
U H

A tutorial about SBML and

SBML Level 2 Version 2

Michael Hucka
Biological Network Modeling Center,
Beckman Institute
California Institute of Technology
Pasadena, California, USA

Sarah Keating
Science & Technology Research Institute
University of Hertfordshire
Hatfield, Hertfordshire, UK

1

Tutorial outline

1. Some background about SBML

2. SBML language basics

3. LibSBML and other SBML software infrastructure

4. Additional SBML features and SBML Level 2 Version 2 differences

5. A brief survey of SBML-compatible software

6. Closing comments and discussions

The background of SBML

Computational modeling is essential

• Computational modeling is increasingly crucial to biology

Computational modeling is essential

• Computational modeling is increasingly crucial to biology

• Not a new idea!

• Experiencing heightened interest thanks to systems biology

Computational modeling is essential

• Computational modeling is increasingly crucial to biology

• Not a new idea!

• Experiencing heightened interest thanks to systems biology

• Serves the scientific method

• Enables quantitative hypothesis testing

• Forces you to quantify every assumption & make it testable

• Enables precise knowledge transfer

• Reduces ambiguities

Computational modeling is essential

• Computational modeling is increasingly crucial to biology

• Not a new idea!

• Experiencing heightened interest thanks to systems biology

• Serves the scientific method

• Enables quantitative hypothesis testing

• Forces you to quantify every assumption & make it testable

• Enables precise knowledge transfer

• Reduces ambiguities

• Sign of rising popularity: new journals starting up

• E.g., PLoS Computational Biology

Computational modeling is essential

Computational models

Software tools to aid modeling

Software tools to aid modeling

• General-purpose environments

• Mathematica, MATLAB, etc.

Software tools to aid modeling

• General-purpose environments

• Mathematica, MATLAB, etc.

• Special-purpose software

• model editing

• simulation

• analysis

• visualization

Software tools to aid modeling

• General-purpose environments

• Mathematica, MATLAB, etc.

• Special-purpose software

• model editing

• simulation

• analysis

• visualization

CellDesigner

Software tools to aid modeling

• General-purpose environments

• Mathematica, MATLAB, etc.

• Special-purpose software

• model editing

• simulation

• analysis

• visualization

JDesignerCellDesigner

Software tools to aid modeling

• General-purpose environments

• Mathematica, MATLAB, etc.

• Special-purpose software

• model editing

• simulation

• analysis

• visualization

COPASI

JDesignerCellDesigner

Ability to exchange models is critical

• Simply publishing equations is not enough

• Don’t want to transcribe equations from papers

• Want a common file format

Ability to exchange models is critical

• Simply publishing equations is not enough

• Don’t want to transcribe equations from papers

• Want a common file format

• Not an earth-shattering idea!

• But curiously, such a format hadn’t existed before year 2000

• Each tool had its own unique proprietary format

Ability to exchange models is critical

SBML = Systems Biology Markup Language

• Machine-readable format for representing computational models

SBML = Systems Biology Markup Language

• Machine-readable format for representing computational models

• Suitable for reaction networks

• Arbitrary rate functions

2 A + B ⇀ C
C ⇌ D + F

...

SBML = Systems Biology Markup Language

• Machine-readable format for representing computational models

• Suitable for reaction networks

• Arbitrary rate functions

• Declarative, not procedural

2 A + B ⇀ C
C ⇌ D + F

...

SBML = Systems Biology Markup Language

• Machine-readable format for representing computational models

• Suitable for reaction networks

• Arbitrary rate functions

• Declarative, not procedural

• Models can also include

• Compartments (i.e., where chemical substances are located)

• Mathematical “extras” (assignments, explicit different eq’s)

• Discontinuous events with arbitrary triggers

2 A + B ⇀ C
C ⇌ D + F

...

SBML = Systems Biology Markup Language

• For transferring models between software tools

• Not meant as a system’s internal format

• Not suited for representing—

• Experimental results

• Numerical simulation results

Fundamentally an exchange format

Now the de facto standard

• Supported by >100 systems

• Simulators, databases, analysis tools, editing tools

• Accepted by journals

• Nature

• PLoS Computational Biology

• BMC

• Used in texbooks & courses

• Levels are meant to coexist

• Level 1: mostly basic compartmental modeling

• Level 2: significantly more features—e.g.:

• User-defined functions

• Events

• “Types” for chemical species and compartments

• Initial conditions, constraints, other “fiddly bits”

• Level 3: now (back) in development

SBML “Levels”

• Final version released September 26

• Embodies years of discussions
and practical experience

• Most software currently only
supports L2V1, not L2V2 yet

• But L2V2 support will
come soon

Latest: SBML Level 2 Version 2

A general overview of SBML

How is SBML used?

How is SBML used?

• Meant to provide an exchange language for software tools

How is SBML used?

 <listOfReactants>
 <speciesReference species="MKKK"/>
 </listOfReactants>
 <listOfProducts>
 <speciesReference species="MKKK_P"/>
 </listOfProducts>
 <listOfModifiers>
 <modifierSpeciesReference species="MAPK_PP"/>
 </listOfModifiers>
 <kineticLaw>
 <math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply>
 <divide/>
 <apply>
 <times/>
 <ci> V1 </ci>
 <ci> MKKK </ci>
 </apply>
 <apply>
 <times/>
 <apply>

• Meant to provide an exchange language for software tools

• Don’t write SBML by hand if you can help it

• (SBML is in XML, so you could write it by hand if you had to)

How is SBML used?

• Meant to provide an exchange language for software tools

• Don’t write SBML by hand if you can help it

• (SBML is in XML, so you could write it by hand if you had to)

• Software tools that “speak” SBML provide a higher-level interface

How is SBML used?

