/size, respectively

\section*{Species:"boundary conditions" and "constant" species}
- Some intuitive explanations:
- "Boundary condition": when a species is a reactant or product in one or more reactions, but its quantity is not changed by those reactions
- E.g., when a chemical is buffered in an experimental set-up, or the modeler wants to assume there is an infinite quantity of the species
- ODE (or equivalent) shouldn't be constructed based on the reactions
- But SBML rules and other constructs may still change it
- "Constant": if a species' quantity is constant
- Different from being a boundary condition-boundaryCondition flag says whether an ODE should be constructed

\section*{Species: constant and boundaryCondition}
\(\begin{array}{lllll}\hline & & \text { can have } & \text { can be } \\
\text { constant } & \text { boundaryCondition } & \begin{array}{l}\text { assignment } \\
\text { value }\end{array} & \text { value } & \text { reactant or rate rule }\end{array}\) product \(\left.\begin{array}{l}\text { species' quantity } \\
\text { can be changed by }\end{array}\right]\)\begin{tabular}{llll} 
prue & true & no & yes
\end{tabular}

\section*{Reactions}
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Reaction } \\
\hline id: SId \\
name: string \(\{\) use="optional" \(\}\) \\
reactant: SpeciesReference[0.."] \\
product: SpeciesReference[0.."] \\
modifier: ModifierSpeciesReference[0.."] \\
kineticLaw: KineticLaw \{ minOccurs="0" maxOccurs="1"\} \\
reversible: boolean \{ use="optional" default="true" \} \\
fast: boolean \{ use="optional" default="false" \(\}\) \\
sboTerm: SBOTerm \{ use="optional"\} \\
\hline
\end{tabular}

\begin{tabular}{|c|}
\hline StoichiometryMath \\
\hline math: Math \{ namespace="http://www.w3.org/1998/Math/MathML" \(\}\) \\
\hline
\end{tabular}

\section*{Usage points: reactions (specific)}
- Reversibility:
- Because "kinetic law" is optional, it's useful to have separate flag
- Some types of analyses can be done without simulation or kinetic law
- reversible flag should be true only if rate expression represents combined effect of forward and backward reaction
- Converse: if false, it's a statement that the reaction only proceeds in the forward direction
- Caution: not clear how to define reversible reactions for stochastic simulation. Best practice: always define 2 reactions explicitly in that case.

\section*{New in SBML Level 2 Version 2}
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Model } \\
\hline id: SId \{use="optional" \} \\
name: string \{use="optional" \} \\
sboTerm: SBOTerm \{use="optional" \} \\
functionDefinition: FunctionDefinition[0.."] \\
unitDefinition: UnitDefinition[0.."] \\
compartmentType: CompartmentType[0..*] \\
speciesType: SpeciesType[0..*] \\
compartment: Compartment[0..*] \\
species: Species[0..*] \\
parameter: Parameter[0..*] \\
initialAssignment: InitialAssignment[0..*] \\
rule: Rule[0..*] \\
constraint: Constraint[0..*] \\
reaction: Reaction[0..*] \\
event: Event[0..*]
\end{tabular}

Added in Level 2 Version 2

\section*{Compartment types and species types}
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ CompartmentType } \\
\hline \begin{tabular}{l} 
id: SId \\
name: string \(\{\) use="optional" \(\}\) \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ SpeciesType } \\
\hline \begin{tabular}{l} 
id: SId \\
name: string \(\{\) use="optional" \(\}\)
\end{tabular} \\
\hline
\end{tabular}
- L2V2 only
- Does not affect mathematical interpretation
```

<listOfSpeciesTypes>
 <speciesType id="ATP"/>
</listOfSpeciesTypes>
<listOfSpecies>
 <species id="ATP_in_cytosol" speciesType="ATP"
 compartment="cytosol"/>
 <species id="ATP_in_nucleus" speciesType="ATP"
 compartment="nucleus"/>
</listOfSpecies>
```

