Standards and Resources in Systems Biology: collaborative scale-up toward virtual life

Nicolas Le Novère, EMBL-EBI, United-Kingdom
« Je tiens impossible de connaître les parties sans connaître le tout, non plus que de connaître le tout sans connaître particulièrement les parties » Blaise Pascal, Pensées, 1660.
« Je tiens impossible de connaître les parties sans connaître le tout, non plus que de connaître le tout sans connaître particulièrement les parties » Blaise Pascal, Pensées, 1660.
"[A system consists of] a dynamic order of parts and processes standing in mutual interaction. [...] The fundamental task of biology [is] the discovery of the laws of biological systems" Ludwig von Bertalanfy, Kritische Theorie der Formbildung, 1928

- Systems Biology is the study of a biological system, taking into account all its constituents and their relationships.
- Systems Biology is the study of a biological system, taking into account all its constituents and their relationships.
- Mechanistic reconstruction of dynamic systems from the quantitative properties of their elementary building blocks. Made possible by large-scale data production \& improvements of computing power and technics

Systems Biology is the study of a biological system, taking into account all its constituents and their relationships.

Mechanistic reconstruction of dynamic systems from the quantitative properties of their elementary building blocks. Made possible by large-scale data production \& improvements of computing power and technics

Cybernetics properties are conserved across systems (control theory: feedback, feedforward, robustness...). Systems Biology is scale-free! NB: the theoretical treatment is already available.

Systems Biology is the study of a biological system, taking into account all its constituents and their relationships.

Mechanistic reconstruction of dynamic systems from the quantitative properties of their elementary building blocks. Made possible by large-scale data production \& improvements of computing power and technics

Cybernetics properties are conserved across systems (control theory: feedback, feedforward, robustness...). Systems Biology is scale-free! NB: the theoretical treatment is already available.

- Physiology was mainly descriptive Molecular Biology made Biology explicative Systems Biology makes Biology predictive

Systems Biology is the study of a biological system, taking into account all its constituents and their relationships.

Mechanistic reconstruction of dynamic systems from the quantitative properties of their elementary building blocks. Made possible by large-scale data production \& improvements of computing power and technics

Cybernetics properties are conserved across systems (control theory: feedback, feedforward, robustness...). Systems Biology is scale-free! NB: the theoretical treatment is already available.

Physiology was mainly descriptive Molecular Biology made Biology explicative Systems Biology makes Biology predictive
\Rightarrow The question we ask in Systems Biology is not: "fit my data"
but:
"Surprise-me"

A multiscale problem

A multiscale problem

- Molecular dynamics:
- Particle diffusion:

Stochastic chemical kinetics:
Continuous ODE:
\Rightarrow Humongous stiffness: the speed of the whole simulation is determined by the quickest event

- The development of quantitative models of even simple living systems requires an extensive knowledge of biology, from biochemical reactions to physiology.

The development of quantitative models of even simple living systems requires an extensive knowledge of biology, from biochemical reactions to physiology.

- Many different approaches must be used: e.g. for biochemical networks, one can use time-series (continuous, discrete), steady-state analyses (MCA, FBA), logical descriptions etc.
- The development of quantitative models of even simple living systems requires an extensive knowledge of biology, from biochemical reactions to physiology.
- Many different approaches must be used: e.g. for biochemical networks, one can use time-series (continuous, discrete), steady-state analyses (MCA, FBA), logical descriptions etc.
- Very large pathways cannot be built in one shot. We are talking about hundreds of thousands of interactions ...
- The development of quantitative models of even simple living systems requires an extensive knowledge of biology, from biochemical reactions to physiology.

Many different approaches must be used: e.g. for biochemical networks, one can use time-series (continuous, discrete), steady-state analyses (MCA, FBA), logical descriptions etc.

- Very large pathways cannot be built in one shot. We are talking about hundreds of thousands of interactions ...
\Rightarrow Nobody possesses the required knowledge. Moreover the time, money and energy necessary are prohibitive

Annual Meeting 2006, Friday 24th November 2006
November 24 2006, Ghent, Belgium

Annual Meeting 2006, Friday 24th November 2006

Standards of representation

" The nice thing about standards is that there are so many to choose from". Attributed to Andrew S Tanenbaum
http://www.cellml.org/ Based on modules; scalable;

BrainML.org

http://brainml.org/
Models are XML-schemas

http://www.neuroml.org/
Flexible (expendable set of classes/schemas);
-
http://www.biopax.org/
No kinetics; deep semantics; OWL
http://www.sbgn.org/

Graphical representation of interactions

88ML
Systems Biology
Markup Language http: / /sbml.org/ Rich kinetics; weak semantics; XML

The Systems Biology Markup Language (SBML) is a computer-readable format for representing models of biochemical reaction networks. SBML is applicable to metabolic networks, cell-signaling pathways, regulatory networks, and many others.