• Meant to provide an exchange language for software tools

• Don’t write SBML by hand if you can help it

• (SBML is in XML, so you could write it by hand if you had to)

• Software tools that “speak” SBML provide a higher-level interface

• Applications usually have their own native format

• Import/export SBML rather than natively save as SBML

Some important SBML constructs

• Basic elements

• species

• compartment

• parameter

• reaction

• Additional useful elements

• unit definition

• “rule”

• function definition

• event

• initial assignment

• constraint

species A species B

reaction 1

reaction 2
compartment_1

species C
compartment_2

species D
reaction 3

reaction 4

Example #1

• One reaction, 2A B + C, where rate is given as k[A(t)]2

• Initial conditions: [A(0)] = 3, [B(0)] = 0, [C(0)] = 0.

Basic SBML document structure

<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns="http://www.sbml.org/sbml/level2/version2"
 level="2" version="2">
 ...
</sbml>

• Format: plain text (technically UTF-8)

• Extension: usually .xml (not .sbml)

http://www.sbml.org/sbml/level2
http://www.sbml.org/sbml/level2

The Model container

Overall structure of the XML rendition of a Model instance

<model id=”m” name=”Example”>
<listOfFunctionDefinitions>

...
</listOfFunctionDefinitions>
<listOfUnitDefinitions>

...
</listOfUnitDefinitions>
<listOfCompartmentTypes>

...
</listOfCompartmentTypes>
<listOfSpeciesTypes>

...
</listOfSpeciesTypes>
<listOfSpecies>

...
</listOfSpecies>

...

Overall structure of the XML rendition of a Model instance

<model id=”m” name=”Example”>
<listOfFunctionDefinitions>

...
</listOfFunctionDefinitions>
<listOfUnitDefinitions>

...
</listOfUnitDefinitions>
<listOfCompartmentTypes>

...
</listOfCompartmentTypes>
<listOfSpeciesTypes>

...
</listOfSpeciesTypes>
<listOfSpecies>

...
</listOfSpecies>

...

Overall structure of the XML rendition of a Model instance

<model id=”m” name=”Example”>
<listOfFunctionDefinitions>

...
</listOfFunctionDefinitions>
<listOfUnitDefinitions>

...
</listOfUnitDefinitions>
<listOfCompartmentTypes>

...
</listOfCompartmentTypes>
<listOfSpeciesTypes>

...
</listOfSpeciesTypes>
<listOfSpecies>

...
</listOfSpecies>

...

Overall structure of the XML rendition of a Model instance

<model id=”m” name=”Example”>
<listOfFunctionDefinitions>

...
</listOfFunctionDefinitions>
<listOfUnitDefinitions>

...
</listOfUnitDefinitions>
<listOfCompartmentTypes>

...
</listOfCompartmentTypes>
<listOfSpeciesTypes>

...
</listOfSpeciesTypes>
<listOfSpecies>

...
</listOfSpecies>

...

Overall structure of the XML rendition of a Model instance

<model id=”m” name=”Example”>
<listOfFunctionDefinitions>

...
</listOfFunctionDefinitions>
<listOfUnitDefinitions>

...
</listOfUnitDefinitions>
<listOfCompartmentTypes>

...
</listOfCompartmentTypes>
<listOfSpeciesTypes>

...
</listOfSpeciesTypes>
<listOfSpecies>

...
</listOfSpecies>

...
order is significant

listOf______s

• Lists like Parameter[0..*] in the definition are translated into

<listOfParameters>
<parameter ... />
<parameter ... />
...

</listOfParameters>

• listOf_____s are derived from SBase

• Therefore, can have metaid, <notes>, <annotation>

SBase

• Abstract type

• Most object structures in SBML are derived from SBase

• <notes> allows human-readable annotations to be added

• Format is XHTML

• <annotation> allows machine-readable annotations to be added

• Applications can put their own data into it—just needs to be XML

• Guidelines are discussed later in this tutorial

• metaid is for references by annotations

Common feature: identifiers and names

• Most elements have both an id and a name field

• Identifier field has restricted syntax: abc123 or _abc123 or a_b_c_1 etc.

• The id is what you use in expressions

• Value of name is unrestricted (exception: no newlines or carriage returns)

• Must assign a value to id on most objects, but name is always optional

• Some tools let you use names & auto-generate id’s (e.g., COPASI)

Identifier Meaning

species id quantity of the species

compartment id size of the compartment

parameter id numerical value

function id a call to that function

reaction id (L2v2) rate of the reaction

Representation of mathematical expressions in SBML

• SBML Level 1: mathematical expressions encoded as text strings

• In the XML, have formula=”2*S1”

• SBML Level 2: math expressions encoded using MathML 2.0

• Standard XML format for encoding mathematical expressions

• SBML uses only a subset of the content portion of MathML

• MathML content always must be placed in a <math> element

MathML operators in SBML

• Most common operators available:

• plus, minus, power, exp, etc.