\section*{Compartment types and species types}
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ CompartmentType } \\
\hline \begin{tabular}{l} 
id: SId \\
name: string \(\{\) use="optional" \(\}\) \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ SpeciesType } \\
\hline \begin{tabular}{l} 
id: SId \\
name: string \(\{\) use="optional" \(\}\)
\end{tabular} \\
\hline
\end{tabular}
- L2V2 only
- Does not affect mathematical interpretation
<listOfSpeciesTypes> <speciesType id="ATP"/>
</listOfSpeciesTypes>
<listOfSpecies>
<species id="ATP_in_cytosol" speciesType="ATP" compartment="cytosol"/>
<species id="ATP_in_nucleus" speciesType="ATP" compartment="nucleus"/>
</listOfSpecies>

\section*{Usage points: how do you assign initial values?}
- Multiple approaches:
I. Use the appropriate value field on an element (most portable approach)
\begin{tabular}{|l|l|}
\hline Element & Initial value field(s) \\
\hline species & initialConcentration \\
compartment & initialAmount \\
parameter & size \\
& value \\
\hline
\end{tabular}
- Limitation: scalar values only, not a mathematical expression
2. Use assignment rules (somewhat less portable)
- Mathematical expression
3. Use Initial Assignment in Level 2 Version 2
- Mathematical expression

\section*{Initial assignments}
```

InitialAssignment
symbol: SId
math: Math { namespace="http://www.w3.org/1998/Math/MathML" }
sboTerm: SBOTerm { use="optional" }

```
- Overrides value given in object definition
- But the object definition must still be provided
- Applies for \(\mathrm{t}<=0\)
- Cannot have both an initial assignment and an assignment rule for the same identifier

\section*{Constraints}
```

Constraint
math: Math { namespace="http://www.w3.org/1998/Math/MathML" }
message: (any: { namespace="http://www.w3.org/1999/xhtml" }) { minOccurs="0" maxOccurs="1" }
sboTerm: SBOTerm { use="optional" }

```
- Allows stating assumptions under which simulation is valid
- Intuitively: if the math expression is true, model is in a valid state
- As soon as the expression evalues to false, the model is in an invalid state
- SBML does not require a particular action to be taken
- But it would be a good idea for the software system to stop or at least indicate the model has failed a constraint

\section*{sboTerm}
- SBO = Systems Biology Ontology
- Independent, international, open effort of BioModels.net Consortium
- Occupies a space not filled by other ontologies
- Primarily for describing rate laws and constituents
I. Classification of rate laws
- Each term includes a mathematical function definition
2. Controlled vocabulary for the roles of reaction participants
- E.g.:"substrate","catalyst", "competitive inhibitor", etc.
3. Controlled vocabulary for the roles of quantitative parameters
- E.g.:"Hill coefficient"

\section*{SBO Browser}
- http://biomodels.net/SBO


\section*{by Melanie Curtot at EBI}

\section*{Terms are machine-readable}
```

[Term]
id: SBO:0000015
name: Briggs-Haldane equation
def: "Rate-law presented in G. E. Briggs and J. B. S. Haldane (1925) A note on the
kinetics of enzyme action, Biochem. J., 19, 339-339. It is a general rate equation
that does not require the restriction of equilibrium of Michaelis-Menten or irreversible
reactions of Van Slyke, but instead make the hypothesis that the complex enzyme-substrate
is in steady-state. Although of the same form than the Henri-Michaelis-Menten equation,
it is semantically different since Km now represents a pseudo-equilibrium constant, and
is equal to the ratio between the rate of consumption of the complex (sum of dissociation
of substrate and generation of product) and the association rate of the enzyme and the
substrate.
is a: SBO:0000011 ; kinetics of unireactant enzymes
math: <math xmlns="http://www.w3.org/1998/Math/MathML">
<lambda>
<bvar><ci definitionURL="http://www.biomodels.net/SBO/#SBO:0000004">S</ci></bvar>
<bvar><ci definitionURL="http://wWw.biomodels.net/SBO/#SBO:0000006">E</ci></bvar>
<bvar><ci definitionURL="http://www.biomodels.net/SBO/#SBO:0000019">kp</ci></bvar>
<bvar><ci definitionURL="http://www.biomodels.net/SBO/#SBO:0000008">Km</ci></bvar>
<apply>
<divide/>
<apply>
<times/><ci>E</ci><ci>kp</ci><ci>S</ci>
</apply>
<apply>
<plus/><ci>Km</ci><ci>S</ci>
</apply>
</apply>
</lambda>
</math>