翤ternationally Supported and Widely Used

 ?\%BML has been evolving since mid-2000 through the efforts of an international group of software developers and users. Today, SBML is supported by over 100 software systems, including the following (where '*' iopdicates SBML support in development):

Moleculizer	SBMLR
Monod	SBMLSim
Narrator	SBMLToolbox
NetBuilder	SBliD
Oscill8	SBToolbox
PANTHER Pathway	SBW
PathArt	SCIpath
PathScout	Sigmoid*
Pathway Analyser	SigPath
PathwayLab	SigTran
Pathway Tools	SIMBA
PathwayBuilder	SimBiology
PATIKAweb	Simpathica
PaVESy	SimPheny*
PET	SimWiz
PNK	SloppyCell
PottersWheel	SmartCell
Reactome	SRS Pathway Editor
ProcessDB	StochSim
PROTON	StocnKit
pysbml	STOCKS
PySCeS	TERANODE Suite
runSBML	Trelis
SABIO-RK	Virtual Cell
SBML ODE Solver	WebCell
SBML-PET	WinSCAMP
SBMLeditor	XPPAUT
SBMLmerge	

BioNetGen@VCell Release

(October 6, 2006) BioNetGen@VCell is a new release of BioNetGen, a tool for automatically generating a reaction network from user-specified rules for biomolecular interactions on the level of protein domains.
read more

PottersWheel supports SBML

(October 4, 2006) PottersWheel 1.2 beta, a MATLAB systems biology toolbox, supports model creation, fitting data, and designing new experiments.
read more

SBML Level 2 Version 2 Released!
 (September 25, 2006) The final version of the
 SBML Level 2 Version 2 specification is now available!

read more

SBML Wikipedia entry

(September 18, 2006) There is now an updated entry for SBML in Wikipedia. Let us know your suggestions for improvements.
read more

SBML Tutorial at ICSB 2006

(September 8, 2006) Mike Hucka will be leading a tutorial on SBML this year at ICSB 2006 in Japan. The focus will be on the about-to-be-released SBML Level 2 Version 2.
read more
See older news items.
"The goal of SBML is to help people to disagree as precisely as possible". Ed Franck, Argonne National Laboratory

Annual Meeting 2006, Friday 24th November 2006
November 24 2006, Ghent, Belgium

```
<?xml version="1.0" encoding="UTF-8"?>
<sbml level="2" version="1" xmlns="http://www.sbml.org/sbml/level2">
    <model>
        <listOfCompartments>
            <compartment id="cell" />
        </listOfCompartments>
        <listOfSpecies>
            <species id="A" compartment="cell" initialConcentration="1"/>
            <species id="B" compartment="cell" initialConcentration="0"/>
        </listOfSpecies>
        <listOfParameters>
            <parameter id="kon" value="1"/>
        </listOfParameters>
        <listOfReactions>
            <reaction>
            <listOfReactants>
                <speciesReference species="A" />
            </listOfReactants>
            <listOfProducts>
                            <speciesReference species="B" />
            </listOfProducts>
            <kineticLaw>
                            <math xmlns="http://www.w3.org/1998/Math/MathML">
                                <apply>
                        <times />
                            <ci>kon</ci>
                        <ci>A</ci>
                            <ci>cell</ci>
                        </apply>
                                </math>
            </kineticLaw>
                </reaction>
        </listOfReactions>
    </model>
</sbml>
```

SBML is not limited to biochemistry!

- Rate Rules can describe the temporal evolution of any quantitative parameter, e.g. transmembrane voltage;
- Events can describe any discontinuous change, e.g. neurotransmitter release;
- A species is an entity participating to a reaction, not always a chemical entity:
- It can be a molecule
- It can be a cell
- It can be an organ
- It can be an organism
\rightarrow Remember, Systems Biology is scale-free!

