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ABSTRACT 

ChIP-on-chip has emerged as a powerful tool to dissect the complex network of 

regulatory interactions between transcription factors and their targets. However, most 

ChIP-on-chip analysis methods use conservative approaches aimed to minimize false-

positive transcription factor targets. We present a model with improved sensitivity in 

detecting binding events from ChIP-on-chip data. Biochemically validated analysis in 

human T-cells reveals that three transcription factor oncogenes, NOTCH1, MYC, and 

HES1, bind one order of magnitude more promoters than previously thought. Gene 

expression profiling upon NOTCH1 inhibition shows broad-scale functional regulation 

across the entire range of predicted target genes, establishing a closer link between 

occupancy and regulation. Finally, the resolution of a more complete map of 

transcriptional targets reveals that MYC binds nearly all promoters bound by NOTCH1. 

Overall, these results suggest an unappreciated complexity of transcriptional regulatory 

networks and highlight the fundamental importance of genome-scale analysis to 

represent transcriptional programs. 
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INTRODUCTION 

The dysregulated activity of oncogenic transcription factors contributes to neoplastic 

transformation by promoting aberrant expression of target genes involved in regulating 

cell homeostasis. Therefore, characterization of the regulatory networks controlled by 

these transcription factors is a critical objective in understanding the molecular 

mechanisms of cell transformation. ChIP-on-chip (ChIP2 for short)1 has emerged as a 

promising technology in the dissection of transcriptional networks by providing high-

resolution maps of genome-wide transcription factor-chromatin interactions. 

A ChIP2 experiment is typically performed using a two-channel microarray in 

which each arrayed probe matches a specific genomic region. The immunoprecipitate 

(IP) channel measures the relative concentration of genomic fragments bound by an 

immunoprecipitated protein (usually a transcription factor), while the whole cell extract 

(WCE) channel measures the relative concentration of fragments in a total chromatin 

preparation (input control) or in an immunoprecipitation with a non-specific control 

antibody2. Probes with an IP channel intensity significantly higher than the WCE 

channel intensity are expected to identify genomic regions bound by the protein, thus 

correct interpretation of these data depends critically on an accurate statistical model for 

the IP/WCE ratios in genomic regions that are not occupied by the protein. This so 

called null hypothesis model is used to compute the probability that a given ratio may be 

produced by background experimental noise. Ratios for which the null hypothesis can 

be rejected at a desired statistical significance level identify genomic regions likely to be 

bound by the transcription factor. 
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Recently, several elegant ChIP2 analysis methods have been proposed to tackle 

problems such as integrating measurements from adjacent probes3-6, or inferring 

binding site locations at sub-probe resolution7. However, the lower-level problem of 

developing an accurate null hypothesis model has received comparably little attention 

(see Supplementary Discussion on Previous Methods). Briefly, most current models 

either normalize or compute probe significance based on whole-dataset statistics4, 8-19, 

which include both bound and unbound probes. This approach is based on the 

assumption that transcription factors have a limited number of direct target genes and 

therefore the number of bound probes is negligible compared to unbound ones. In this 

manuscript we demonstrate that transcription factors occupy a higher than anticipated 

fraction of the genome, rendering whole-dataset statistical approaches, which fail when 

transcription factor binding sites account for a large percent of all probes (i.e., > 5%)2, 

unsuitable for ChIP2 analysis. Thus the use of whole-dataset statistics can cause 

severely inaccurate modeling of the data (Figure 1). Without an accurate model to 

define meaningful statistical thresholds, these ChIP2 data analysis methods use highly 

conservative approaches aimed to minimize the rate of false-positive predictions at the 

cost of missing the majority of actual binding sites. Thus while many ChIP2 studies have 

produced novel target collections for specific transcription factors, only a small subset of 

their targets is likely to have been characterized. The problem is compounded by the 

lack of a clear correlation between strength of the ChIP2 signal and the ability of the 

transcription factor to regulate the target, leading to potential misclassification of many 

targets that are both bound and functionally regulated20. 
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Using an empirically determined null hypothesis model of the distribution of 

intensity ratios for non-IP enriched probes in ChIP2 experiments, we developed an 

analytical method, called ChIP2 Significance Analysis (CSA), that, when compared to 

other routinely used methods, increases the number of detected binding sites by up to 

an order of magnitude for all analyzed transcription factors. Biochemical validation of 

this analytical approach for three transcription factors (NOTCH1, MYC, and HES1) in 

human T-cell acute lymphoblastic leukemia (T-ALL) cells produced quantitative 

agreement between the percent of expected versus actual false-positive predictions. 

Furthermore, analysis of gene expression signatures associated with NOTCH1 

inhibition indicates functional regulation by this transcription factor oncoprotein across 

the entire range of predicted targets. Finally, the ability to infer a more complete 

repertoire of targets for the studied transcription factors provides a much clearer picture 

of the interaction between regulatory programs controlled by MYC and NOTCH1. 

Overall, these results highlight the power of the proposed analysis framework for the 

identification of transcriptional networks and provide an improved and fundamentally 

different picture of the transcriptional programs controlled by NOTCH1, HES1 and MYC 

in T-ALL. 