```

\section*{Terms are machine-readable}
[1EIII]
id: SBO:0000015
nomer Dniygi Uoldane equation
def: "Rate-law presented in G. E. Briggs and J. B. S. Haldane (1925) A note on the kinetics of enzyme action, Biochem. J., 19, 339-339. It is a general rate equation that does not require the restriction of equilibrium of Michaelis-Menten or irreversible reactions of Van Slyke, but instead make the hypothesis that the complex enzyme-substrate is in steady-state. Although of the same form than the Henri-Michaelis-Menten equation, it is semantically different since Km now represents a pseudo-equilibrium constant, and is equal to the ratio between the rate of consumption of the complex (sum of dissociation of substrate and generation of product) and the association rate of the enzyme and the substrate.
is_a: SBO:0000011 ; kinetics of unireactant enzymes
mā̄h: <math xmlns="http://www.w3.org/1998/Math/MathML">
<lambda>
<bvar><ci definitionURL="http://www.biomodels.net/SBO/\#SBO:0000004">S</ci></bvar> <bvar><ci definitionURL="http://www.biomodels.net/SBO/\#SBO:0000006">E</ci></bvar> <bvar><ci definitionURL="http://www.biomodels.net/SBO/\#SBO:0000019">kp</ci></bvar> <bvar><ci definitionURL="http://www.biomodels.net/SBO/\#SBO:0000008">Km</ci></bvar>
<apply>
<divide/>
<apply>
<times/><ci>E</ci><ci>kp</ci><ci>S</ci>
</apply>
<apply>
<plus/><ci>Km</ci><ci>S</ci>
</apply>
</apply>
</lambda>
</math \(>\)

\section*{Terms are machine-readable}
```

[Term]
id: SBO:0000015
name: Briggs-Haldane equation
def: "Rate-law presented in G. E. Briggs and J. B. S. Haldane (1925) A note on the
kinetics of enzyme action, Biochem. J., 19, 339-339. It is a general rate equation
that does not require the restriction of equilibrium of Michaelis-Menten or irreversible
reactions of Van Slyke, but instead make the hypothesis that the complex enzyme-substrate
is in steady-state. Although of the same form than the Henri-Michaelis-Menten equation,
it is semantically different since Km now represents a pseudo-equilibrium constant, and
is equal to the ratio between the rate of consumption of the complex (sum of dissociation
of substrate and generation of product) and the association rate of the enzyme and the
substrate.
is a: SBO:0000011 ; kinetics of unireactant enzymes
math: <math xmlns="http://www.w3.org/1998/Math/MathML">
<lambda>
<bvar><ci definitionURL="http://www.biomodels.net/SBO/#SBO:0000004">S</ci></bvar>
<bvar><ci definitionURL="http://wWw.biomodels.net/SBO/#SBO:0000006">E</ci></bvar>
<bvar><ci definitionURL="http://www.biomodels.net/SBO/#SBO:0000019">kp</ci></bvar>
<bvar><ci definitionURL="http://www.biomodels.net/SBO/#SBO:0000008">Km</ci></bvar>
<apply>
<divide/>
<apply>
<times/><ci>E</ci><ci>kp</ci><ci>S</ci>
</apply>
<apply>
<plus/><ci>Km</ci><ci>S</ci>
</apply>
</apply>
</lambda>
</math>