Level 1 (March 2001)

- Predefined kinetics functions
- Only one type of reactive substance
- ISO646 encoding
- Level 2 (June 2003)
- User-defined functions
- Modifier species
- Events
- All math in MathML
- Unicode encoding
- IETF MIME-Type, see RFC3823
- Level 3 (?)

Hucka et al (2003)
Bioinformatics 19: 524-531

Hucka et al (2004)
IEE Systems Biology 1: 41-53

- Released on September $25^{\text {th }} 2006$
- Simpler and cleaner (units ...)
- Generic entities (compartmentType, speciesType) \rightarrow path to generalised reactions
- Constraints and initialAssignments
- Controlled annotations (+ links to SBO)
- Backward compatible with Level 2 Version 1
- More detailed and bug-free specification ... 145 pages, 10pt, small margin.
- Modular SBML, with core + optional packages
- Graph Layout
- Generalised reactions (probable)
- Model composition (probable)
- Complex species (probable)
- Arrays or sets (maybe)
- Geometry (maybe)
- Movements (maybe)
- Dynamic compartments (maybe)
???
- An SBML model lists physical entities, but does not identify them properly.
- An SBML model contains mathematical expressions, but does not tell-us what they characterise and how.

An SBML constructed for a certain modelling approach cannot be used straight-away within another modelling framework.
\Rightarrow SBML models cannot be easily searched SBML models cannot be easily converted SBML models cannot be easily merged

Minimum Information Requested In the Annotation of biochemical Models

Le Novère N., Finney A., Hucka M., Bhalla U., Campagne F., Collado-Vides J., Crampin E., Halstead M., Klipp E., Mendes P., Nielsen P., Sauro H., Shapiro B., Snoep J.L., Spence H.D., Wanner B.L.
Nature Biotechnology (2005), 23: 1509-1515

- The model must be encoded in a public, standardized, machine-readable format (SBML, CellML, GENESIS ...)
- The model must comply with the standard in which it is encoded!
- The model must be clearly related to a single reference description. If a model is composed from different parts, there should still be a description of the derived/combined model.
- The encoded model structure must reflect the biological processes listed in the reference description.
- The model must be instantiated in a simulation: All quantitative attributes have to be defined, including initial conditions.
- When instantiated, the model must be able to reproduce all results given in the reference description within an epsilon (algorithms, round-up errors)

$$
\begin{aligned}
& \stackrel{\dot{\sigma}_{1}}{\overbrace{1}}=k_{2}=k_{3}=1 \mathrm{~s}^{-1} \\
& \frac{d\left[C a_{\text {out }}\right]}{d t}=\frac{k_{1}[I P 3 R] *\left(\left[C a_{\text {in }}\right]-\left[C a_{\text {out }}\right]\right)}{K m_{1}+\left|\left[C a_{\text {in }}\right]-\left[C a_{o u t}\right]\right|} * \frac{[I P 3]^{m}}{K_{A}+[I P 3]^{m}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d[I P 3]}{d t}=\frac{k_{2}\left[P L C_{a c t}\right] *[P I P 2]}{K m_{2}+[P I P 2]}-\frac{k_{3}\left[I P 3_{\text {ase }}\right] *[I P 3]}{K m_{3}+[I P 3]} \\
& \frac{d\left[P L C_{a c t}\right]}{d t}=\frac{\left[G_{q}\right]^{n}}{\alpha+\left[G_{q}\right]^{n}} *\left[P L C_{t o t}\right] \\
& {\left[C a_{\text {in }}\right]=[I P 3 R]=\left[P L C_{\text {tot }}\right]=[P I P 2]=\left[I P 3_{\text {ase }}\right]=0.001 \mathrm{M}} \\
& {\left[G_{q}\right]=0.01 \mathrm{M},\left[\mathrm{Ca} a_{\text {out }}\right]=[I P 3]=\left[P L C_{\text {act }}\right]=0 \mathrm{M}}
\end{aligned}
$$

- The model has to be named.
- A citation of the reference description must be joined (complete citation, unique identifier, unambigous URL). The citation should permit to identify the authors of the model.
- The name and contact of model creators must be joined.
- The date and time of creation and last modification should be specified. An history is useful but not required.
- The model should be linked to a precise statement about the terms of distribution. MIRIAM does not require "freedom of use" or "no cost".
- The annotation must permit to unambiguously relate a piece of knowledge to a model constituent.
- The referenced information should be described using a triplet \{data-type, identifier, qualifier\}