 

RESULTS 

Probe statistics are accurately modeled by CSA 

T-ALL is a malignant tumor characterized by the aberrant activation of oncogenic 

transcription factors21, 22. We have recently demonstrated that constitutive activation of 

NOTCH1 signaling due to mutations in the NOTCH1 gene activates a transcriptional 
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network that controls leukemic cell growth23-26. These studies have also demonstrated a 

fundamental role for HES1 and MYC as transcriptional mediators of NOTCH1 signals, in 

particular characterizing an ensemble of feed-forward loops in which NOTCH1 directly 

regulates MYC, and both transcription factors regulate a common set of targets 

promoting leukemic cell growth, proliferation, and response to NOTCH1 inhibitor 

therapies25, 27. To characterize the structure of the oncogenic transcriptional network 

driven by activated NOTCH1 in T-cell transformation we sought to identify the direct 

transcriptional targets of NOTCH1, HES1 and MYC. We hypothesized that the 

development of an accurate null hypothesis statistical model would result in improved 

sensitivity in the identification of transcription factor targets and a more accurate 

description of the individual and combinatorial regulatory programs controlled by these 

transcription factors. 

We first generated a data-derived empirical null hypothesis model of the 

distribution of IP/WCE intensity ratios for probes associated with unbound fragments 

(see Methods), and used it to assign a p-value to each probe in the analysis of ChIP2 

assays representing replicate experiments for NOTCH1, MYC, and HES1. ChIP2 assays 

for these transcription factors were performed in HPB-ALL cells, a well characterized T-

ALL cell line with high expression levels of activated NOTCH1, MYC and HES1. For 

NOTCH1, ChIP2 assays were also performed in CUTLL1 cells, another NOTCH1-

dependent T-ALL cell line. Analysis of the magnitude versus amplitude plots (Figure 2a) 

of the intensity dependent distribution of probe ratio values shows marked differences in 

the shape of the plots corresponding to the different experiments. These differences 

justify the use of data-specific, empirical null models, and suggest that analytical 
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methods that use a predefined functional form for the null distribution may overlook 

important features of the data. In each case, CSA accurately models the left tail of the 

probe ratio probability density, where the contribution from bound probes is expected to 

be minimal (Figure 2a,b). Based on the inferred distributions, a large number of probe 

ratio values cannot be explained as background experimental noise and are therefore 

classified as bound genomic regions. In contrast, calculation of the null hypothesis 

model based on whole-dataset statistics shows that this approach has a limited capacity 

to differentiate bound-probe signals from background noise, especially for the MYC 

experiment (Figure 1). Finally, we note that the p-value distribution for all probes should 

be uniform between zero and one (unbound probes) with a single peak near zero 

(bound probes). Importantly, CSA accurately captures these statistical properties 

(Supplementary Figure 1). 

 

Improved ChIP2 sensitivity by CSA 

CSA then incorporates the probe significance model with an analytical method 

that integrates the statistics for replicate experiments and probes with nearby genomic 

locations (to account for the ChIP2 fragmentation lengths, see Methods). We used CSA 

to compute the false discovery rate (FDR) associated with the most significant 500 base 

pair region on each of the 16,697 promoters represented on the array. Analysis of 

NOTCH1, MYC and HES1 promoter occupancy in T-ALL showed a larger than 

anticipated number of candidate target genes for these transcription factors. 

Specifically, using CSA at a conservative FDR of 0.05, the number of promoters on the 

array bound by the transcription factors in this study are: MYC (8,016, 48.0%), NOTCH1 
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in CUTLL1 (3,154, 18.9%), HES1 (3,074, 18.4%), and NOTCH1 in HPB-ALL (2,471, 

14.8%) (Table 1). To contrast these results with those obtained using standard 

analytical tools we analyzed our ChIP2 data using the Single Array Error Model 

(SAEM)1, 8, a widely used method for analysis of two-color ChIP2 arrays, and the 

standard method packaged with the Agilent analysis software. This analysis reveals that 

CSA predicts approximately an order of magnitude more bound promoters than SAEM, 

which predicts the following numbers: MYC (127, 0.8%), NOTCH1 in CUTLL1 (647, 

3.9%), HES1 (187, 1.1%), and NOTCH1 in HPB-ALL (410, 2.5%) (Table 1). 

One would expect that for a fixed IP/WCE fold ratio (e.g., twofold), ChIP2 

experiments with a large number of probes above that fold ratio would yield a large 

number of predicted bound targets by any method. While this is the case for CSA, the 

opposite trend is observed for SAEM (Table 1), as the null hypothesis model variance 

for ubiquitously bound transcription factors, such as MYC, is grossly overestimated. 

Overall, these results demonstrate that CSA has improved sensitivity in the identification 

of transcription factor binding sites from ChIP2 experiments and shows robust 

performance even for experiments performed on broadly bound transcription factors, for 

which other analyses fail using whole-dataset statistical approaches. 

 

Accuracy of CSA binding predictions are supported by binding site enrichment 

analysis  

As a first test of the broad transcription factor binding predictions generated by CSA, we 

performed motif analysis to evaluate the enrichment of MYC binding sites, using the 

TRANSFAC28 position specific scoring matrix M00322, in the promoters of target genes 
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identified by CSA and SAEM. The DNA-binding component of NOTCH1 transcriptional 

complexes, CSL, is not represented in TRANSFAC or JASPAR29 and the only HES1-

associated matrix was found to be of low quality and a poor predictor of HES1 binding, 

independent of the analysis method (see Methods). In this analysis, promoters were first 

ranked according to their CSA and SAEM p-values computed from the MYC ChIP2 

experiment. Enrichment analysis was performed by identifying MYC/M00322 matching 

sites in the 600bp fixed-length window centered on the most significant probe in the 

highest scoring promoter region identified by the algorithm. The match threshold was 

set so that a negative set, S(-), of 3,000 fragments showing the least amount of MYC 

binding, would produce a false-positive rate of 30%. Details on the procedure are given 

in Methods. 