```

\section*{Terms are machine-readable}

\section*{[Term]}
ld: SBO:0000015
name: Briggs-Haldane equation
J. B. S. Haldane (1925) A note on the kinetics of enzyme action, Biochem. J., 19, 339-339. It is a general rate equation that does not require the restriction of equilibrium of Michaelis-Menten or irreversible reactions of Van Slyke, but instead make the hypothesis that the complex enzyme-substrate is in steady-state. Although of the same form than the Henri-Michaelis-Menten equation, it is semantically different since Km now represents a pseudo-equilibrium constant, and is equal to the ratio between the rate of consumption of the complex (sum of dissociation of substrate and generation of product) and the association rate of the enzyme and the substrate.
is_a: SBO:0000011 ; kinetics of unireactant enzymes
mā̄h: <math xmlns="http://www.w3.org/1998/Math/MathML">
<lambda>
<bvar><ci definitionURL="http://www.biomodels.net/SBO/\#SBO:0000004">S</ci></bvar> <bvar><ci definitionURL="http://www.biomodels.net/SBO/\#SBO:0000006">E</ci></bvar> <bvar><ci definitionURL="http://www.biomodels.net/SBO/\#SBO:0000019">kp</ci></bvar> <bvar><ci definitionURL="http://www.biomodels.net/SBO/\#SBO:0000008">Km</ci></bvar>
<apply>
<divide/>
<apply>
<times/><ci>E</ci><ci>kp</ci><ci>S</ci>
</apply>
<apply>
<plus/><ci>Km</ci><ci>S</ci>
</apply>
</apply>
</lambda>
</math \(>\)

\section*{Terms are machine-readable}
```

[Term]
id: SBO:0000015
name: Briggs-Haldane equation
def: "Rate-law presented in G. E. Briggs and J. B. S. Haldane (1925) A note on the
kinetics of enzyme action, Biochem. J., 19, 339-339. It is a general rate equation
that does not require the restriction of equilibrium of Michaelis-Menten or irreversible
reactions of Van Slyke, but instead make the hypothesis that the complex enzyme-substrate
is in steady-state. Although of the same form than the Henri-Michaelis-Menten equation,
it is semantically different since Km now represents a pseudo-equilibrium constant, and
is equal to the ratio between the rate of consumption of the complex (sum of dissociation
of substrate and generation of product) and the association rate of the enzyme and the
substrate.
is a: SBO:0000011 ; kinetics of unireactant enzymes
math: <math xmlns="http://www.w3.org/1998/Math/MathML">
<lambda>
<bvar><ci definitionURL="http://www.biomodels.net/SBO/#SBO:0000004">S</ci></bvar>
<bvar><ci definitionURL="http://wWw.biomodels.net/SBO/#SBO:0000006">E</ci></bvar>
<bvar><ci definitionURL="http://www.biomodels.net/SBO/#SBO:0000019">kp</ci></bvar>
<bvar><ci definitionURL="http://www.biomodels.net/SBO/#SBO:0000008">Km</ci></bvar>
<apply>
<divide/>
<apply>
<times/><ci>E</ci><ci>kp</ci><ci>S</ci>
</apply>
<apply>
<plus/><ci>Km</ci><ci>S</ci>
</apply>
</apply>
</lambda>
</math>

```

\section*{Terms are machine-readable}
```

[Term]
id: SBO:0000015
name: Briags-Haldane eauation
def: "Rate-law presented in G. E. Briggs and J. B. S. Haldane (1925) A note on the
kinetics of enzyme action, Biochem. J., 19, 339-339. It is a general rate equation
that does not require the restriction of equilibrium of Michaelis-Menten or irreversible
reactions of Van Slyke, but instead make the hypothesis that the complex enzyme-substrate
is in steady-state. Although of the same form than the Henri-Michaelis-Menten equation,
it is semantically different since Km now represents a pseudo-equilibrium constant, and
is equal to the ratio between the rate of consumption of the complex (sum of dissociation
of substrate and generation of product) and the association rate of the enzyme and the
substrate.
ls_a: SBO:0000011 ; Klnetlcs of unlreactant enzymes
math: <math xmlns="http://www.w3.org/1998/Math/MathML">
<lambda>
<bvar><ci definitionURL="http://www.biomodels.net/SBO/#SBO:0000004">S</ci></bvar>
<bvar><ci definitionURL="http://www.biomodels.net/SBO/#SBO:0000006">E</ci></bvar>
<bvar><ci definitionURL="http://www.biomodels.net/SBO/#SBO:0000019">kp</ci></bvar>
<bvar><ci definitionURL="http://www.biomodels.net/SBO/#SBO:0000008">Km</ci></bvar>
<apply>
<divide/>
<apply>
<times/><ci>E</ci><ci>kp</ci><ci>S</ci>
</apply>
<apply>
<plus/><ci>Km</ci><ci>S</ci>
</apply>
</apply>
</lambda>
</math>

