

50

M. Jayapal, A. J. Melendez, P.N. Pushparaj

Department of Physiology, National University of Singapore, Singapore.

Abstract

Mast cell activation, mediates type-1 allergic responses, one of the most powerful reactions of the immune system. However, mast cells activation is becoming increasingly linked to inflammatory, autoimmunity, and to adaptive immunity by regulating T-cell activation. Here we analyzed the gene expression pattern in IgE-sensitized and FccRI aggregation on human mast cells. Our data revealed coordinated changes in gene expression. We observed increased expression of gene-transcripts involved in allergic, innate and adaptive immune responses. Among the most prominent findings is the increased expression of transcripts encoding for MIP3a, SPARCL1, AREG, L118, CCL1, TNFRSF9, L1D, CX3CR1, FMP12, ADORA3, IL8RB, and other genes involved in innate and cellmediated immunity. These results represent a substantial advance in our understanding of the genome-wide effects triggered by "passive sensitization" or active stimulation of human mast cells, and how this relate to mast cells involvement not only in allergic responses but also in innate and adaptive immunity.

Experimental set-up and Data Analysis

Human umbilical cord blood samples were collected form normal full-term deliveries of informed individuals with formal consents progenitor cells were separated and differentiated in to MCs. Cells, except the control, were sensitized with IgE for overnight and crosslinked the receptors using anti IgE for 2hr, 6hr and 12hr. Total RNA isolated from these cells was processed and hybridized to HG-Focus GeneChip® according to the protocols described in the GeneChip® Microarray Analysis sulte, version 5.0.1 (Affymetrix) and further analysis were performed with Micro DB 3.0 & Data Mining Tool 3.0. Global scaling was performed to compare genes from chip to chip; thus, each chip was normalized to Compare genes from chip to chip; thus, each chip was normalized to protose meeting our filter criteria were clustered by average linkage hierarchical Culstering yielded similar results. Genes were MetAffx analysis genetimed and classified according to their biological process as described in the GeneChip Questering wield sachabase. Real time RT-PCR was performed for selected and classified according to their RT-PCR was performed for selected Quester to compare genetime during the RT-PCR was performed for selected agenes to confirm the reliability of microarray results.

Results

3.0 1:1 Color Scale

Fig. 1. Hierarchical clustering of Changes in gene expression in human mast cells stimulated via FcERI (A) Clustering of 395 genes that exhibited a 2-32 fold change in expression over control in duplicates of human cord blood derived mast cells that were activated by IgE sensitization and FcERI cross linking for different time points (2hr, 6hr and 12hr). Average linkage hierarchical clustering for genes was applied using Genesis program. Changes in gene expression were depicted according to the color scale shown at the bottom. Each cell is colored to reflect expression of the corresponding gene in a specific cell sample, relative to its expression level prior to sensitization. Green color represents decreased expression; red color represents increased expression. As indicated, the scale extends from ratios of -3 to 3 in fold change units. Genes were selected for this analysis if their expression level deviated from that in the unstimulated mast cells by 2 fold change in at least 1 time point. The results are displayed in a table format, in which columns indicate different treatments and rows indicate individual genes. (B) Genes for cytokines, chemokines and their receptors whose expression changed significantly

