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Language requires the capacity to link symbols (words, sentences) through the intermediary

of internal representations to the physical world, a process known as symbol grounding1.

One of the biggest debates in the cognitive sciences concerns the question how human brains

are able to do this. Do we need a material explanation or a system explanation? John Searle’s

well known Chinese Room thought experiment2, which continues to generate a vast polemic

literature of arguments and counter-arguments, has argued that autonomously establish-

ing internal representations of the world (called ’intentionality’ in philosophical parlance) is

based on special properties of human neural tissue and that consequently an artifical system,

such as an autonomous physical robot, can never achieve this. Here we study the Grounded

Naming Game as a particular example of symbolic interaction and investigate a dynamical

system that autonomously builds up and uses the semiotic networks necessary for perfor-

mance in the game. We demonstrate in real experiments with physical robots that such a

dynamical system indeed leads to a successful emergent communication system and hence

that symbol grounding and intentionality can be explained in terms of a particular kind of

system dynamics3–5. The human brain has obviously the right mechanisms to participate in
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this kind of dynamics but the same dynamics can also be embodied in other types of physical

systems.

Let us first operationalise under what conditions an agent (biological or artificial) can be said

to be capable of symbol grounding. The well known Turing test for intelligence6 relies on subjec-

tive judgement and has been widely criticised, precisely because it does not examine the capability

to deal with symbols about the world, which is the main issue addressed here. Picking a concrete

task like planning or navigation is also controversial because there is often debate whether it in-

volves the manipulation of symbols or even of internal representations of the world 7. However,

nobody doubts that language is symbolic and that it expresses representations of the world. So

we propose to use performance in language games as test criterion. Specifically we focus here

on the Grounded Naming Game in which participants draw attention to physical objects in their

shared context using names. The Grounded Naming Game is played between two randomly cho-

sen members of a group. All players are considered equal and have an equal chance to interact

with each other. The environment contains a set of ten physical objects which differ enough to be

uniquely identifiable, but the players do not know in advance how many objects there are nor their

characteristic features. They have never seen the objects and so there can be no prior vocabulary of

names. A game starts when two players have been able to establish a joint attention frame. They

have physically encountered each other, have established their mutual position, and have located

some objects in the immediate context. One of them then randomly takes on the role of speaker

and the other is the hearer. The speaker chooses one object as topic and names it. The hearer looks

up the meaning of this name in his own vocabulary and checks through his own perception of the
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world which object could have been intended. If he has an opinion, the hearer points to this object

and the game is a success if the speaker agrees that this was the topic he had chosen. Otherwise the

speaker points to the topic and the hearer gets an opportunity to learn. Of course in the beginning

most games will fail, but a group of players capable of intentionality and symbol grounding should

gradually be able to settle on a shared vocabulary and reach a very high level of success. It could

be argued that this would only prove that players can give intrinsic semantics to external symbols,

but obviously if they have this capacity they can also use such symbols internally, for example to

perform symbolic inference8. Some psychological experiments have recently examined how well

humans can self-organise symbol systems from scratch in similar game-like interactions9, 10. They

clearly can. But here we are interested to understand what information structures and process-

ing mechanisms are needed in principle and whether they depend on the unique causal force of

certain materials or are a system property. If the latter is the case, we should be able to program

artificial agents to play the game successfully without human intervention, neither by engineering

the robots’ internal representations or use of symbols directly, nor by teaching an existing human

symbol system through supervised learning, because in both cases the semantics is parasitic on

human intelligence. This is what we have done using the QRIO humanoid robot11 as experimental

platform (figure 1).

Before examining the dynamics, it is useful to emphasise how extraordinary difficult the task

is. First of all it is extremely challenging to set up joint-attention frames, which may explain why

no other animals except humans can self-organise shared symbolic systems12. Second, it is non-

trivial to identify physical objects based on visual sensations, particularly if both the objects and
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the robots move around. Once object regions are found (figure 2), feature detectors can compute

values for color channels, brightness, speed of movement, etc., but these will always be very noisy.

Moreover because the robots look at the scene from different points of view, they necessarily have

different sensory experiences of the same objects and localise them differently within their own

egocentric reference frames. Third, it is very difficult to establish which individual is associated

with a particular sensory experience because the appearance of an object changes depending on

its posture, its position with respect to the viewer, and the changing light conditions in the envi-

ronment. The experiment uses a standard method in object recognition, for which there is also

evidence in human subjects, which is to capture the invariant properties of a particular view of an

object in terms of prototypes13. Prototypes can be represented by the mean, variance, and weight

of values on each sensory dimension and the best matching prototype can be found by nearest

neighbor computation. Many neural network models perform this kind of computation, such as

Radial Basis Function Networks14, but the extra difficulty here is that robots do not have access to

a clear data set of examples and counter-examples. Fourth, although an individual object may have

invariant properties for one of its views, usually there are significant differences between different

views (for example a front view of an object standing up and a back view of the same object laying

down) and so how can a robot learn that two views belong to the same object? Finally, the robots

must build up a vocabulary associating names with individuals. When a robot does not know a

name, he can baptise the object with a newly invented name that spreads in consecutive games if

hearers can acquire its meaning. But since a language game is always a local interaction between

only two players, another robot may invent a different name for the same object which could also

4

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
07

.1
23

4.
1 

: P
os

te
d 

17
 O

ct
 2

00
7



propagate to some extent, and so synonymy (different names for the same object) is unavoidable.