```

\section*{Terms are machine-readable}
```

[Term]
id: SBO:0000015
name: Briggs-Haldane equation
def: "Rate-law presented in G. E. Briggs and J. B. S. Haldane (1925) A note on the
kinetics of enzyme action, Biochem. J., 19, 339-339. It is a general rate equation
that does not require the restriction of equilibrium of Michaelis-Menten or irreversible
reactions of Van Slyke, but instead make the hypothesis that the complex enzyme-substrate
is in steady-state. Although of the same form than the Henri-Michaelis-Menten equation,
it is semantically different since Km now represents a pseudo-equilibrium constant, and
is equal to the ratio between the rate of consumption of the complex (sum of dissociation
of substrate and generation of product) and the association rate of the enzyme and the
substrate.
is a: SBO:0000011 ; kinetics of unireactant enzymes
math: <math xmlns="http://www.w3.org/1998/Math/MathML">
<lambda>
<bvar><ci definitionURL="http://www.biomodels.net/SBO/#SBO:0000004">S</ci></bvar>
<bvar><ci definitionURL="http://wWw.biomodels.net/SBO/#SBO:0000006">E</ci></bvar>
<bvar><ci definitionURL="http://www.biomodels.net/SBO/#SBO:0000019">kp</ci></bvar>
<bvar><ci definitionURL="http://www.biomodels.net/SBO/#SBO:0000008">Km</ci></bvar>
<apply>
<divide/>
<apply>
<times/><ci>E</ci><ci>kp</ci><ci>S</ci>
</apply>
<apply>
<plus/><ci>Km</ci><ci>S</ci>
</apply>
</apply>
</lambda>
</math>

```

\section*{Terms are machine-readable}

\section*{[Term]}
id: SBO:0000015
name: Briggs-Haldane equation
def: "Rate-law presented in G. E. Briggs and J. B. S. Haldane (1925) A note on the kinetics of enzyme action, Biochem. J., 19, 339-339. It is a general rate equation that does not require the restriction of equilibrium of Michaelis-Menten or irreversible reactions of Van Slyke, but instead make the hypothesis that the complex enzyme-substrate is in steady-state. Although of the same form than the Henri-Michaelis-Menten equation, it is semantically different since Km now represents a pseudo-equilibrium constant, and is equal to the ratio between the rate of consumption of the complex (sum of dissociation of substrate and generation of product) and the association rate of the enzyme and the substrate.

\section*{is a: SBO:0000011 : kinetics of unireactant enzvmes}
math: <math xmlns="http://www.w3.org/1998/Math/MathML">
<lambda>
<bvar><ci definitionURL="http://www.biomodels.net/SBO/\#SBO:0000004">S</ci></bvar> <bvar><ci definitionURL="http://www.biomodels.net/SBO/\#SBO:0000006">E</ci></bvar> <bvar><ci definitionURL="http://www.biomodels.net/SBO/\#SBO:0000019">kp</ci></bvar>
<bvar><ci definitionURL="http://www.biomodels.net/SBO/\#SBO:0000008">Km</ci></bvar>
<apply>
<divide/>
<apply>
<times/><ci>E</ci><ci>kp</ci><ci>S</ci>
</apply>
<apply>
<plus/><ci>Km</ci><ci>S</ci>
</apply>
</apply>
</lambda>
</math>