• relational operators: eq, neq, gt, lt, geq, leq

• piecewise

• pi, exponentiale

• many others

• Complete list on p. 21 of L2V2 specification document

References in MathML

• References to numbers are through the <cn> element:
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<times/>
<cn type="integer"> 42 </cn>
<cn type="real"> 3.3 </cn>

</apply>
</math>

• References to identifiers are through the <ci> element:
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<times/>

<cn> 0.014 </cn>
<ci> S1 </ci>

</apply>
</math>

References in MathML

• References to numbers are through the <cn> element:
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<times/>
<cn type="integer"> 42 </cn>
<cn type="real"> 3.3 </cn>

</apply>
</math>

• References to identifiers are through the <ci> element:
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<times/>

<cn> 0.014 </cn>
<ci> S1 </ci>

</apply>
</math>

References in MathML

• References to numbers are through the <cn> element:
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<times/>
<cn type="integer"> 42 </cn>
<cn type="real"> 3.3 </cn>

</apply>
</math>

• References to identifiers are through the <ci> element:
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<times/>

<cn> 0.014 </cn>
<ci> S1 </ci>

</apply>
</math>

References in MathML

• References to numbers are through the <cn> element:
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<times/>
<cn type="integer"> 42 </cn>
<cn type="real"> 3.3 </cn>

</apply>
</math>

• References to identifiers are through the <ci> element:
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<times/>

<cn> 0.014 </cn>
<ci> S1 </ci>

</apply>
</math>

Compartment basics

• id & name

• spatialDimensions

• 3, 2, 1, 0 (default: 3)

• size

• Floating-point number giving the compartment size (volume or other)

• units

• Identifier of the units of measure for the size

• outside

• Identifier of the compartment
outside of this one

• constant

• Boolean: is the compartment size constant? (Default: true)

“outside”

Compartment example

...
<listOfCompartments>
<compartment id="cytoplasm" size="5"/>
<compartment id="nucleus" size="1"
 outside="cytoplasm" />

</listOfCompartments>
...
<listOfSpecies>
<species id="X" compartment="nucleus"
 initialAmount="1" />

<species id="Y" compartment="cytoplasm"
 initialAmount="1" />

</listOfSpecies>
...

Species basics

Species basics

• id & name

• compartment

• Identifier of compartment where species is located

• initialAmount

• Floating-point number giving initial quantity as molecular/item count

• initialConcentration

• Floating-point number giving initial quantity as concentration

• More precisely: (units of substance)/(units of size)

Species basics

• id & name

• compartment

• Identifier of compartment where species is located

• initialAmount

• Floating-point number giving initial quantity as molecular/item count

• initialConcentration

• Floating-point number giving initial quantity as concentration

• More precisely: (units of substance)/(units of size)

Mutually exclusive

Species basics

• id & name

• compartment

• Identifier of compartment where species is located

• initialAmount

• Floating-point number giving initial quantity as molecular/item count

• initialConcentration

• Floating-point number giving initial quantity as concentration

• More precisely: (units of substance)/(units of size)

• boundaryCondition

• Boolean: should a rate of change equation be constructed for the
species based on the system of reactions? (Default: false)

• constant

• Boolean: is the species quantity constant? (Default: false)

Mutually exclusive

More about species

• Think of species as a pool of molecules of the same type

• Species must be located in some compartment

• If have the same species in multiple compartments, must have separate
species definitions for each

• ... but in L2V2, can use SpeciesType to relate them together

• If doing stochastic model, best define species in terms of amounts

Species example

<listOfSpecies>
<species id="S1" initialConcentration="0"
 compartment="c1" boundaryCondition="true" />

<species id="S3" initialConcentration="10"
 compartment="c2" constant="true"/>

<species id="S4" initialConcentration="4.5"
 compartment="c2"/>

</listOfSpecies>

Parameter basics

• id & name

• value

• The floating-point value of the parameter

• units

• Identifier of the units of measure for the value

• constant

• Boolean: is the value of the parameter constant? (Default: true)

Parameter example

<listOfParameters>
<parameter id="k1" value="0.5"/>
<parameter id="k2" value="0.1"/>

</listOfParameters>

Reaction basics

References to defined species}

Reaction basics

• id & name

• <listOfReactants> (optional)

• <listOfProducts> (optional)

• <listOfModifiers> (optional)

• <kineticLaw> (optional)

References to defined species}

Reaction basics

• id & name

• <listOfReactants> (optional)

• <listOfProducts> (optional)

• <listOfModifiers> (optional)

• <kineticLaw> (optional)

• reversible

• Boolean: is the reaction reversible? (Default: true)

References to defined species}

About reactants, products and modifiers

About reactants, products and modifiers

• All species must be defined in the model’s top-level list of species

• Reactions simply refer back to the species definitions

About reactants, products and modifiers

• All species must be defined in the model’s top-level list of species

• Reactions simply refer back to the species definitions

• Reaction can have any number of reactants or products, but must
have at least one reactant or product

About reactants, products and modifiers

• All species must be defined in the model’s top-level list of species

• Reactions simply refer back to the species definitions

• Reaction can have any number of reactants or products, but must
have at least one reactant or product

• A species can appear in both the list of reactants & list of products

• Effective stoichiometry is then: (stoich.-as-react.) - (stoich.-as-prod.)

• E.g.: 2A A + B ==> effective stoichiometry of A is +1

About reactants, products and modifiers

• All species must be defined in the model’s top-level list of species

• Reactions simply refer back to the species definitions

• Reaction can have any number of reactants or products, but must
have at least one reactant or product

• A species can appear in both the list of reactants & list of products

• Effective stoichiometry is then: (stoich.-as-react.) - (stoich.-as-prod.)

• E.g.: 2A A + B ==> effective stoichiometry of A is +1

• A species labeled as modifier may also appear in list of reactants
and/or products—not an either/or situation

About reactants, products and modifiers

• All species must be defined in the model’s top-level list of species

• Reactions simply refer back to the species definitions

• Reaction can have any number of reactants or products, but must
have at least one reactant or product

• A species can appear in both the list of reactants & list of products

• Effective stoichiometry is then: (stoich.-as-react.) - (stoich.-as-prod.)