Analysis of the cumulative proportion MYC/M00322 matching fragments as a 

function of their ChIP2 ranking by the corresponding method shows that fragments 

inferred by both CSA and SAEM are enriched in MYC/M00322 sites and that, in both 

cases, site enrichment is correlated with the ChIP2 ranking (Figure 3a). However, for 

any n, the top n fragments inferred by CSA are considerably more enriched than the top 

n fragments inferred by SAEM. Note that even when all the probes are considered 

(largest n in Figure 3a), fragments detected by CSA are more enriched in MYC/M00322 

matching sites than those detected by SAEM, indicating that the regions identified by 

CSA as the most significant are more likely to contain the motif than those chosen by 

SAEM. 

To compare the predicted false-positive rate by ChIP2 analysis with the 

significance of MYC binding site enrichment, we binned the fragments based on CSA 
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and SAEM rankings (100/bin) and assessed whether the MYC/M00322 motif could be 

successfully used to distinguish the fragments in each bin from those in the negative 

set, S(-). The classification p-value based on binding site enrichment is in remarkable 

agreement with the expected false-positive rate by CSA analysis, suggesting significant 

enrichment of MYC sites in the promoters of ~7,000 genes, corresponding to the range 

of high confidence targets predicted by CSA (Figure 3b). Beyond this threshold, both 

the CSA-inferred false-positive rate and the p-value of sequence-based classification 

degrade very rapidly. By comparison, only the first ~1,800 SAEM-inferred fragments are 

well classified by the MYC/M00322 motif, suggesting that CSA significantly improves 

the ranking of MYC-bound fragments and that a meaningful statistical cutoff can be 

determined a-priori. 

 

Experimental validation of CSA transcription factor binding predictions  

To further test the accuracy of CSA-based transcription factor target predictions we 

performed independent Chromatin Immunoprecipitation (ChIP) experiments for each of 

the four ChIP2 conditions and tested the IP enrichment of specific promoters by 

quantitative PCR (qPCR). We first analyzed eight predicted NOTCH1 targets in HPB-

ALL cells, randomly sampled at an FDR ≤ 20%. Seven of these eight predicted 

fragments were validated as bound by NOTCH1 and only the least significant fragment 

failed validation (Table 2). 

We further tested an additional twelve targets for HES1 and MYC in HPB-ALL 

and for NOTCH1 in CUTLL1, sampling predicted targets uniformly at an FDR of 20% 

(i.e., 20% expected false-positives) (Table 2). In this analysis, twenty-six of thirty-six 
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(72.2%) targets were positive by ChIP/qPCR and nine (25%) were negative. The 

remaining gene (the second least significant for MYC) could not be amplified by qPCR. 

Non-validated/false-positive targets are, in general, at the end of the ranked lists (Table 

2). The only outlier is the first ranked fragment for HES1 (KIAA1407 gene promoter). To 

obtain experimental evidence on the robustness of our validation assay we randomly 

selected ten genomic regions not identified as bound by MYC and ten not identified as 

bound by HES1. Nine selected regions are within promoters and eleven are in 

intergenic regions. As expected none of these twenty regions showed evidence of 

binding by MYC or HES1 when tested by ChIP/qPCR. 

For all experiments numerous validated genes had CSA ranks in the thousands. 

The lowest ranking validated genes before encountering a false-positive are as follows: 

2,223 for NOTCH1 in CUTLL1, 2,958 for NOTCH1 in HPB-ALL, 4,901 for MYC, and 

while the top ranking gene for HES1 failed validation, the following seven, down to rank 

3,247, were positive. Notably, many of the validated targets show relatively subtle ChIP2 

signals. For example, C6orf82, a validated HES1 target, had ChIP2 binding ratios in 

replicate experiments of 1.37 and 1.68 for the most significant probe in its promoter, and 

there was no enrichment (ratios of .81 and 1.15) for its adjacent probe. However, upon 

ChIP/qPCR validation, this region showed binding ratios of 2.69 and 4.65. ChIP/qPCR 

results are available in the Supplementary Materials.  

Overall, thirty-three of the forty-four (75%) genes selected from those with a FDR 

of 20% by CSA were validated by ChIP/qPCR. Notably, only six of the forty-four genes 

(13.6%) tested in these experiments were identified by SAEM. Overall, these 

biochemical validation results support our computationally-derived conclusions 
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regarding the broad range of binding for all tested transcription factors and demonstrate 

the power of CSA for reducing the false negative rate in ChIP2 experiments. 

 

NOTCH1 regulates direct target genes predicted by CSA 

To test whether CSA-predicted NOTCH1-bound genes are also functionally regulated 

by this transcription factor, we treated a panel of ten T-ALL cell lines with Compound E, 

a γ-secretase inhibitor that blocks an essential proteolytic cleavage step required for 

release of the intracellular domains of NOTCH1 from the membrane and their 

translocation to the nucleus30. Genome-wide expression profiles of cells treated for 72 

hours with Compound E (100 nM) or vehicle only (DMSO) were measured by 

microarray profiling, and expression changes were compared with NOTCH1 promoter 

occupancy identified by CSA analysis of the ChIP2 data. Overall, 11,606 genes are 

represented on both the ChIP2 and the expression arrays. For each gene we computed: 

1) the ChIP2 FDR based on the highest scoring 500bp region in its promoter, 2) the 

number of experiments in which it is expressed (not called absent by MAS5), and 3) the 

log2 expression ratio of the control versus treatment, averaged over the ten cell lines 

and duplicate experiments. 