\section*{Terms are machine-readable}
```

[Term]
id: SBO:0000015
name: Briggs-Haldane equation
def: "Rate-law presented in G. E. Briggs and J. B. S. Haldane (1925) A note on the
kinetics of enzyme action, Biochem. J., 19, 339-339. It is a general rate equation
that does not require the restriction of equilibrium of Michaelis-Menten or irreversible
reactions of Van Slyke, but instead make the hypothesis that the complex enzyme-substrate
is in steady-state. Although of the same form than the Henri-Michaelis-Menten equation,
it is semantically different since Km now represents a pseudo-equilibrium constant, and
is equal to the ratio between the rate of consumption of the complex (sum of dissociation
of substrate and generation of product) and the association rate of the enzyme and the
substrate.
is a: SBO:0000011 ; kinetics of unireactant enzymes
math: <math xmlns="http://www.w3.org/1998/Math/MathML">
<lambda>
<bvar><ci definitionURL="http://www.biomodels.net/SBO/#SBO:0000004">S</ci></bvar>
<bvar><ci definitionURL="http://wWw.biomodels.net/SBO/#SBO:0000006">E</ci></bvar>
<bvar><ci definitionURL="http://www.biomodels.net/SBO/#SBO:0000019">kp</ci></bvar>
<bvar><ci definitionURL="http://www.biomodels.net/SBO/#SBO:0000008">Km</ci></bvar>
<apply>
<divide/>
<apply>
<times/><ci>E</ci><ci>kp</ci><ci>S</ci>
</apply>
<apply>
<plus/><ci>Km</ci><ci>S</ci>
</apply>
</apply>
</lambda>
</math>

```

\section*{Terms are machine-readable}
```

[Term]
id: SBO:0000015
name: Briggs-Haldane equation
def: "Rate-law presented in G. E. Briggs and J. B. S. Haldane (1925) A note on the
kinetics of enzyme action, Biochem. J., 19, 339-339. It is a general rate equation
that does not require the restriction of equilibrium of Michaelis-Menten or irreversible
reactions of Van Slyke, but instead make the hypothesis that the complex enzyme-substrate
is in steady-state. Although of the same form than the Henri-Michaelis-Menten equation,
it is semantically different since Km now represents a pseudo-equilibrium constant, and
is equal to the ratio between the rate of consumption of the complex (sum of dissociation
of substrate and generation of product) and the association rate of the enzyme and the
substrate.
is a: SBO:0000011 ; kinetics of unireactant enzymes
math: <math xmlns="http://www.w3.org/1998/Math/MathML">
<lambda>
<bvar><ci definitionURL="http://www.biomodels.net/SBO/#SBO:0000004">S</ci></bvar>
<bvar><ci definitionURL="http://www.biomodels.net/SBO/#SBO:0000006">E</ci></bvar>
<bvar><ci definitionURL="http://www.biomodels.net/SBO/#SBO:0000019">kp</ci></bvar>
<bvar><ci definitionURL="http://www.biomodels.net/SBO/#SBO:0000008">Km</ci></bvar>
<apply>
<divide/>
<apply>
<times/><ci>E</ci><ci>kp</ci><ci>S</ci>
</apply>
<apply>
<plus/><ci>Km</ci><ci>S</ci>
</apply>
</apply>
</lambda>
</math>