- The community has to agree on a set of standard valid data-types. A database and the associated API (WebServices) have been developed at the EBI to provide the generation and interpretation of URIs.

creators				
creation date	Joe User (juser@eden.com), Anne Other (aother@eden.com) 01 January 0000			
last modification	31 May 2005			
Constituent	Data Type	Identifier	Qualifier	Meaning
model	http://www.pubmed.gov/	0000000		
	http://www.taxonomy.org/	9606		Homo sapiens
	http ///www.geneontology.org/	GO:0007204	IsVersionOf	positive regulation of cytosolic ca2+ concentration
	http://www.geneontology.org/	GO:0051279	IsVersionOf	regulation of release of sequestered ca2+ into cytop
O-	http://www.genome.jp/kegg/pathway	hsa04020	IsPartOf	Calcium signaling pathway-H sapiens
	http://www.genome.jp/kegg/pathway	hsa04070	IsPartOf	Phosphatidylinositol signaling system-H sapiens
\sum_{0}^{0}	http://www.geneontology.org/	GO:0005790		smooth endoplasmic reticulum
$\stackrel{\text { O}}{\omega} \text { reactant } \mathrm{Ca}_{i n}$	http://www.ebi.ac.uk/chebi/	CHEBI:29108		calcium($2+$)
compartment cytoplasm	http://www.geneontology.org/	GO:0005737		cytoplasm
$\frac{\stackrel{\Gamma}{\circ}}{\dot{\circ}} \text { reactant } \mathrm{Ca}_{\text {out }}$	http://www.ebi.ac.uk/chebi/	CHEBI:29108		calcium($2+$)
O- reactant IP3	http://www.ebi.ac.uk/chebi/	CHEBI:16595		1D-myo-inositol 1,4,5-tris(dihydrogen phosphate)
$\stackrel{\text { ¢ }}{\text { ¢ }}$ ¢ reactant PIP2	http://www.ebi.ac.uk/chebi/	CHEBI:18348		1-phosphatidyl-1D-myo-inositol 4,5-bisphosphate
은 reactant IP3R	http://www.uniprot.org/	Q14643	HasVersion	Inositol 1,4,5-trisphosphate receptor type 1
\bigcirc	http://www.uniprot.org/	Q14571	HasVersion	Inositol 1,4,5-trisphosphate receptor type 2
-	http://www.uniprot.org/	Q14573	HasVersion	Inositol 1,4,5-trisphosphate receptor type 3
$\stackrel{\text { ® }}{\text { ¢ }}$	http://www.uniprot.org/	Q9NQ66	IsVersionOf	PIP2 phosphodiesterase $\beta 1$
	http://www.uniprot.org/	Q9NQ66		PIP2 phosphodiesterase $\beta 1$
$\stackrel{0}{=}$ reactant $\mathrm{IP} 3_{\text {ase }}$	http://www.uniprot.org/	Q14642		Type I inositol-1,4,5-trisphosphate 5-phosphatase
$\stackrel{\text { Teactant }}{ } \mathrm{G}_{q}$	http://www.uniprot.org/	Q6NT27		Guanine nucleotide binding protein $G q$
reaction $\mathrm{Ca}_{\text {release }}$	http://www.geneontology.org/	GO:0005220		IP3-sensitive calcium-release channel activity
	http://www.geneontology.org/	GO:0008095	IsVersionOf	IP3 receptor activity
reaction IP3 ${ }_{\text {production }}$	http://www.geneontology.org/	GO:0004435	IsVersionOf	phosphoinositide phospholipase C activity
	http://www.ec-code.org/	3.1.4.11	IsVersionOf	phosphoinositide phospholipase C
reaction IP3 $3_{\text {degradation }}$	http://www.ec-code.org/	3.1.3.56	IsVersionOf	inositol-polyphosphate 5-phosphatase
reaction PLC activation	http://www.geneontology.org/	GO:0007200		G-protein signaling coupled to IP3 2nd messenger

${ }_{6}$ Browse

ORequest

 $\underset{\sim}{\sim}$ Submission OXML Export

Browse data-types

Brief overview of the different data-types stored in MIRIAM.