Table.1

	Fold	Gene	Gene description		
GenBank ID	Change	name			
NM_002345.1	12.91	LUM	Lumican		
M31933.1	6.96	FCGR2B	Low affinity IgG Fc region receptor II-b		
D13665.1	4.38	OSF-2	Osteoblast specific factor 2		
NM_000045.2	4.29	ARG1	Arginase		
NM_005001.1	3.92	NDUFA7	NADH dehydrogenase 1 a subcomplex, 7		
NM_005165.1	3.81	ALDOC	Aldolase C		
NM_000935.1	3.68	PLOD2	Procollagen-lysine, 2-oxoglutarate 5-dioxygenase		
X86401.1	3.68	GATM	Glycine amidinotransferase		
AF135266.1	3.41	P8	p8 protein		
NM_013315.1	2.89	TPTE	Transmembrane phosphatase with tensin homology		
NM_014584.1	2.68	ERO1L	ER01-like		
U20350.1	2.58	CX3CR1	Chemokine (C-X3-C motif) receptor 1		
X83858.1	2.51	PTGER3	Prostaglandin E receptor 3		
NM_002415.1	2.51	MIF	Macrophage migration inhibitory factor		
NM_002426.1	2.45	MMP12	Matrix metalloproteinase 12		
NM_021778.1	2.3	ADAM28	A disintegrin and metalloproteinase domain 28		
NM_004385.1	2.27	CSPG2	Chondroitin sulfate proteoglycan 2		
NM_000677.2	2.23	ADORA3	Adenosine A3 receptor		
X51757	2.19	HSPA6	Heat-shock protein HSP70B		
NM_000917.1	2.17	P4HA1	Proline 4-hydroxylase alpha polypeptide I		
NM_000265.1	2.07	NCF1	Neutrophil cytosolic factor 1		
NM_001557.1	2.03	IL8RB	Interleukin 8 receptor, beta		
AL021977	-2.04	MAFF	V-maf musculoaponeurotic fibrosarcoma oncogene homolog F		
AF073890.1	-2.4	CTSZ	Cathepsin Z		
NM_006732.1	-2.08	FOSB	FBJ murine osteosarcoma viral oncogene homolog B		

 $\label{eq:table_transform} \begin{array}{l} \textbf{Table.1}. \\ \textbf{Genes which were differentially expressed by MCs upon sensitization} \\ \textbf{with IgE} (during 'passive pre-sensitization' stage). \end{array}$

Table.2

PF4V1 MIP-3A

LIF

IL8 MIP-4

CD184

IL18

MCP3

PPBP TNFSF10

MIE

CX3CR1

CCL24

IL1RM

MIP1E

MIP-1A PBEF

MIP-2B

MIP2A

MCP2

HM74 IL7R

IL6R

IL1B

TNFAIP

IL1R2 CXCL6 CCL1

		IgE sensitized	FcCRI cross linked		
GeneBank ID	Gene name		2hr	6hr	12hr
M13436.1	INHBA		32.00	and the second	
NM_002309.2	LIF	a state to the state	11.88	· · · · ·	Person Barris
NM 002620.1	PF4V1				11.00
BF433902	TNFRSE11R	3	2	110.00	10.27
NM 004591.1	CCI 20	1	7.21	1.11.	
M31933.1	FCGR2B	6.96	6.28	3.78	1.69
102490.4	C7140				
NM COLET A	U ADD	2.02		0.00	
NM 016610 1	TIDE	2.03		5.46	5.46
1.07555.1	CD69	3.37	1 71	4.13	.2 10
NM 002993 1	CXC/ 6	1.97	3.39	2.04	3.66
LI65590	II 1RN		3 20	246	1.03
NM 000963 1	PTGS2		2.95		•
NM 002984 1	CCI 4	-1.08	2.63	.2.19	4.96
M15330	# 1B	1.65	2.79	1.61	-1.69
NM 006273.2	CC/7	1 30	2.62	2.55	-1.20
NM 002981.1	CCI 1		2.57		
NM 002415 1	MIE	2.52	2.51	2.57	1.69
1080151	NEATC1		2.38	*	.1.76
NM 012072 2	CIORI	1.56	2.00		-1.44
NM 000265 1	NCEI	2.07	2.01		.1.49
NM 000361 1	THRD	4.63	2.01	.3.68	-1.40
NM 003853 1	II 18DAD		2.00	-0.00	-0.01
1120350 1	CY2CP1	2 58		.3.78	
Y83858 1	PTGEP2	2.50		*	
NM 002426 1	MMP12	2.01	1 55	1	1.65
NM 002000 1	ECAR	2.00	1.60		.3.51
NM 001243 1	TNEDSER				3.78
NHL_001240.1	TIOT	12122-1222		the states	0.10
NM_016562.1	TLR7	801-201	1401-1-1-1	ALC STOLES	3.36
NM_021057.1	IFNA7		-	22/2/4	2.99
NM_003810.1	INFSFIU	1./4		2.25	2.48
AA790394	MADOKS	4.94	4.74		2.20
M57731 1	CYCL2	-1.31		1.02	-203
NM 002748 1	MARKE		10.000	1.02	-2.00
AI078167	NEKRIA	.123	1 55	-2.06	-2.13
NM 002341 1	ITR			.2.00	.2.27
NM 004556 1	NEKDIE		- 01-71C-44	.2.23	.2.21
NM 007115 1	TNEAIDE	1.57	1.82	4.50	-2.51
NM 000201 1	ICAMI		1.52	.2.25	-2.85
NM 001511.1	CYCLI		1 35	.2 36	.3.10
NM 002983 1	CCI 3	1.28	1.44	1.60	.3.32
AF043337 1	118	143	1.97		3.52
RE575514	PREE	43	1 38	241	4.69
NM 000565 1	II 6P	.1 19	*	.2.29	-1.49
NM 002090.1	CYCL 2		1.74	.2.66	-1.60
A1084080	CCLR		1.87	.2.66	-1.00
NM 002991 1	CCI 24		*	-3.78	+
VASTAD	00119	4.02	-	24	