```

\section*{can insert in SBML}
```

</lambda>

Select SBML constructs have sboTerm

| Model
 id: SId \{ use="optional" \}
 name: string \{ use="optional" \}
 sboTerm: SBOTerm \{ use="optional" \}
 functionDefinition: FunctionDefinition[0..*]
 unitDefinition: UnitDefinition[0..*]
 compartmentType: CompartmentType[0..*]
 speciesType: SpeciesType[0..*]
 compartment: Compartment[0..*]
 species: Species[0..*]
 parameter: Parameter[0..*]
 initialAssignment: InitialAssignment[0..*]
 rule: Rule[0..*]
 constraint: Constraint[0..*]
 reaction: Reaction[0..*]
 event: Event[0..*] |
| :---: |
| | |

| Reaction |
| :--- |
| id: SId |
| name: string $\{$ use="optional" $\}$ |
| reactant: SpeciesReference[0.."] |
| product: SpeciesReference[0.."] |
| modifier: ModifierSpeciesReference[0.."] |
| kineticLaw: KineticLaw $\{$ minOccurs="0" maxOccurs="1" $\}$ |
| reversible: boolean $\{$ use="optional" default="true" $\}$ |
| fast: boolean $\{$ use="optional" default="false" $\}$ |
| sboTerm: SBOTerm $\{$ use="optional" $\}$ |

Initial
stoichiometry: double $\{$ use="optional" default="1" $\}$
stoichiometryMath: StoichiometryMath $\{$ use="optional" $\}$

ModifierSpeciesReference
symbol: SId
math: Math \{ namespace="htt sboTerm: SBOTerm \{ use="op

| KineticLaw |
| :--- |
| math: Math \{ namespace="http://www.w3.org/1998/Math/MathML" $\}$
 parameter: Parameter[0.."]
 sboTerm: SBOTerm \{use="optional" $\}$ |

| StoichiometryMath |
| :---: |
| math: Math \{ namespace="http://www.w3.org/1998/Math/MathML" $\}$ |

Values of sboTerm for different SBML constructs

| SBML Component | SBO Vocabulary | Parent SBO Identifier |
| :--- | :--- | :--- |
| Model | modeling framework | SBO:0000004 |
| Reaction | modeling framework | SBO:0000004 |
| Parameter | quantitative parameter | SBO:0000002 |
| SpeciesReference | participant role | SBO:0000003 |
| ModifierSpeciesReference | participant role | SBO:0000003 |
| FunctionDefinition | mathematical expression | SBO:0000064 |
| KineticLaw | mathematical expression | SBO:0000064 |
| InitialAssignment | mathematical expression | SBO:0000064 |
| AlgebraicRule | mathematical expression | SBO:0000064 |
| AssignmentRule | mathematical expression | SBO:0000064 |
| RateRule | mathematical expression | SBO:0000064 |
| Constraint | mathematical expression | SBO:0000064 |
| Event | mathematical expression | SBO:0000064 |
| EventAssignment | mathematical expression | SBO:0000064 |

Annotations

- Applications can add data to each element in SBML
- Must have only one element enclosing an application's data