Moreover because of the inherent noise and unreliability of real-world vision, it is possible that

one robot misinterprets feedback or makes an incorrect guess about the meaning of an unknown

name and thus acquires a different meaning. So homonymy (different objects for the same name)

is unavoidable as well. How then, can a shared vocabulary be reached without central control or

telepathy?

We argue that the solution to these various issues lies in setting up a particular ’semiotic’

dynamics that gradually coordinates sensations, sensory experiences, prototypical views, individ-

uals, and names, both within a single agent and across the population. The framework of complex

networks15, which is playing such an important role in many sciences today is useful to formulate

and understand this dynamics. Each agent in the population, a ∈ P , should maintain a semiotic

network Sa = Oa × Va × Ia ×Na where Oa is the set of sensory experiences of the agent grouped

per scene, Va the set of prototypical views maintained by a, Ia the set of individuals known to a,

and Na the set of names in a’s vocabulary (see figure 3). Each link in the network is weighted

(with a real number between 0.0 and 1.0). The weight of the link between a sensory experience

and a prototypical view is based on nearest neighbor computation. The other weights are stored in

memory and reflect the confidence of the agent in the use of that link based on past experience. A

semiotic network is bidirectional and dynamic in the sense that new nodes can be added or removed

as a side effect of a language game and the weights between nodes change based on the outcome

of a game. In order to decide which name to use for a chosen topic, the speaker traces pathways

in his private semiotic network. Starting from the sensory experiences of the objects perceived
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in the current scene, he activates the best matching prototypical views, activates the individuals

linked to these prototypical views, and then looks up the names for them. The pathway that has

the highest cumulative score, which is the sum of all weights of the links involved, is the winner

and the name occurring at the endpoint of this path is the name transmitted by the speaker to the

hearer. Conversely, in order to decide which physical object to point at, given a name, the hearer

traces pathways in his own private network but now in the other direction, starting from the name.

The object occurring at the endpoint of the path with the highest cummulative score is the topic

to which the hearer points. The speaker interprets the pointing gesture and then gives appropriate

feedback.

The key question is obviously: What are the operators that are building and changing the

semiotic networks in each agent? We focus first on the vocabulary, i.e. the links between individual

objects and their names. Dynamical systems for the self-organisation of vocabularies have already

been studied extensively using the (non-grounded) Naming Game16, 17. Several viable solutions are

known. The one used here relies on lateral inhibition, familiar from several bi-directional neural

network models18. After a successful game, both speaker and hearer increase the weight of the

lexical associations involved in the winning path and decrease that of associations with the same

individual but a different name, so that there is a damping of synonymy, and with the same name

but a different individual, so that there is a damping of homonymy. After an unsuccessful game,

only the weight of the chosen association is decreased. When these rules are used collectively

in consecutive games between randomly chosen members of the population a vocabulary quickly

self-organises due to the positive feedback in the system (Figure 4). This process is reminiscent of
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many selectionist processes and similar to phenomena studied in opinion and social dynamics19.

Mathematical proofs of convergence20, scaling laws21 and the non-trivial impact of social network

structure on naming dynamics22 have now been well studied, but these investigations assume that

all agents know what kind of objects there are in their world a priori and that there is perfect shared

knowledge of which objects appear in the context of a specific game. The main achievement of

the Grounded Naming Game experiment is to take away this scaffold. In order to do so, we need a

mechanism explaining where prototypical views and their links to individual objects come from.

When an agent sees a scene in which there are different segments, each yielding their own

sensory experience, he can safely assume that these segments belong to different individuals and

therefore must match best with different prototypes. If this condition is violated, the agent can use

the sensory experiences without a unique match as seeds for new prototypical views and link them

to newly introduced individuals. Prototypes are later adjusted to better reflect invariant properties

by updating their mean value and variance. Figure 5 shows what happens when this strategy is

adopted. The population quickly reaches a high level of communicative success (above 90 %).