Name	URI	Definition
BIND	http://www.bind.ca/	BIND is a database of protein-protein interactions. This data-resource is not open-access.
ChEBI	http://www.ebi.ac.uk/chebi/	Chemical Entities of \|Biological Interest (ChEBI) is a freely available dictionary of molecular entities focused on 'small' chemical compounds.
Ensembl	http://www.ensembl.org/	Ensembl is a joint project between EMBL - EBI and the Sanger Institute to develop a software system which produces and maintains automatic annotation on selected eukaryotic genomes.
Enzyme Nomenclature	http://www.ec-code.org/	The Enzyme Classification contains the recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the nomenclature and classification of enzyme-catalysed reactions.
UniProt	http://www.uniprot.org/	UniProt (Universal Protein Resource) is the world's most comprehensive catalog of information on proteins. It is a central repository of protein sequence and function created by joining the information contained in Swiss-Prot, TrEMBL, and PIR.
Taxonomy	http://www.taxonomy.org/	The taxonomy contains the relationships between all living forms for which nucleic acid or protein sequence have been determined.
DOI	http://www.doi.org/	The Digital Object Identifier System is for identifying content objects in the digital environment.
Gene Ontology	http://www.geneontology.org/	The Gene Ontology project provides a controlled vocabulary to describe gene and gene product attributes in any organism.
ICD	http://www.who.int/classifications/icd/	The International Classification of Diseases is the international standard diagnostic classification for all general epidemiological and many health management purposes.
IntAct	http://www.ebi.ac.uk/intact/	IntAct provides a freely available, open source database system and analysis tools for protein interaction data.
InterPro	http://www.ebi.ac.uk/interpro/	InterPro is a database of protein families, domains and functional sites in which identifiable features found in known proteins can be applied to unknown protein sequences.
KEGG Pathway	http://www.genome.jp/kegg/pathway/	KEGG PATHWAY is a collection of manually drawn pathway maps representing our knowledge on the molecular interaction and reaction networks.
KEGG Compound	http://www.genome.jp/kegg/compound/	KEGG compound contains our knowledge on the universe of chemical substances that are relevant to life.
KEGG Reaction	http://www.genome.jp/kegg/reaction/	KEGG reaction contains our knowledge on the universe of reactions that are relevant to life.
PubMed	http://www.pubmed.gov/	PubMed is a service of the U.S. National Library of Medicine that includes citations from MEDLINE and other life science journals for biomedical articles back to the 1950s.

MIRIAM

ORequest

NSubmission $\underset{Z}{2} X M L$ Export OSign In
$\stackrel{\circ}{\dddot{2}}$
$\stackrel{0}{2}$
※news

QWeb Services

 :'BioModels -Qualifiers

Data-type Enzyme Nomenclature

The Systems Biology Ontology

http://www.ebi.ac.uk/sbo/

Classifications Vs. Ontologies

Ontology: A set of elements of knowledge linked with sense-bearing relationships.

- Each term of an ontology is associated to a perennial identifier. Once created a term is never destroyed. It can be merged with another, or made obsolete, but it still exists.
- An ontology is an evolving structure: It can cope with an increase or refinement of knowledge. No need to reconstruct everything as with the taxonomies.
- An ontology is a Direct Acyclic Graph, and not a hierarchy. A term can possess more than one parent.
- Ontologies are stored in standard machine-readable formats. They can be subjected to automatic treatments.

Systems Biology Ontology vocabularies

- Types and roles of reaction participants, including terms like "substrate", "catalyst" etc., but also "macromolecule", or "channel".
- Parameter used in quantitative models. This vocabulary includes terms like "Michaelis constant", "forward unimolecular rate constant"etc.
- Mathematical expressions. Examples of terms are "mass action kinetics", "Henri-Michaelis-Menten equation" etc. Each term contains a precise mathematical expression stored as a MathML Iambda function. The variables refer to the CVs described above.
- Modelling framework to precise how to interpret the rate-law. E.g. "continuous modelling", "discrete modelling" etc.
- Event type, such as "catalysis" or "addition of a chemical group".