Predicted NOTCH1-bound genes are both more likely to be expressed than 

genes not identified as bound by NOTCH1 and show a clear down-regulation upon 

NOTCH1 inhibition (Figure 4). The 2,000 most confident NOTCH1 targets (FDR<0.058) 

are expressed in 83.3% of experiments while the 6,000 least confident NOTCH1 targets 

are expressed in 38.7% of experiments (P=1.5x10-279). The top 2,000 targets also show 

coordinated down-regulation upon NOTCH1 inhibition that is subtle in magnitude 
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(mean=12.3%) but extremely significant (P=7.7x10-124). The ChIP2 analysis predicts a 

rapid increase in false-positives beyond the top 2,000 targets, and, correspondingly, 

their likelihoods to be expressed and regulated by NOTCH1 decrease. However, even 

for genes with ChIP2 ranks between 4,000 and 5,000, there is significant enrichment for 

both the percent of expressed genes (59.4%, P=2.3x10-34) and the expression change 

upon NOTCH1 inhibition (mean=3.9%, P=2.7x10-16). These results demonstrate that, in 

contrast with previous analysis based on a limited number of targets27, NOTCH1 directly 

contributes to the transcriptional activity of thousands of genes.  

 

Interaction of NOTCH1 and MYC regulatory networks 

NOTCH1 and MYC operate as highly interrelated regulators of cell growth, proliferation, 

and survival during T-cell development and transformation. In a recent study24, we 

compared the regulatory networks controlled by NOTCH1 and MYC by using the 

ARACNE reverse engineering algorithm31, 32 to predict fifty-eight and sixty-one targets of 

NOTCH1 and MYC, respectively, and observed a significant overlap of twelve genes 

between the two lists (P=2.4x10–52). We went on to characterize a set of feed-forward 

loops in which NOTCH1 directly regulates MYC, and both transcription factors regulate 

a common set of targets promoting leukemic cell growth. Based on these findings we 

sought to further investigate the relationship between the genes bound by MYC and by 

NOTCH1, using the much larger list of inferred targets by CSA. Strikingly, the analysis 

predicts that MYC binds to 1,668 of the 1,804 (92.5%, P=3.6x10-12) genes that are 

bound by NOTCH1, using a ChIP2 FDR threshold of .01. In agreement with the 

fundamental role of NOTCH1 in controlling leukemia cell growth24, the NOTCH1-bound 
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genes are highly enriched in Gene Ontology (GO)33 categories related to cellular growth 

and metabolism, such as cellular metabolism (P=8.2x10-42), RNA metabolism 

(P=1.5x10-25) and protein biosynthesis (P=2.4x10-10). The complete output of the GO 

enrichment analysis, using the DAVID tool34, is given in the Supplementary Materials. 

 

DISCUSSION 

We have shown that the choice of a realistic null hypothesis model can dramatically 

affect the result of ChIP2 data analysis and its biological interpretation and proposed the 

CSA algorithm to assign meaningful statistical significance scores used to predict a 

more complete range of transcription factor-target interactions. The method of 

assessing probe statistical significance relies on minimal assumptions: that the null 

distribution is symmetric and that bound fragments do not significantly affect the left tail 

of the null hypothesis statistics. As a result, it should generalize well to ChIP2 

experiments performed using other platforms and cellular conditions. By using an 

independence model for replicate experiments and adjacent probes, we then 

incorporate the approach into a global analytical framework for the interpretation of 

ChIP2 data. While the statistical independence assumption is valid for relatively sparse 

arrays, more dense arrays may introduce correlation for unbound nearby probes that 

are within the DNA fragmentation length. Therefore, the CSA method may be further 

improved by incorporating existing, more sophisticated models for the integration of 

nearby probes (e.g.3-7). However, for the arrays used in this study, we show that our 

results are in quantitatively good agreement with biochemical validation assays and that 

no correction seems to be required. 
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The analysis of three oncogenic transcription factors by two-color ChIP2 arrays 

reveals that CSA, indeed, identifies an order of magnitude more bound gene promoters 

than standard analyses. Specifically, CSA predicts that each studied transcription factor 

binds to several thousand target genes, with MYC binding to roughly half of the assayed 

promoters, providing additional insight into the extreme pluripotency of this proto-

oncogene35. These predictions might still be an underestimate because only the 

proximal promoter regions (-0.8KB to +0.2KB, relative to transcription start site) are 

represented on the arrays used in this study. CSA predictions were validated by three 

independent tests, including: ChIP/qPCR (experimental), binding site enrichment 

analysis for MYC (computational), and gene expression analysis after NOTCH1 

inhibition (biological). ChIP/qPCR experiments are in excellent correspondence with 

CSA-inferred FDRs, especially considering that ChIP/qPCR itself has a 10%-20% false 

negative rate9, 24, 36, 37. Computational validation by sequence analysis further indicates 

that CSA-inferred FDRs are in striking agreement with MYC binding site enrichments. 

Finally, gene expression analysis after NOTCH1 inhibition both provides further support 

for the CSA predictions and creates a stronger than expected association between 

bound and regulated genes. We find that the NOTCH1 protein binds to a large number 

of promoters (>2,000) and that the set of corresponding genes is consistently, albeit 

weakly regulated upon NOTCH1 inhibition. These results are highly consistent with a 

previous study performed in yeast20 that also observed correspondence of ChIP2 results 

with both binding site enrichment and expression changes for a large number of genes. 

GO enrichment analysis shows that NOTCH1 subtly regulates a large number of 

genes involved in the cellular growth machinery. These results add an additional layer 
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of regulation to the effects of NOTCH1 signaling in promoting cell growth, with important 

implications for understanding the role of NOTCH1 signaling in development and 

transformation. Thus in addition to the established role of NOTCH1 in promoting growth 

through its interaction with MYC27 and the PI3K-AKT25 signaling pathway, NOTCH1 also 

has a direct effect in promoting cell growth. This irreversibly couples the developmental 

programs involved in stem cell homeostasis and lineage commitment activated upon 

NOTCH1 activation with the metabolic pathways needed for the expansion of stem cells 

and T-cell progenitors. 