However the average number of individuals in the agents’ semiotic networks is much larger than

the ten distinctive objects introduced in the experiment. Apparently, agents are naming prototyp-

ical views of individual objects instead of the individuals themselves. We have not adequately

addressed how a robot learns to interrelate different views. There is in fact no guaranteed way to

learn this, even for humans. However there are various heuristics that can be employed. We have

operationalised one concrete example. When an object is moving or being moved, its appearance

may change but the observer who is tracking the object, still knows that he is dealing with the same
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object and so he can exploit this information to fine-tune his semiotic networks. We have endowed

the QRIO robots with image processing algorithms for tracking. They align object regions across

different images, enriched with top-down predictions of how an object region will change over

time based on Recursive Bayesian estimation using Kalman filters23. The object being moved by

the experimenter in Figure 2 yields two quite different sensory experiences when standing up or

lying down which match with two different prototypes, but thanks to the tracking heuristic, the

semiotic network can be rearranged to reflect that they are two views of the same object (Figure

6 ). Figure 7 shows what happens when the robots use this heuristic. The population exhibits

still the same capacity to achieve communicative success as in Figure 5, but now the number of

individuals has significantly lowered, approaching the experimental target of ten physical objects.

Clearly humans use many additional heuristics. For example, if we see somebody walking into a

building with a refrigerator and we later see the same person on the top floor handling a refriger-

ator we will assume it is the same refrigerator, even if we could not track this object. The point

here is not to operationalise all imaginable heuristics but to show that heuristics help to optimize

and coordinate the semiotic networks between individuals and thus further increase their ability to

develop internal representations anchored in the world.

The Grounded Naming Game experiment demonstrates that symbol grounding and establish-

ing intrinsic semantics can be achieved through the coordination of semiotic networks in situated

embodied interactions and hence need not depend on special properties of matter as uniquely pos-

sessed by the neural tissue of the brain, such as unknown quantum gravity effects of microtubules24.

We use here QRIO robots but it is of course possible to embody the same principles in other robots,
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run the software on other processors and other operating systems. Completely different physical

objects can be used, perceived through other sensory modalities (like sound or touch) and identi-

fied through other object recognition techniques. We can use other update rules for self-organising

the vocabulary and additional heuristics for tracking object identity. What is crucial is the overall

system, not this particular embodiment. The present experiment constitutes a clear breakthrough

in artificial intelligence research because it shows for the first time how robots can self-organise a

grounded symbol system. Humans have to deal with the same issues and so this kind of study of

semiotic dynamics helps us understand what our embodied minds need to be able to do in order to

bootstrap symbolic communication systems grounded in the world.
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Figure 1 Experimental Setup. The QRIO humanoid robot is about 60 cm high and

weighs 7.3 kg. Its sensors include two cameras in the head, a microphone, and sensors

in each motor joint to monitor posture and movement. The robot has enough computing

power and battery to autonomously walk around on its two legs and perform various

actions in the world. The software state of an agent is downloaded in a robot’s memory

and uploaded after each game so that a large population of agents can use the same

bodies to interact in the world. The environment consists of uniquely identifiable objects,

typically colorful geometric shapes or toys. The experiments have been repeated for

different collections of ten physical objects each.

Figure 2 Steps of object recognition and tracking for three points in time. The first col-

umn contains the source images. Robots scan the image and classify picture elements

(pixels) according to whether they are foreground or background and whether motion has

occurred (second column). All regions standing out against the background are consid-

ered to be candidate objects. The third column shows the changing histogram of the

green-red channel for object o716. This histogram is used to track o716 in space and time

using Recursive Bayesian estimation techniques (applied in column 4). Knowing the off-

set and orientation of the camera relative to the body, the robots are able to estimate the

position and size of objects in the world (egocentric reference system, applied in column

5). The size of each circle shows the perceived width of the object. Together with the

position and orientation of the other robot (black arrows), this becomes the set of sensory

experiences of one robot for one scene.
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Figure 3 Snapshot of the semiotic network of a single agent. Weighted links connect

sensory experiences to prototypical views, views to individuals, and individuals to names.

Production and interpretation traces pathways in these networks and chooses a winner-

take-all based on the highest cumulative score.

Figure 4 The (ungrounded) Naming Game in a population of 10 agents which have

shared a priori knowledge about individuals. The communicative success and average

number of names for the complete population is shown on the y-axis. The number of

games is plotted on the x-axis. Communicative success rises rapidly to reach total suc-

cess. The average vocabulary size grows as new words are invented and propagated

until all agents know at least one word for each individual object, and then a phase where

the vocabulary gradually becomes optimal due to the positive feedback effect.

Figure 5 The Grounded Naming Game in a population of 10 agents for a set of 10

unknown individuals. 20,000 language games have been performed, averaged over ten

experimental runs. Communicative success, vocabulary size, the average number of

individuals and the average number of prototypes for the agents are shown. There are

as many prototypes as individuals indicating that agents name prototypes rather than

individuals.

Figure 6 Agents utilise information of object identity obtained through the tracking heuris-

tic in order to reorganise their semiotic networks. The prototypical views v73 and v16 are
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merged into the new individual i210 because the agent observed that these views belong

to the same individual.

Figure 7 Inclusion of the tracking heuristic leads to a reduction of the number of individ-

uals by about 25%, reflecting better the structure of the world. Consequently the size of

vocabulary becomes smaller as well. Communicative success is lower because the small

number of features used here makes it hard to distinguish individuals.
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