EBI Home	About EBI	Groups	Services	Toolbox	Databases	Downloads	Submissions

SBO Ontology Browser
 SBO::Systems Biology Ontology
 回

\boxplus © quantitative parameter
$\boxplus \odot \underline{m o d e l l i n g ~ f r a m e w o r k ~}$
$\boxminus \bigcirc$ mathematical expression
\boxminus (1) rate law
\boxplus (1) mass action kinetics
\boxplus (1) Hill equation
\boxminus (1) enzyme kinetics
\boxplus (1) kinetics of non-modulated non-interactin
\boxminus (1) kinetics of unireactant enzymes
$\boxminus(1)$ kinetics of non-modulated unireacte
(1) Henri-Michaelis Menten equat (1) Van Slyke-Cullen equation
(1) Briggs-Haldane equation
(1) normalised kinetics of unireact
(1) simple uncompetitive inhibition of u
\boxplus (1) competitive inhibition of unireactant
$\boxplus(1)$ competitive inhibition of unireactant
(1) mixed-type inhibition by mutuall. ${ }^{\text {ex }}$
$\boxplus(1)$ obsolete mathematical exproosion
\boxplus © event
\boxplus © participant type
©: "is a" relationship
©: "part-of" relationship

- Parent(s)

SB0:0000028 kinetics of non-modulated unireactant enzymes (is a)

- Children

- Neither focussed on a particular biological substrate or process, nor specialised on a given modelling approach
- Real "searchable" database rather than mere repository
- Models thoroughly verified, structure and results, and annotated
- International collaboration rather than a one-group effort
- Freely available and reusable
- Long-term commitment and secure funding

BioModels Database: A Free, Centralized Database of Curated, Published, Quantitative Kinetic Models of Biochemical and Cellular Systems

Le Novère N., Bornstein B., Broicher A., Courtot M., Donizelli M., Dharuri H., Li L., Sauro H., Schilstra M., Shapiro B., Snoep J.L., Hucka M. Nucleic Acids Research, (2006), 34: D689-D691
http://www.ebi.ac.uk/biomodels/

- Store and serve quantitative models of biomedical interest
- Only models described in the peer-reviewed scientific literature.
- Models are curated: computer software check the syntax, while human curators check the semantics.
- Models are simulated to check the reference correspondence
- Model components are annotated, to improve identification and retrieval.
- Models are accepted in several formats, and served in several others.
- Aims to be the "UniProt" of quantitative modelling.

Submission

Bionedse

Abstract

：．．．．Curated Models ：．．．Non－curated Models ：．．．．Search

BioModels Database

A Database of Annotated Published Models

BioModels Database is a data resource that allows biologists to store，search and retrieve published mathematical models of biological interests．Models present in BioModels Database are annotated and linked to relevant data resources，such as publications，databases of compounds and pathways，controlled vocabularies，etc．

BioModels Database is developed in collaboration by the teams of Nicolas Le Novère（EMBL－EBI，United－Kingdom），Michael Hucka（SBML Team，Caltech，USA），Herbert Sauro（Keck Graduate Institute，USA），Hiroaki Kitano（Systems Biology Institute， Japan），Hans Westerhoff and Jacky Snoep（JWS Online，Stellenbosch（ZA）and Manchester（UK）Universities and ZA），as part of the BioModels．net initiative．BioModels Database development has benefitted from funds of the European Molecular Biology Laboratory（Le Novère team）and the National Institute of General Medical Sciences（SBML tearn）．

Developers：Mélanie Courtot，Arnaud Henry，Camille Laibe，Chen Li（main developer），Lu Li，Nicolas Rodriguez（Alumni：Marco Donizelli）

Model curators and annotators：Harish Dharuri，Henuo He，Nicolas Le Novère，Lu Li，Rainer Machne，Bruce Shapiro．

Summer Internships

We are looking for intern students to work on the curation of our BioModels Database．These internships are not part of a university training．Nevertheless，this is an opportunity for the postholders to gain experience in an international environment． A limited funding is provided to cover for living expenses．

Successful candidates have experience in working with GNU／Linux operating system，and have a good knowledge of the main data resnurces used in hinlocy Curation of BinModel Datahase renuires solid hases of mathematics and a anod knowledne of

sumाt Ival houne

－Curation tips
Annotation tips

Sign－in

News
FAQ
Godel of the month Lerms of Use
答elated Software
迸eetings
Oontact
Quote
$\stackrel{-}{\circ}$
BiOMODELS．NET
OOMODELS．NET