Finally, the availability of a more complete repertoire of bound promoters allows 

us, for the first time, to truly assess the extent of a transcription factor’s regulatory 

program and the combinatorial overlap between independent programs. Our analysis 

shows that 92.5% of the promoters bound by NOTCH1 are also bound by MYC. Indeed, 

it appears that NOTCH1 co-regulates a specific subset of the MYC regulatory program. 

While this was previously hinted by statistical correlation of the regulatory programs 

inferred for the two transcription factors by expression analysis27, the true extent of this 

overlap can only be grasped after resolving a more complete map of NOTCH1 and 

MYC targets. While contributing to our understanding of transcriptional regulation at the 

genome-scale, these findings suggest an even greater than expected complexity of 

these processes.  

 

MATERIALS AND METHODS 

 

CSA Algorithm 
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Single probe significance analysis: For each probe, the statistical significance of a 

two-channel measurement is inferred by computing the conditional probability of the 

magnitude (M) given the amplitude (A), ( )nullP M A| , where ( )log 2 IP
WCEM =  and 

log 2( ) log 2( )
2

IP WCEA += , under the null hypothesis (i.e., no enrichment in the IP compared to 

the WCE channel). Here, IP and WCE represent respectively the probe intensity 

measurements for the IP and WCE channels. That is, we seek to compute the 

probability of observing a given ratio between the two channel intensities (IP versus 

WCE) given the total intensity measured in the two channels, assuming that no binding 

is present. This is because if the total intensity, A, is different, the same ratio, M, may 

have very different statistical significance. Typically, the higher the value of A, the higher 

the statistical significance for the same value of M. This is illustrated in the scatter plots 

of M versus A (Figure 2a), which correspond to a rotation and rescaling (to facilitate 

computation) of the scatter plots of IP versus WCE. The general idea is to first identify 

the intensity dependent mean of the null distribution (i.e., the distribution for unbound 

probes), and to use only ratio values below this mean to estimate the full conditional 

probability of M given A. This method makes two minimal assumptions. First, that bound 

probes have minimal effect on the distribution for ratio values below the identified mean, 

and, second, that the null distribution is symmetric around its mean (note that we do not 

assume a parametric shape of the null distribution).  

The method begins by estimating the joint probability distribution, ( )P M A, , using 

a Gaussian kernel density estimator38, 39. For computational efficiency, we truncate the 

kernels at four standard deviations in any direction and renormalize appropriately. Thus 
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using kernels with diagonal covariance matrices and marginal variances hA and hM, the 

estimator is defined as:  

( ) ( ) ( )2 2

2 2
1

1 1, exp
2 2

N
i i

iA M A M

A A M M
P M A

h h NZ h hπ =

⎧ ⎫− −⎪ ⎪= − +⎨ ⎬
⎪ ⎪⎩ ⎭

∑ , 

where ( )21 2* (4)Z Erf= −  is the normalization constant that accounts for truncation of 

the Gaussians. The kernel width of the estimator is calculated using the AMISE 

criterion40. Conditioning on A yields the conditional distribution: 

 ( , )( | )
( )

P M AP M A
P A

= , where ( ) ( )2

2
1

1 exp
22

N
i

i AA

A A
P A

hh Nπ =

⎧ ⎫−⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

∑  

For a particular average intensity value, 0A , the conditional mean of the null distribution 

is inferred as 
0| 0ˆ argmax ( )M A

M
P M A Aμ = | = . 

The conditional null distribution given 0A A=  is inferred by projecting 

0( )P M A A| =  across 
0|ˆM Aμ  for 

0|ˆM AM μ< . This procedure is used to calculate ( )nullP M A|  

for an evenly spaced grid of A and M values, excluding the 1% of probes with the lowest 

A values (which are assigned a p-value of one), and the complete conditional 

distribution is computed using two dimensional linear interpolation. For each probe, 

statistical significance is assessed using a one tailed test with reference to this 

distribution. Because the distribution is empirical, there is a limit to the inferable 

minimum p-value, which depends on the number of arrayed probes. For this array, we 

set the minimum p-value to 10-5, which is roughly one divided by the number of probes 

on the array. We stress the importance of using an empirical distribution as we have 

observed that the empirical data generally displays significantly non-Gaussian tails. 
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That is, ChIP2 data can often display fairly large deviations from the mean ratio by 

chance, whereas under a Gaussian probability model, which is characterized by very 

light tails, such large deviations would be assigned near zero probability. A major goal 

of this work is to accurately determine the probabilities of obtaining probe ratio values, 

and we believe that using a parametric distribution of probe statistics will produce 

significant errors in p-value estimation. 

Combining replicates: Let j
ip  denote the p-value computed for the ith probe in jth 

replicate experiment. Assuming that replicates are independent in the null hypothesis, a 

test statistic for evaluating the probability of a joint observation of p-values across 

experiments is the product of the individual p-values, 
1

M j
i ij

s p
=

=∏ , where is  is the test 

statistic and M is the number of replicate experiments. If modeled correctly, p-values 

under the null hypothesis should be uniformly distributed (shown in Supplementary 

Figure 1). It is useful to log transform this equation such that we now evaluate 

( ) ( )1
log logM j

i ij
s p

=
− = −∑ . Because the logarithm of a uniform distribution is 

exponentially distributed with mean one, this equation is a sum of exponentially 

distributed random variables, which is a Gamma distributed random variable itself, with 

mean one and M degrees of freedom. Thus significance can be evaluated as 

 ( )( )1
logMM j

CDF ij
p

=
Γ −∑  (0.1) 

Where M
CDFΓ  is the Gamma cumulative distribution function with mean one and M 

degrees of freedom. 