Table 2. Selected genes which play a role in adaptive and/or innate immune response were found to be differentially expressed by activated MCs followed by IgE sensitization and FceR1 crosslinking at different time points. * * represents 'No Change'

Real-time RT- PCR: Validation of microarray results

Fig.2. Real-Time PCR for some genes (selected from microarray's result) expression in human mast cells. Mast cells were sensitized by human IgE, and then cross-linked with anti-human IgE for 2h, 6h and 12h, respectively. Total RNA was extracted. Light-Cycler Real-Time PCR was performed following the protocol of Roche. The concentrations of these genes' mRNA were calculated using respective standard curves. Fig.3. (A) MIP-3 α expression, (B) MCP-3 expression, (C) MIF expression and (D) COX-2 expression.

Conclusion

In our study, we compared the levels of expression of thousands of genes; even from the sensitization stage of mast cells. Sensitization with IgE triggers the upregulation of several chemokines and cytokines, involved in chemotaxis, adhesion and TH1 activation. Even though there are some reports on mast cells gene expression profile after activation, they have not focused on the overall picture on the different stages of mast cell sensitization and activation. Although mast cells have been viewed as mediators of allergy, anaphylaxis and immune dysfunction, the findings we report here show mast cells capable of triggering an array of genes essential in triggering adaptive immune responses. The data we present here suggest that mast cells, potentially play a role in the initiation of innate and adaptive immunity, and is pointing to a different view of mast cells, which has traditionally be linked to their role in immune dysfunctions widely demonstrated for allergies and autoimmunity. Thus, in view of the differential gene expression pattern of human mast cells, we suggest that mast cells may not only be involved in innate immune responses, but may also play a key role in initiating adaptive immune responses. Future studies will be focused on models that can validate the potential roles of mast cells in overall immunity, and on identifying novel molecules as potential targets for therapeutic intervention in allergic and inflammatory diseases

References

- Melendez,A.J., and Khaw, A.K., (2002) Dichotomy of Ca2+ Signals Triggered by Different Phospholipid Pathways in Antigen Stimulation of Human Mast Cells. *J Biol Chem*, 277(19): 17255-1726.
- Sturn A, Quackenbush J, Trajanoski Z., (2002) Genesis: cluster analysis of microarray data *Bioinformatics*, 18(1):207-8.
- Metcalfe, D.D., Baram, D. & Mekori, Y.A. (1997), Mast cells. *Physiol. Rev.* 77, 1033-1079.
- Echtenacher, B., Mannel, D.N. & Hulter, L. (1996) Critical protective role of mast cells in a model of acute septic peritonitis. *Nature* 381, 75-77.

Acknowledgements

This work was supported by BMRC Young Investigator Award (R-185-000-044-305).