```
<annotation>
    <mysim:nodecolors xmlns:mysim="http://www.mysim.org/ns"
        mysim:bgcolor="green"
        mysim: fgcolor="white"/>
</annotation>
```

- Each application should put its data under a separate element

Format for annotations

- Content of <annotation> must be single top-level namespace
- There's a recommended format for
I. referring to controlled vocabulary terms and database identifiers for describing biological and biochemical entities

2. describing the creator of a model and its modification history

- Uses RDF \& a restricted set of Dublin Core to encode relationships
- Specific BioModels qualifier names
- http://biomodels.net
- See Sec. 6 in L2V2 specification
-••Break •••

A brief survey of SBMLcompatible software

Summary of several software tools: general features

Package	Win	Mac	Lin	Web	Interface	Environment	ODE	Stoch
MathSBML	x	x	x		Text	Mathematica	x	
COPASI	x	x	x		Forms		x	x
CellDesigner	x	x	x		Graphical, Forms		x	
SBML ODE Solver	x	x	x	x	 cmd line		x	
Jarnac/ JDesigner	x				Text, Graphical		x	x
SBToolbox	x	x	x		Text	MATLAB	x	x
SimBiology	x	x	x		Text, Graphical	MATLAB	x	x
Dizzy	x	x	x		Text, Forms		x	x

Summary of several software tools: SBML details

Package	Units?	Events?	Algebraic Rules?	Delays?	Functions?	Special Features
MathSBML	x	x	x	x	x	all of Mathematica
COPASI	x				x	sensitivity analysis, parameter scan., MCA, optimization
CellDesigner	x	part.	x		x	parameter scan., sensitivity analysis
SBML ODE Solver	x	part.	x		x	parameter scan., sensitivity analysis
Jarnac/JDesigner		part.	part.	x	x	compact language, MCA
SBToolbox	part.		x	x	optimization, sensitivity analysis, all of MATLAB	
SimBiology	x		x		x	full-blown MATLAB product

Where to find the software

- MathSBML: http://sbml.org/software/mathsbml
- Author: Bruce Shapiro (Caltech/JPL/BNMC)
- Most current documentation is online, not in download!
- COPASI: http://copasi.org
- Authors: P. Mendes, S.Hoops (Virginia Tech), S. Sahle, R.Gauges (EML Heidelberg)
- SBML ODE Solver: http://www.tbi.univie.ac.at/~raim/odeSolver/
- Authors: R. Machne, C. Flamm (U.Vienna)
- Jarnac, JDesigner: http://sbw.kgi.edu
- Author: Herbert Sauro (KGI)
- SBToolbox: http://www.sbtoolbox.org/
- Author: Henning Schmidt (Chalmers, Sweden)
- CellDesigner: http://celldesigner.org
- SimBiology: http://mathworks.com
- Dizzy:http://www.systemsbiology.org/Technology/

Data_Visualization_and_Analysis/Dizzy

Closing comments and discussions

SBML = Systems Biology Markup Language

SBML = Systems Biology Markup Language

- Machine-readable format for representing computational models

SBML = Systems Biology Markup Language

- Machine-readable format for representing computational models
- Declarative, not procedural

$$
\begin{gathered}
2 A+B \rightharpoonup C \\
C \rightleftharpoons D+F
\end{gathered}
$$

SBML = Systems Biology Markup Language

- Machine-readable format for representing computational models
- Declarative, not procedural
- Models can also include

$$
\begin{gathered}
2 \mathrm{~A}+\mathrm{B} \rightharpoonup \mathrm{C} \\
\mathrm{C} \rightleftharpoons \mathrm{D}+\mathrm{F}
\end{gathered}
$$

- Compartments (i.e., where chemical substances are located)
- Mathematical "extras" (assignments, explicit different eq's)
- Discontinuous events with arbitrary triggers

Current de facto standard

Current de facto standard

- Successful as a model exchange language
- 100+ software systems worldwide
- Including commercial developers: MathWorks, TERANODE, etc.
- Used by international consortia, industry, academia
- Used in educational materials

Current de facto standard

- Successful as a model exchange language
- 100+ software systems worldwide
- Including commercial developers: MathWorks, TERANODE, etc.
- Used by international consortia, industry, academia
- Used in educational materials
- Successful as "glue"
- Coalesced a community of software developers
- Allows interchange where none existed before
- Between people, between software, between researchers at many different levels

Current de facto standard

- Successful as a model exchange language
- 100+ software systems worldwide
- Including commercial developers: MathWorks, TERANODE, etc.
- Used by international consortia, industry, academia
- Used in educational materials
- Successful as "glue"
- Coalesced a community of software developers
- Allows interchange where none existed before
- Between people, between software, between researchers at many different levels
- Of course, SBML isn't without problems

SBML evolution continues

SBML evolution continues

- Current development process is informal
- SBML Editors seek consensus and created integrated specification
- Polling \& voting by community for major decisions

SBML evolution continues

- Current development process is informal
- SBML Editors seek consensus and created integrated specification
- Polling \& voting by community for major decisions
- New SBML process coming
- Borrow ideas from World Wide Web Consortium \& other orgs
- Architectural board with larger membership
- SBML Editors voted in for limited terms
- Implement better-defined, regimented process
- Calls for proposals, etc.
- Voting, etc.

Upcoming SBML meetings

- SBML Forum Meeting 2006 Oct. I2-I3 (after ICSB, in Tokyo)
- See http://sbml.org/workshops for more info
- SBML Hackathon, June 2007, University of Newcastle (UK)
- SBML Forum Meeting 2007, Oct. 5-6, Long Beach, California (USA)
- See http://icbs-2007.org

Keep informed!

- Join sbml-announce@caltech.edu (low-volume, broadcast-only)
- Join sbml-discuss (higher volume, discussions \& debates)
- Join libsbml-discuss (discussions \& help about libsbml)
- See http://sbml.org/forums

Thank you for attending!

- And a big thanks to our funding agencies:
- NIH National Institute of General Medical Sciences (USA)
- National Science Foundation (USA)
- International Joint Research Program of NEDO (Japan)
- JST ERATO Kitano Symbiotic Systems Project (Japan)
- JST ERATO-SORST Program (Japan)
- Japanese Ministry of Agriculture
- Japanese Ministry of Education, Culture, Sports, Science and Tech.
- BBSRC e-Science Initiative (UK)
- DARPA IPTO Bio-Computation Program (USA)
- Air Force Office of Scientific Research (USA)
- STRI, University of Hertfordshire (UK)
- Beckman Institute, Caltech