Combining regions: Due to sonication, the DNA fragments hybridized to the microarray 

represent a distribution of varying lengths, while the distribution for immunoprecipitated 
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fragments deriving from a particular binding site will be centered on that site. Therefore, 

the signal derived from a binding event may be detected by multiple probes in close 

genomic proximity to the binding site, and it is useful to combine the values from nearby 

probes to compute a combined statistic representing the probability of a binding event 

within the region spanned by those probes. Thus we adapt a commonly used strategy11 

of using a fixed sized sliding window and integrating the values of probes falling within 

this window. Based on published measurements of fragmentation lengths7, we use a 

500bp window and a step size of 150bp. Assuming that measurements from adjacent 

probes are independent in the null hypothesis, the same principle as in Eqn. (0.1) can 

be applied to integrate the values from nearby probes. That is, let W represent the set of 

probes falling within a given 500bp window. The integrated probability for this region is 

then calculated as: 

 ( )( )*
1
logMM W j

region CDF ii W j
p p

∈ =
= Γ −∑ ∑  (0.2) 

To compute the probability that any region within a gene’s promoter is bound, we 

consider the most significant window, controlling for multiple tests using Bonferroni 

correction based on the number of probes on the promoter. This correction is not exact 

as the number of tests (i.e., the number of windows containing unique subsets of 

probes) is likely greater than the number of probes on a promoter, causing an 

underestimation of the significance, while the tests are not independent (i.e., the same 

probe may fall within multiple windows), causing an overestimation of the significance. 

However, since the number of probes for a promoter (and therefore the number of 

probes within each window) is relatively small, especially for the arrays used in this 

study, we expect this simplification to have little impact on the calculated statistics. For 
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very dense arrays a more sophisticated multiple test correction procedure, such as 

those described in41, may yield more accurate results.  

FDR calculation: After computing a corrected p-value for each gene, representing the 

probability that the most significant region on the gene’s promoter is bound, we control 

for multiple tests across genes and compute a false discovery rate using the Benjamini 

Hochberg procedure42. Let kp  represent the corrected p-value computed for gene k, let 

kr  represent the rank of gene k sorted by the ChIP2 p-values, and let G represent the 

total number of genes on the array. Then the false discovery rate for gene k is 

computed as: 

 * k
k

k

G pFDR
r

=  (0.3) 

 

ChIP2: ChIP2 analysis was performed in the HPB-ALL and CUTLL1 T-ALL cell lines. 

Briefly, 1x108 cells were subjected to chromatin immunoprecipitation using the following 

antibodies: anti NOTCH1 Val1744 polyclonal antibody (Cell Signaling; Danvers, MA) 

which specifically recognizes the intracellular activated form of NOTCH1, anti c-MYC 

(N-262) or anti HES1 (H-140) rabbit polyclonal antibodies (Santa Cruz Biotechnology; 

Santa Cruz, CA). ChIP2 was performed following standard protocols provided by Agilent 

Technologies using Agilent Human Proximal Promoter Microarrays (44K features/array) 

and have been described previously (Vilimas et al., 2007). This platform contains ~4-5 

probes/gene covering -0.8KB to +0.2KB (relative to transcript start site) of human 

transcripts from UCSC hg17/NCBI release 35 (May 2004). The arrays were scanned 
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using an Agilent scanner and data was extracted using the Feature Extraction 8 

software and analyzed using ChIP Analytics 1.1.  

 

ChIP/qPCR: Validation of promoter occupancy was performed by quantitative PCR 

analysis of chromatin immunoprecipitates and their corresponding whole cell extracts 

(input control) in an ABI 7300 Real-Time PCR System (Applied Biosystems; Foster City, 

CA) using the SYBR® Green PCR Core Reagents (Applied Biosystems). Briefly, 

enrichment of candidate target promoters in chromatin immunoprecipitates was 

assessed by quantifying each promoter of interest in comparison with input chromatin 

control using an unrelated β-actin genomic sequence as reference. A 450bp region 

flanking the most significant probe in the region identified by CSA was selected to 

design the primers for the validation. Validation was considered positive if the mean 

enrichment, across three technical replicates, of the specific region in the 

immunoprecipitate versus the input control after correction by the β-actin levels was 

above two-fold. Regions with enrichments below three-fold were considered non-

validated if they displayed high variability across the technical replicates. If biological 

replicates were performed we require at least one of the two replicates to meet this 

criteria24, corresponding to the ChIP2 analysis method, which assumes a null hypothesis 

model of no binding in any replicates. Data for all ChIP/qPCR validation experiments 

are given in the Supplementary Materials. 

 

Microarray expression profiling: We treated duplicate cultures of 10 T-ALL cell lines 

(ALL-SIL, CCRF-CEM, CUTLL1, DND41, HPB-ALL, KOPTK1, MOLT3, P12 ICHIKAWA, 
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PF 382, and RPMI8402) with Compound E (100 nM) ,a well characterized and highly 

active GSI, or vehicle only (DMSO) for 72 hours for microarray analysis with Affymetrix 

Human U133 Plus 2.0 Arrays. Samples for microarray analysis were prepared 

according to the manufacturer's instructions and as described24. 

 

Binding site enrichment analysis: We used vertebrate position weight matrices from 

TRANSFAC version 9.3 and JASPAR to model transcription factor sequence specificity. 