• E.g.: 2A A + B ==> effective stoichiometry of A is +1

• A species labeled as modifier may also appear in list of reactants
and/or products—not an either/or situation

• A “modifier” species appears in the rate expression but is neither
created nor destroyed in that reaction

About reactants, products and modifiers

• All species must be defined in the model’s top-level list of species

• Reactions simply refer back to the species definitions

• Reaction can have any number of reactants or products, but must
have at least one reactant or product

• A species can appear in both the list of reactants & list of products

• Effective stoichiometry is then: (stoich.-as-react.) - (stoich.-as-prod.)

• E.g.: 2A A + B ==> effective stoichiometry of A is +1

• A species labeled as modifier may also appear in list of reactants
and/or products—not an either/or situation

• A “modifier” species appears in the rate expression but is neither
created nor destroyed in that reaction

no specific role assumed for modifiers

Lists of reactants, products and modifiers

• Most import common field: species

• species value must be id of existing species defined in the model

• ModifierSpeciesReference does not add any more fields

• SpeciesReference adds fields for stoichiometry

Lists of reactants, products and modifiers

• Most import common field: species

• species value must be id of existing species defined in the model

• ModifierSpeciesReference does not add any more fields

• SpeciesReference adds fields for stoichiometry

Lists of reactants, products and modifiers

• Most import common field: species

• species value must be id of existing species defined in the model

• ModifierSpeciesReference does not add any more fields

• SpeciesReference adds fields for stoichiometry

Stoichiometries

• Normally a stoichiometry is an integer or floating-point scalar value

• Default value is “1”

• For more complicated stoichiometries, use stoichiometryMath

• MathML expression

• Mutually exclusive with stoichiometry, use one or the other

<reaction id="Dimerization" reversible="false">
<listOfReactants>
<speciesReference species="P" stoichiometry="2"/>

</listOfReactants>
<listOfProducts>
<speciesReference species="P2" />

</listOfProducts>
...

Stoichiometries

• Normally a stoichiometry is an integer or floating-point scalar value

• Default value is “1”

• For more complicated stoichiometries, use stoichiometryMath

• MathML expression

• Mutually exclusive with stoichiometry, use one or the other

<reaction id="Dimerization" reversible="false">
<listOfReactants>
<speciesReference species="P" stoichiometry="2"/>

</listOfReactants>
<listOfProducts>
<speciesReference species="P2" />

</listOfProducts>
...

Stoichiometries

• Normally a stoichiometry is an integer or floating-point scalar value

• Default value is “1”

• For more complicated stoichiometries, use stoichiometryMath

• MathML expression

• Mutually exclusive with stoichiometry, use one or the other

<reaction id="Dimerization" reversible="false">
<listOfReactants>
<speciesReference species="P" stoichiometry="2"/>

</listOfReactants>
<listOfProducts>
<speciesReference species="P2" />

</listOfProducts>
...

KineticLaw basics

• <math>

• MathML expression for the speed of the reaction

• Units must be substance/time

• <listOfParameters>

• Defines parameters whose identifiers have scope local to the
reaction only

• Not visible from any other reaction, or rest of model

• Identifiers shadow global identifiers

• Data type is same Parameter as for global parameters

KineticLaw basics

• <math>

• MathML expression for the speed of the reaction

• Units must be substance/time

• <listOfParameters>

• Defines parameters whose identifiers have scope local to the
reaction only

• Not visible from any other reaction, or rest of model

• Identifiers shadow global identifiers

• Data type is same Parameter as for global parameters

not concentration/time

• Why are SBML rate expression not identical to rate laws?

• Consider simple example:

• What does this mean?

• But what if ? For example, what if ?

• Look at number of molecules of each species in each compartment:

• How molecules leave & enter each compartment?

• molecules leave the first compartment

• molecules enter the second compartment

Interpreting reactions

S1

S2

S1 → S2

rate law = k · [S1]

V1

V2

d[S2]
dt

= −d[S1]
dt

= k · [S1]

V1 != V2 V2 = 3V1

nS1 = [S1] · V1 nS2 = [S2] · V2

k · [S1] · V1

3 · k · [S1] · V1

“Kinetic law” in SBML

• Rate expressions are substance/time, not substance/size/time

• Conversion for basic cases is simple:

• Multiply by volume of compartment where reactants are located:

• Express rates of changes of reactants & products in terms of substances:

• Can easily recover concentrations:

rate = k · [S1] · V1

dnS1

dt
= −k1 · [S1] · V1

[S1] =
nS1

V1
[S2] =

nS2

V2

dnS2

dt
= k1 · [S1] · V1

“Kinetic law” in SBML

• Rate expressions are substance/time, not substance/size/time

• Conversion for basic cases is simple:

• Multiply by volume of compartment where reactants are located:

• Express rates of changes of reactants & products in terms of substances:

• Can easily recover concentrations:

rate = k · [S1] · V1

dnS1

dt
= −k1 · [S1] · V1

[S1] =
nS1

V1
[S2] =

nS2

V2

moles
items
mass

“dimensionless”

dnS2

dt
= k1 · [S1] · V1

Example #2

S1 → S2 → S3

r1 = k1 · [S1] r2 = k2 · [S2]

S1 S2 S3

Compartment volumes:

Compartments:

Rate laws:

Initial concentrations: S1 = 4 S2 = 10 S3 = 0

V1 = 1 V2 = 0.5 V3 = 2Volumes:

k1 = 0.2 k2 = 0.7Constants:

V1 V2 V3

Example #2: interpretation of differential equations

Express rates of change of species quantities (as amounts, not
concentrations):

dnS1

dt
=− r1 = −k1 · [S1] · V1

dnS2

dt
= + r1 − r2 = +k1 · [S1] · V1 − k2 · [S2] · V2

dnS3

dt
= + r2 = + k2 · [S2] · V2

LibSBML and other SBML
software infrastructure

Software
infrastructure

supporting
use of SBML

http://sbml.org/wiki/icsb2006_tutorial

libSBML
Ben Bornstein and Sarah Keating

Application Programming Interface

• read • write • validate

• manipulate • translate

• ISO C and C++

• java

• python

• perl

• lisp

• MATLAB

• Xerces

• Expat

Languages XML Parsers

• octave (coming in
libSBML-3)

• libXML (coming in
libSBML-3)

Platforms
• Linux

• Windows

• Mac OS

Why use libSBML ?
Memory efficient

Why use libSBML ?
SBML validation

• XML checks • ordering checks

• syntax checks • consistency checks

Why use libSBML ?
High level interface

Model->getNumReactions()

Compartment->isSetSize()

Query a model

Model->getSpecies(“s1”)
Species->getInitialConcentration()

Retrieve information from a model

Why use libSBML ?
High level interface

Species->setInitialConcentration(2.0)

Compartment->setSize(5.6)

Add information to a model

Model->create(“my_model”)
Model->addCompartment(Compartment&)

Create a model

Why use libSBML ?
Math support

Infix (Level 1) MathML (Level 2)

k * A * B <apply>
<times/>
<ci> k </ci>
<ci> A </ci>
<ci> B </ci>

</apply>

Getting started …
http://sourceforge.net/project/showfiles.php?group_id=7
1971&package_id=71670

http://sbml.org/wiki/icsb2006_tutorial

Download libSBML

Online validator
Ben Bornstein

http://sbml.org/validator/

SBMLToolbox
Sarah Keating

An SBML toolbox for MATLAB users

Why use SBMLToolbox ?

• represent models
as MATLAB
structures

• import SBML
into MATLAB

Why use SBMLToolbox ?

• mimic libSBML API

• examples of
simulation

Why use SBMLToolbox ?

• GUI Model
inspector/creator

• save/load models
to MATLAB data
files

• NOT a systems biology toolbox

• provides import/export between
SBML and MATLAB

• provide examples of how MATLAB
functionality can be applied to SBML
models

Acknowledgements
• Ben Kovitz

• Stefan Hoops

• Christoph Flamm

• Rainer Machne

• Martin Ginkel

• Mike Hucka

Anyone who

caught bugs,

made suggestions,

discussed …

••• Break •••

Additional SBML features and
SBML Level 2 Version 2 differences

Units in SBML

• All mathematical entities can have units defined or implied. 2 ways:

• Key object structures have explicit fields for setting units:

• Built-in default units

Structure Units fields
Compartment units

Species substanceUnits, spatialSizeUnits

Parameter units

Event timeUnits

KineticLaw substanceUnits, timeUnits removed in L2V2

Identifer Default Possible scalable units

substance mole mole, item, gram, kilogram, dimensionless

volume litre litre, cubic metre, dimensionless

area square metre square metre, dimensionless

length metre metre, dimensionless

time second second, dimensionless

Redefining units

• Same mechanism for defining new units and redefining the built-ins:

• Unit definition creates a new unit identifier (the value of id)

• Unit identifier namespace is global but different from space of other id’s

• Approach is multiplicative composition

• E.g., moles/(litre • second) =

second

11
litre

mole × ×
Unit Unit UnitUnitDefinition

The meaning of fields in Unit

yb {ub} = y {u}
(

w {ub}
{u}

)

The meaning of fields in Unit

yb {ub} = y {u}
(

w {ub}
{u}

)

Quantity y in original
units “u”

The meaning of fields in Unit

yb {ub} = y {u}
(

w {ub}
{u}

)

Quantity y in original
units “u”

Units you want to
convert into

The meaning of fields in Unit

yb {ub} = y {u}
(

w {ub}
{u}

)

Quantity y in original
units “u”

Units you want to
convert into

Resultant quantity

The meaning of fields in Unit

yb {ub} = y {u}
(

w {ub}
{u}

)

Quantity y in original
units “u”

Units you want to
convert into

Resultant quantity SBML lets you
define this

The meaning of fields in Unit

yb {ub} = y {u}
(

w {ub}
{u}

)

The meaning of fields in Unit

yb {ub} = y {u}
(

w {ub}
{u}

)

{u} = (multiplier · 10scale {ub})exponent

The meaning of fields in Unit

• UnitKind is an enumeration of base units (SI + a few extras)

• mole, kelvin, second, metre, litre, gram, kilogram, item, dimensionless, etc.

yb {ub} = y {u}
(

w {ub}
{u}

)

{u} = (multiplier · 10scale {ub})exponent

Example unit definition

• Definition of “foot”:

<listOfUnitDefinitions>
<unitDefinition id="foot">

<listOfUnits>
<unit kind="metre" multiplier="0.3048"

 exponent=”1”

 scale=”0”/>
</listOfUnits>

</unitDefinition>
</listOfUnitDefinitions>

foot = (0.3048 • 100 • metre)1

yb metres = 0.3048 • y feet

More on using units

• Default model-wide units

• Redefine the special units “time”, “substance”, “volume”, “length”, “area”

• Tools usually provide
a more direct way

 <listOfUnitDefinitions>
 <unitDefinition id="volume">
 <listOfUnits>
 <unit kind="litre" scale="-3"/>
 </listOfUnits>
 </unitDefinition>
 <unitDefinition id="substance">
 <listOfUnits>
 <unit kind="mole" scale="-3"/>
 </listOfUnits>
 </unitDefinition>
 </listOfUnitDefinitions>

Changes to unit system in L2V2

• No offset on UnitDefinition

• No predefined unit “Celsius”

• Modeler needs to include necessary conversions explicitly

• Could use a function definition

• Could use an assignment rule

• “Rules” in SBML define extra mathematical expressions

• E.g.: if need to express additional mathematical relationships beyond what
is implied by the system of reactions

• 3 subtypes:

• Rules define relationships that hold at all times

AssignmentRule, RateRule, AlgebraicRule

Rule type General form Example

algebraic 0 = S1 + S2

assignment x = y + z

rate dS/dt = 10.5

x = f(V)

0 = f(W)

dx/dt = f(W)

Rules in the context of the overall system

dS1/dt = r1 + r2 + r3 + . . .

dS2/dt = −r1 + r5 + . . .