Oamputationat
${ }^{5} \mathrm{E}$ Neuroblalagy

BiOMOOOOOOOOO22）．

－Person \rightarrow Search BioModels Database for model submitter and／or creator（s）names，or model reference publication author（s）names（for example Nicolas Le Novère，Nicolas，Bruce Shapiro or Shapiro，Edelstein or Novak）．
－SBML Elements \rightarrow Search BioModels Database for SBML elements by either name or notes content（for example Edelstein or nicotinic）．
－Resource \rightarrow Search BioModels Database for related information found in the models reference publication or third－party resources，by either publication／resource identifier or text（for example 9256450 or cyclin for publication，GO：0007049 or cell cycle for Gene Ontology，P04557 or cell division for UniProt）．
－Resource $10 \rightarrow$ Search BioModels Database for annotations，by third－party resource identifiers（for example iPROO2394 for InterPro，$n s a 04080$ for KEGG Pathway， 68910 for Reactome）．

A part from the BioModels 10 －based search，for every other criteria the search operates on a contains the entered string basis， case－insensitive．That is，searching Person for Shapi or shapi will return the same results as searching for Shapiro or shapiro． In addition，since search strings are treated as words，do not enter regular expressions．

Multiple criteria can be combined with either and or or．If and is selected，only those models satisfying all the criteria will be returned．If instead or is selected，all the models satisfying at least one of the criteria will be returned．

：．．．．Curated Models
：… Non－curated Models
©．Search ©

Submit Your Model

CO．Curation tips
©．Annotation tips

Sign－in
Hews
合
解odel of the month
응ms of Use
扁elated Software
苜eetings
O．ontact
quate ©．．．

较

Compurational
ZNeurobiology

Search Models

The search totally returned $\mathbf{1 3}$ models．
«New Search

Show 10 Only

13 Curated Models returned．

BioModels ID ${ }^{\text {－}}$	Name	Publication ID	Last Modified
BlOMD0000000009	Huang1996＿MAPK＿ultrasens	8816754	2006－09－30T23：18：39
BlOMD00000000010	Kholodenko2000＿MAPK＿feedback	10712587	2006－09－30T23：27：53
BlOMD00000000011	Levchenko2000＿MAPK＿noScaffold	10823939	2006－09－15T23：41：42
BlOMD00000000014	Levchenko2000＿MAPK＿Scaffold	10823939	2006－09－18700：04：02
BIOMDO000000022	Markevich2004＿MAPK＿orderedElementary	14744999	2006－04－02T18：50：28
BlOMD00000000227	Markevich2004＿MAPK＿orderedMM	14744999	2006－08－14T13：52：32
BlOMD00000000228	Markevich2004＿MAPK＿phosphoRandomElementary	14744999	2006－04－02T18：53：13
BlOMD0000000029	Markevich2004＿MAPK＿phosphoRandomMM	14744999	2006－08－14T13：53：16
BlOMD0000000030	Markevich2005＿MAPK＿AllRandomElementary	14744999	2006－04－02T18：57：56
BlOMD00000000331	Markevich2004＿MAPK＿orderedMM2kinases	14744999	2006－04－02T18：58：15
BlOMD0000000032	Kofahl2004＿pheromone	15300679	2006－08－20701：25：41
BlOMD0000000033	Brown2004＿NGF＿EGF＿signaling	14525003	2006－08－14T13：59：12
BlOMD0000000049	Sasagawa2005＿MAPK	15793571	2006－08－24T23：29：11

New Search

Biomodels

：… Curated Models
：．．．．Non－curated Models
：．．．．Search

Submit Your Model

N ㅇ．Annotation tips
 ©
 ⿹ㅛign－in

BIOMD0000000010 Kholodenko2000＿MAPK＿feedback

［0．SBML L2 V1｜CellML｜SciLab｜XPP｜BioPAX
呂 View Model Graph｜View Model SVG｜View Simulation Result｜View Model Applet Graph
（1）Submit Model Comment／Bug
$\square ⿴ 囗+\square$

－＋＋＋	Reference Publication			＋＋＋＝
Publication ID： 10712587	Eur J Biochem 2000 Mar；267（6）：1583－8． Negative feedback and ultrasensitivity can bring about oscillations in the mitogen－activated protein kinase cascades． Kholodenko BN． Department of Pathology，Anatomy and Cell Biology，Thomas Jefferson University， Philadelphia，PA 19107，USA．Boris．Kholodenko＠mail．tju．edu［more］			
－＋＋＋	Model			＋＋＋＝
Original Model：Unspecified	bqbiol：isHomologTo	set \＃1	Reactome REACT＿634	
Submitter：Nicolas Le Novere	bqbiol：is	set \＃1	Taxonomy Xenopus laevis	
Submission Date：2005－09－13T13：39：02	bqbiol：is VersionOf	set \＃1	Gene Ontology MAPKKK cascade	