In total, we considered 675 position weight matrices. These include over thirty highly 

similar helix-loop-helix and Ebox-domain matrices that are predictive of MYC biding, 

one matrix that is predictive of HES1 binding, and no matrices that are predictive of 

NOTCH1 binding. We chose TRANFAC matrix M00322, which is derived from eighteen 

binding sites, for MYC binding site analysis. This choice is arbitrary and the reported 

results were replicated using other matrices as well. The only model available for HES1 

(TRANSFAC matrix M01009) is derived from an insufficient number of validated sites 

(eight) and was a poor predictor of HES1 binding independent of the algorithm used to 

interpret HES1 ChIP2 data. To identify high scoring sites for MYC using M00322, we 

scanned each potential site in a given sequence and assigned scores according to the 

Dirichlet-corrected log2 likelihood ratio of the probability that the site was generated 

from M00322 relative to the probability that it was generated from the base composition 

vector39.  

For each probed promoter, we considered the most significant region identified 

by CSA and SAEM. For CSA, we used the procedure described above, and, as a 

comparison, we used the probe p-values reported by SAEM, and used the CSA 
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procedure for assigning FDRs to regions. We then ranked promoters by the FDR of the 

most significant region. The fragment boundaries were set to [ ]300,300−  from the center 

of the probe in the region with the lowest p-value. We constructed a negative set of 

fragments by selecting the lowest ranking 3,000 fragments according to each method. 

The FDR associated with the highest ranking negative fragment was greater than 0.8. 

We evaluated enrichment of M00322 sites in a given fragment based on the highest 

scoring site in this fragment or its anti-sense. When setting a fixed false-positive rate, 

we set an M00322 scoring threshold to permit no more than this percent of negative set 

fragments to have a site with a score greater than the threshold. 

We used permutation testing to evaluate the enrichment of M00322 sites in the 

positive set against the negative set (lowest ranking 3,000 fragments). We compared 

the balanced error rate for M00322 to the balanced error rate for the top motif predictor 

(out of all TRANSFAC and JASPAR matrices) in each test, and iterated 10,000 times to 

evaluate enrichment p-values to within 0.0001 accuracy. The balanced error rate for a 

matrix was identified by enumerating all possible scoring thresholds for the matrix and 

selecting the threshold with the lowest average of the false positive and false negative 

errors. In each iteration we permuted the indicator vector that assigns each fragment to 

the positive or the negative set, computed the balanced error rate for each TRANSFAC 

and JASPAR matrix in the permuted positive and negative sets, and recorded the 

lowest balanced error rate across all matrices. Enrichment p-values were set by 

registering the frequency that the balanced error rate for M00322 was greater than 

balanced error rates recorded in permutation testing. 
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TABLES 
 

Table 1 – Number of predicted target genes for various methods 

For each of the four ChIP2 experiments, we compare the number of targets inferred by 

CSA (at 5% FDR) and by SAEM. The “SAEM Predicted” column refers to genes that are 

output as inferred targets using the standard Agilent software. This method uses a 

heuristic to define sets of p-value thresholds that a probe and its neighbors must pass to 

be considered a target. The following column uses the CSA procedure with a FDR 

cutoff of 5%. The last column lists the number of probes that are at least twofold 

enriched in the IP channel for both replicates, and provides a simple heuristic of the 

overall enrichment in the experiment. CSA infers dramatically more targets than SAEM 

for all experiments, and the number of targets predicted by CSA is correlated with the 

enrichment heuristic, while the predictions by SAEM are anti-correlated. 

 

Transcription 

Factor 

Cell Line SAEM  

Predicted 

CSA 

(FDR 5%) 

Probes with M>1 

in both replicates 

MYC HPB-ALL 127 8,016 8,534 

HES1 HPB-ALL 187 3,074 1,470 

NOTCH1 CUTLL1 647 3,154 907 

NOTCH1 HPB-ALL 410 2,471 841 

 

 

Table 2 – Validation of predicted targets at 20% FDR  
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We used ChIP/qPCR to test twelve genes each for NOTCH1 in CUTLL1 and for HES1 

and MYC in HPB-ALL (one gene for MYC could not be amplified), and eight genes for 

NOTCH1 in HPB-ALL. The data columns are as follows: Gene – The gene name. CSA 

FDR – The FDR computed by CSA. That is, the percentage of genes with ranks lower 

than the current gene that are expected not to be bound by the transcription factor. 

Validated – Whether the gene was positively validated by ChIP/qPCR. Rank – The 

rank of the gene when all genes are sorted by their CSA-inferred statistical significance. 

SAEM – Whether the gene is identified as a target by SAEM.  

 

NOTCH1 in HPB-ALL 
Gene CSA FDR Validated Rank SAEM 

FLJ13798 2.29E-12 yes 35 yes 
RAB18 2.03E-05 yes 674 no 
Porimin  0.0015 yes 1301 no 
ZMAT2 0.0035 yes 1497 no 
PSENEN 0.0068 yes 1675 yes 
LMAN2 0.0379 yes 2316 no 
XKR9 0.1054 yes 2958 no 
THPO 0.125 no 3119 no 

MYC 
Gene CSA FDR Validated Rank SAEM 

PRKACB 1.96E-13 yes 337 no 
LOH12CR1 8.44E-11 yes 1131 no 
HS3ST3B1 3.62E-09 yes 1885 no 
POLR2I 6.11E-08 yes 2639 no 
TXLNB 6.07E-07 yes 3393 no 
PARP1 4.80E-06 yes 4147 no 
KIAA1984 2.93E-05 yes 4901 no 
ZNF233 1.91E-04 no 5655 no 
KIF5B 0.0014 yes 6409 no 
HIST1H2AK 0.0083 yes 7163 no 
CPE 0.0417 N/A 7917 no 
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PEX16 0.126 no 8671 no 