. . .

0 = f1(W)
0 = f2(W)

. . .

x = g1(W)
y = g2(W)

. . .

dm/dt = h1(W)
dq/dt = h2(W)

. . .

Rules in the context of the overall system

dS1/dt = r1 + r2 + r3 + . . .

dS2/dt = −r1 + r5 + . . .

. . .

0 = f1(W)
0 = f2(W)

. . .

x = g1(W)
y = g2(W)

. . .

dm/dt = h1(W)
dq/dt = h2(W)

. . .

Equations derived
from reaction

definitions

Rules in the context of the overall system

dS1/dt = r1 + r2 + r3 + . . .

dS2/dt = −r1 + r5 + . . .

. . .

0 = f1(W)
0 = f2(W)

. . .

x = g1(W)
y = g2(W)

. . .

dm/dt = h1(W)
dq/dt = h2(W)

. . .

Algebraic rules

Rules in the context of the overall system

dS1/dt = r1 + r2 + r3 + . . .

dS2/dt = −r1 + r5 + . . .

. . .

0 = f1(W)
0 = f2(W)

. . .

x = g1(W)
y = g2(W)

. . .

dm/dt = h1(W)
dq/dt = h2(W)

. . .

Assignment rules

Rules in the context of the overall system

dS1/dt = r1 + r2 + r3 + . . .

dS2/dt = −r1 + r5 + . . .

. . .

0 = f1(W)
0 = f2(W)

. . .

x = g1(W)
y = g2(W)

. . .

dm/dt = h1(W)
dq/dt = h2(W)

. . .

Rate rules

Rules in the context of the overall system

dS1/dt = r1 + r2 + r3 + . . .

dS2/dt = −r1 + r5 + . . .

. . .

0 = f1(W)
0 = f2(W)

. . .

x = g1(W)
y = g2(W)

. . .

dm/dt = h1(W)
dq/dt = h2(W)

. . .

Rules and
equations from
reactions are

taken together

SBML object structures for rules

• E.g.:
<assignmentRule variable="k">

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<divide/>
<ci> k3 </ci>

<ci> k2 </ci>
</apply>

</math>

</assignmentRule>

Rule semantics and restrictions

• AssignmentRule

• Assignment to a species, compartment or parameter overrides the initial
value given in the definition

• Variable must not be set by both an AssignmentRule and a RateRule

• Variable must not be set by both an AssignmentRule and an
InitialAssignment

• RateRule

• Variable must not be set by both an AssignmentRule and a RateRule

• Overall restrictions on the whole model:

• The model must not contain algebraic loops

• The model must not be overdetermined

• Can only happen if model contains algebraic rules

• Can be assessed statically (L2V2 spec contains one possible approach)

User-defined functions

• All references to model variables must be passed as arguments

• References to other user-defined functions must be for functions
defined earlier in the file

• I.e., no forward references to functions

• No recursive or mutually-recursive functions

• (Point of all this: can implement functions as macro substitutions)

User-defined functions: example

<functionDefinition id="pow3">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<lambda>
<bvar><ci> x </ci></bvar>
<apply>

<power/>
<ci> x </ci>
<cn> 3 </cn>

</apply>
</lambda>

</math>
</functionDefinition>
...
<listOfReactions>

<reaction id="reaction_1">
...
<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<ci> pow3 </ci>
<ci> S1 </ci>

</apply>
</math>

</kineticLaw>
...
</reaction>

</listOfReactions>

User-defined functions: example

<functionDefinition id="pow3">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<lambda>
<bvar><ci> x </ci></bvar>
<apply>

<power/>
<ci> x </ci>
<cn> 3 </cn>

</apply>
</lambda>

</math>
</functionDefinition>
...
<listOfReactions>

<reaction id="reaction_1">
...
<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<ci> pow3 </ci>
<ci> S1 </ci>

</apply>
</math>

</kineticLaw>
...
</reaction>

</listOfReactions>

User-defined functions: example

<functionDefinition id="pow3">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<lambda>
<bvar><ci> x </ci></bvar>
<apply>

<power/>
<ci> x </ci>
<cn> 3 </cn>

</apply>
</lambda>

</math>
</functionDefinition>
...
<listOfReactions>

<reaction id="reaction_1">
...
<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<ci> pow3 </ci>
<ci> S1 </ci>

</apply>
</math>

</kineticLaw>
...
</reaction>

</listOfReactions>

Uses <ci> to reference function identifier

User-defined functions: example

<functionDefinition id="pow3">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<lambda>
<bvar><ci> x </ci></bvar>
<apply>

<power/>
<ci> x </ci>
<cn> 3 </cn>

</apply>
</lambda>

</math>
</functionDefinition>
...
<listOfReactions>

<reaction id="reaction_1">
...
<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<ci> pow3 </ci>
<ci> S1 </ci>

</apply>
</math>

</kineticLaw>
...
</reaction>

</listOfReactions>

Uses <bvar> to pass arguments

Events

• Defines discontinuous changes in model variables

• EventAssignment variable can be

• species

• compartment

• parameter

• Trigger and delay conditions are full mathematical expressions

Usage points: events

• Triggered on transition from false to true

• Not possible for event to trigger at t=0 — no transition in variable values

• Assignment ‘math’ expression evaluated when event is fired

• Effect can be delayed (expressed using ‘delay’ expression)

• Cannot create or destroy species/compartments/reactions/etc.