HES1 
Gene CSA FDR Validated Rank SAEM 

KIAA1407 2.96E-07 no 216 no 
MGC3121 0.0001 yes 649 no 
PRKDC 0.0015 yes 1082 no 
GTF3C2 0.0057 yes 1515 no 
FAM20B 0.0126 yes 1948 no 
CHRM5 0.0239 yes 2381 no 
BTBD9 0.0393 yes 2814 no 
C6orf82 0.0577 yes 3247 no 
WDSUB1 0.0815 no 3680 no 
DACH2 0.1074 no 4113 no 
NARG1L 0.1405 yes 4546 no 
CHORDC1 0.1775 no 4979 no 

NOTCH1 in CUTLL1 
Gene  CSA FDR Validated Rank SAEM 
 RNF139 5.41E-10 yes 171 yes 
 ELP3 2.76E-07 yes 513 yes 
 BAT2 5.22E-06 yes 855 yes 
 DDX5 7.45E-05 yes 1197 no 
 ZNF436 4.05E-04 yes 1539 no 
 ETFDH 1.44E-03 yes 1881 yes 
 DCP1A 4.41E-03 yes 2223 no 
 MRPL48 0.0109 no 2565 no 
 MYB 0.0303 no 2907 no 
 KCTD16 0.0599 yes 3249 no 
 ADAR 0.1022 yes 3591 no 
 BXDC5 0.1549 no 3933 no 
 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
07

.1
36

4.
1 

: P
os

te
d 

26
 N

ov
 2

00
7



 

 

FIGURE LEGENDS 

 

Figure 1 – Whole-dataset statistics analysis 

Blue bars represent a histogram of log2 IP/WCE probe ratio values from a MYC ChIP2 

experiment. The histogram displays distinct, overlapping distributions for bound and 

unbound probes. The dotted red curve shows the log2 ratio values after mean 

centering, a common normalization technique that, for this experiment, adjusts the 

mean of the null distribution to be negative in order to compensate for the large number 

of high ratio values for the bound probes. The green curve represents a Gaussian fitted 

to the overall distribution, demonstrating that analysis methods that fit a global error 

model to this data will significantly overestimate the variance of the null distribution and 

will incur a high false negative rate, as shown by the black arrow, which represents two 

standard deviations from the mean of the green curve and eliminates a large 

percentage of bound probes. 

 

Figure 2 – CSA determination of ChIP2 target genes 

(a) Magnitude (M) versus amplitude (A) plots with confidence intervals inferred by CSA. 

The x-axis represents the amplitude, calculated as the average log2 intensity of the IP 

and WCE channels. The y-axis represents the magnitude, calculated as the log2 ratio of 

IP/WCE. The black line represents the intensity dependent mean of the inferred null 

distribution, and the colored lines represent confidence intervals of .1, .01, and .001 

probability. Note that confidence intervals are computed based on a one tail test, thus 

the lower lines actually represent one minus the corresponding value. As shown, for all 
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three transcription factors a large number of probes are significantly enriched in the IP 

channel (data points above the upper confidence interval lines), and MYC displays 

substantially more enrichment. (b) Graphic representation of the inferred distribution of 

( )| 11P M A = . The blue curve represents the empirical conditional distribution of M 

computed by the kernel density estimation procedure at the particular value of A=11. 

The dotted black line represents the inferred mean of the null distribution and the dotted 

red line represents the inferred null distribution, computed by projecting the left side of 

the empirical conditional distribution across the inferred mean. For NOTCH1 and HES1 

the bound probes manifest as a heavy tail on the right side of the empirical distribution 

compared to the null, whereas for MYC there is a clear bimodality, and separate 

distributions for bound and unbound probes can be observed by eye. (c) Heat map 

representation of the intensity dependent null distribution as inferred by CSA. The x-axis 

represents the average log2 intensity of the IP and WCE channels, and the y-axis 

represents the log2 ratio of IP/WCE. Colors represent the –log10 p-value of the null 

distribution (for values below the mean colors represent one minus the p-value for the 

one tailed significance test). As expected, the model reveals an intensity dependent 

mean and variance of the null distribution, with increased variance at low intensity 

levels, as well as sometimes for extremely high intensity levels due to saturation effects. 

 

Figure 3 – Transcription factor binding motif enrichment analysis 

(a) The percentage of identified sequences containing a binding site for MYC is plotted 

as a function of the total number of rank ordered sequences, using a threshold that 

yields a 30% false-positive rate (see Methods for a detailed description of this 
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procedure). (b) For bins of 100 genes, sorted by the ChIP2 rank, we computed MYC 

enrichment p-values relative to a background of unbound promoter fragments (solid 

blue curve). The x-axis represents the center of each bin. For each bin we also 

approximated the expected percent of bound genes, as computed by CSA, using the 

formula * *r lFDR r FDR lFPR
r l
−

=
−

, where rFDR  and lFDR  represent the FDRs for the 

genes at the right and left edge of the bin, respectively, and r and l represent their 

ranks. The dotted red curve displays this quantity, which is in excellent agreement with 

the sequence-based enrichment p-values. 

 

Figure 4 – Regulation of NOTCH1 target genes as a function of ChIP2 rank  

Genes are ranked according to their ChIP2 FDR, plotted in green, as inferred by CSA 

(note that the Benjamini Hotchberg procedure can produce FDR values above one). 

The blue curve displays the mean log2 expression ratio of vehicle control compared to 

Compound E treatment, averaged over bins of 250 genes, with the 95% confidence 

interval plotted in red. The x-axis represents the center of each bin, and we use a sliding 

window with step size of fifty genes. Positive values indicate down-regulation upon 

NOTCH1 inhibition. The heat map above the plot displays the average percent of 

experiments in which the genes in the corresponding bin are expressed. Expression 

change upon NOTCH1 inhibition and the percent of expressed genes are highly 

correlated with the ChIP2 ranking, and remain significantly enriched for over 5,000 

predicted targets. 
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