• But you could use a variable that acts as a switch: x*switch

• Warning: not well supported by most software tools (yet)

Compartments

• There is no default size!

• Extremely good practice to always set the size

• Can use size field, assignment rules, or (in L2V2) initial assignments

• size value only allowed if spatialDimensions != 0

• Units of size must be consistent

Species

• Units of substance and spatial size can be set separately

• hasOnlySubstanceUnits

• Boolean: should species quantity always be as substance or substance/size?

• Important: setting initialAmount or initialConcentration does
not imply units will be substance or substance/size, respectively

Species

• Units of substance and spatial size can be set separately

• hasOnlySubstanceUnits

• Boolean: should species quantity always be as substance or substance/size?

• Important: setting initialAmount or initialConcentration does
not imply units will be substance or substance/size, respectively

interpretation is concentration unless hasOnlySubstanceUnits=true

Species: “boundary conditions” and “constant” species

• Some intuitive explanations:

• “Boundary condition”: when a species is a reactant or product in one or
more reactions, but its quantity is not changed by those reactions

• E.g., when a chemical is buffered in an experimental set-up, or the
modeler wants to assume there is an infinite quantity of the species

• ODE (or equivalent) shouldn’t be constructed based on the reactions

• But SBML rules and other constructs may still change it

• “Constant”: if a species’ quantity is constant

• Different from being a boundary condition—boundaryCondition
flag says whether an ODE should be constructed

Species: constant and boundaryCondition

Reactions

Usage points: reactions (specific)

• Reversibility:

• Because “kinetic law” is optional, it’s useful to have separate flag

• Some types of analyses can be done without simulation or kinetic law

• reversible flag should be true only if rate expression represents
combined effect of forward and backward reaction

• Converse: if false, it’s a statement that the reaction only proceeds in the
forward direction

• Caution: not clear how to define reversible reactions for stochastic
simulation. Best practice: always define 2 reactions explicitly in that case.

New in SBML Level 2 Version 2

Added in Level 2 Version 2

Compartment types and species types

• L2V2 only

• Does not affect mathematical interpretation

<listOfSpeciesTypes>
<speciesType id="ATP"/>

</listOfSpeciesTypes>
...
<listOfSpecies>
<species id="ATP_in_cytosol" speciesType="ATP"
 compartment="cytosol"/>
<species id="ATP_in_nucleus" speciesType="ATP"
 compartment="nucleus"/>

</listOfSpecies>

Compartment types and species types

• L2V2 only

• Does not affect mathematical interpretation

<listOfSpeciesTypes>
<speciesType id="ATP"/>

</listOfSpeciesTypes>
...
<listOfSpecies>
<species id="ATP_in_cytosol" speciesType="ATP"
 compartment="cytosol"/>
<species id="ATP_in_nucleus" speciesType="ATP"
 compartment="nucleus"/>

</listOfSpecies>

Usage points: how do you assign initial values?

• Multiple approaches:

1. Use the appropriate value field on an element (most portable approach)

• Limitation: scalar values only, not a mathematical expression

2. Use assignment rules (somewhat less portable)

• Mathematical expression

3. Use Initial Assignment in Level 2 Version 2

• Mathematical expression

Element Initial value field(s)

species initialConcentration
initialAmount

compartment size

parameter value

Initial assignments

• Overrides value given in object definition

• But the object definition must still be provided

• Applies for t <= 0

• Cannot have both an initial assignment and an assignment rule for
the same identifier

Constraints

• Allows stating assumptions under which simulation is valid

• Intuitively: if the math expression is true, model is in a valid state

• As soon as the expression evalues to false, the model is in an invalid state

• SBML does not require a particular action to be taken

• But it would be a good idea for the software system to stop or at least
indicate the model has failed a constraint

• SBO = Systems Biology Ontology

• Independent, international, open effort of BioModels.net Consortium

• Occupies a space not filled by other ontologies

• Primarily for describing rate laws and constituents

1. Classification of rate laws

• Each term includes a mathematical function definition

2. Controlled vocabulary for the roles of reaction participants

• E.g.: “substrate”, “catalyst”, “competitive inhibitor”, etc.

3. Controlled vocabulary for the roles of quantitative parameters

• E.g.: “Hill coefficient”

sboTerm

• http://biomodels.net/SBO

by Melanie Curtot at EBI

SBO Browser

http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/
http://www.ebi.ac.uk/sbo/

Terms are machine-readable

Terms are machine-readable

Terms are machine-readable

Terms are machine-readable

Terms are machine-readable

Terms are machine-readable

Terms are machine-readable

Terms are machine-readable

Terms are machine-readable

can insert in SBML

Terms are machine-readable

Select SBML constructs have sboTerm

Values of sboTerm for different SBML constructs

Annotations

• Applications can add data to each element in SBML

• Must have only one element enclosing an application’s data

• Each application should put its data under a separate element

Format for annotations

• Content of <annotation> must be single top-level namespace

• There’s a recommended format for

1. referring to controlled vocabulary terms and database identifiers for
describing biological and biochemical entities

2. describing the creator of a model and its modification history

• Uses RDF & a restricted set of Dublin Core to encode
relationships

• Specific BioModels qualifier names

• http://biomodels.net

• See Sec. 6 in L2V2 specification

••• Break •••

A brief survey of SBML-
compatible software

Summary of several software tools: general features

Package Win Mac Lin Web Interface Environment ODE Stoch

MathSBML x x x Text Mathematica x

COPASI x x x Forms x x

CellDesigner x x x Graphical,
Forms x

SBML ODE
Solver x x x x API &

cmd line x

Jarnac/
JDesigner x Text,

Graphical x x

SBToolbox x x x Text MATLAB x x

SimBiology x x x Text,
Graphical MATLAB x x

Dizzy x x x Text,
Forms x x

Summary of several software tools: SBML details

Package Units? Events?
Algebraic
Rules? Delays? Functions? Special Features

MathSBML x x x x x all of Mathematica

COPASI x x
sensitivity analysis,
parameter scan.,

MCA, optimization

CellDesigner x part. x x parameter scan.,
sensitivity analysis

SBML ODE Solver x part. x x parameter scan.,
sensitivity analysis

Jarnac/JDesigner part. part. x x compact language,
MCA

SBToolbox part. x x
optimization,

sensitivity analysis,
all of MATLAB

SimBiology x x x full-blown MATLAB
product

Where to find the software

• MathSBML: http://sbml.org/software/mathsbml

• Author: Bruce Shapiro (Caltech/JPL/BNMC)

• Most current documentation is online, not in download!

• COPASI: http://copasi.org

• Authors: P. Mendes, S.Hoops (Virginia Tech), S. Sahle, R.Gauges (EML Heidelberg)

• SBML ODE Solver: http://www.tbi.univie.ac.at/~raim/odeSolver/

• Authors: R. Machne, C. Flamm (U. Vienna)

• Jarnac, JDesigner: http://sbw.kgi.edu

• Author: Herbert Sauro (KGI)

• SBToolbox: http://www.sbtoolbox.org/

• Author: Henning Schmidt (Chalmers, Sweden)

• CellDesigner: http://celldesigner.org

• SimBiology: http://mathworks.com

• Dizzy: http://www.systemsbiology.org/Technology/
Data_Visualization_and_Analysis/Dizzy

Closing comments and
discussions

SBML = Systems Biology Markup Language

• Machine-readable format for representing computational models

SBML = Systems Biology Markup Language

• Machine-readable format for representing computational models

• Declarative, not procedural 2 A + B ⇀ C
C ⇌ D + F

...

SBML = Systems Biology Markup Language

• Machine-readable format for representing computational models

• Declarative, not procedural

• Models can also include

• Compartments (i.e., where chemical substances are located)

• Mathematical “extras” (assignments, explicit different eq’s)

• Discontinuous events with arbitrary triggers

2 A + B ⇀ C
C ⇌ D + F

...

SBML = Systems Biology Markup Language

Current de facto standard

Current de facto standard

• Successful as a model exchange language

• 100+ software systems worldwide

• Including commercial developers: MathWorks, TERANODE, etc.

• Used by international consortia, industry, academia

• Used in educational materials

Current de facto standard

• Successful as a model exchange language

• 100+ software systems worldwide

• Including commercial developers: MathWorks, TERANODE, etc.

• Used by international consortia, industry, academia

• Used in educational materials

• Successful as “glue”

• Coalesced a community of software developers

• Allows interchange where none existed before

• Between people, between software, between researchers at many
different levels

Current de facto standard

• Successful as a model exchange language

• 100+ software systems worldwide

• Including commercial developers: MathWorks, TERANODE, etc.

• Used by international consortia, industry, academia

• Used in educational materials

• Successful as “glue”

• Coalesced a community of software developers

• Allows interchange where none existed before

• Between people, between software, between researchers at many
different levels

• Of course, SBML isn’t without problems

SBML evolution continues

SBML evolution continues

• Current development process is informal

• SBML Editors seek consensus and created integrated specification

• Polling & voting by community for major decisions

SBML evolution continues

• Current development process is informal

• SBML Editors seek consensus and created integrated specification

• Polling & voting by community for major decisions

• New SBML process coming

• Borrow ideas from World Wide Web Consortium & other orgs

• Architectural board with larger membership

• SBML Editors voted in for limited terms

• Implement better-defined, regimented process

• Calls for proposals, etc.

• Voting, etc.

Upcoming SBML meetings

• SBML Forum Meeting 2006 Oct. 12-13 (after ICSB, in Tokyo)

• See http://sbml.org/workshops for more info

• SBML Hackathon, June 2007, University of Newcastle (UK)

• SBML Forum Meeting 2007, Oct. 5-6, Long Beach, California (USA)

• See http://icbs-2007.org

Keep informed!

• Join sbml-announce@caltech.edu (low-volume, broadcast-only)

• Join sbml-discuss (higher volume, discussions & debates)

• Join libsbml-discuss (discussions & help about libsbml)

• See http://sbml.org/forums

Thank you for attending!

• And a big thanks to our funding agencies:

• NIH National Institute of General Medical Sciences (USA)

• National Science Foundation (USA)

• International Joint Research Program of NEDO (Japan)

• JST ERATO Kitano Symbiotic Systems Project (Japan)

• JST ERATO-SORST Program (Japan)

• Japanese Ministry of Agriculture

• Japanese Ministry of Education, Culture, Sports, Science and Tech.

• BBSRC e-Science Initiative (UK)

• DARPA IPTO Bio-Computation Program (USA)

• Air Force Office of Scientific Research (USA)

• STRI, University of Hertfordshire (UK)

• Beckman Institute, Caltech