Last Modification Date：2006－09－30T23：27：53
Creation Date：2005－02－12T00：18：12
Creators：Herbert Sauro
线

－＋＋＋	Compartments（1）	＋＋＋－
－＋＋＋	Species（8）	＋＋＋－
Rules（0）		
－＋＋＋	Reactions（10）	＋＋＋－
	Events（0）	

Biomodels

:.... Curated Models
:… Non-curated Models Search

Kholodenko2000_MAPK_feedback

[固 SBML L2 V1 | CellML | SciLab | XPP | BioPAX

Biomodels

：．．．．Curated Models
：… Non－curated Models ：．．．．Search

§ubmit Your Model

\xrightarrow{N} Curation tips

\sum_{0}° ．Annotation tips
mi．．．．．．．．．

\％ign－in

$\stackrel{\text { E．}}{\text { EAO }}$
giodel of the month Kirms of Use
germs of Use
总lated Software
骨eetings
Pontact
家uote
罗OMODELS．NET
费OMODELS．NET

SB

BIOMD0000000010
 Kholodenko2000＿MAPK＿feedback

［0 SBML L2 V1｜CellML｜SciLab｜XPP｜BioPAX
呂 View Model Graph｜View Model Scs｜View Simulation Result（iew Model Applet Graph

2006＿09－30T23：27：45
Comment：Reproduction of figure 2a in COPASI 4.0 build 18

Close

Bionoders

：… Curated Models
：．．．．Non－curated Models

Submit Your Model

을 Curation tips
${ }_{2}^{\circ}$ ．Annotation tips
om
Sign－in
Nows
New．．．．．．
EAO
giodel of the month
人）
蛎lated Software
º．eetings
Pontact
지uote
＇80．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．

BIOMD0000000010 Kholodenko2000＿MAPK＿feedback

SBML L2 V1｜CellML｜SciLab｜XPPDSioPAX

呂 View Model Graph｜View Model SVG｜View Simulation Result｜View Model Applet Graph
（1）Submit Model Comment／Bug
日田 $+ \pm$

(

Where are the models coming from
I) Existing model repositories

- old SBML repository
- JWS Online
- Database Of Quantitative Cell Signalling (Release on December 4th)
- CellML repository
II) Individuals
- Members of the SBML community (developers+modellers)
- Authors (prior to grant application, before publication etc.)
III) Journals (Molecular Systems Biology and PloS Computational Biology advise deposition)
IV) BioModels DB curators encode new models from literature

Annual Meeting 2006, Friday 24th November 2006

The BioModels.net team

Enuo He

Melanie Courtot

Nicolas
Le Novère
Chen Li

Marco Donizelli

Harish Dharuri

Annual Meeting 2006, Friday 24th November 2006 November 24 2006, Ghent, Belgium

EBI

- Nicolas Le Novère
- Marco Donizelli
- Chen Li
- Mélanie Courtot
- Lu Li
- Camille Laibe
- Arnaud Henry
- Enuo He
- Nicolas Rodriguez
- Alexander Broicher

SBML team

- Michael Hucka
- Andrew Finney
- Bruce Shapiro
- Benjamin Borstein
- Maria Schilstra
- Sarah Keating
- Harish Dharuri

NCBS

- Upinder Bhalla
- Harsha Rani

Keck Graduate Institute

- Herbert Sauro

Vienna TBI

- Rainer Machne

Systems Biology Institute

- Hiroaki Kitano
- Akira Funahashi

JWS Online

- Jacky Snoep
- Hans Westerhoff

The community of Systems Biology for their contributions of models and comments.

- CellDesigner/SBMLodeSolver
- COPASI
- Jarnac/JDesigner
- MathSBML
- SBMLeditor
- XPP-Aut
- Molecular Systems Biology
- PLoS Computational Biology
-

Programs used for curation
bbsrc
botecturology and biotiopical
wienter maserch caunsl

British outstation of the European Molecular Biology Laboratory

Marie Curie Training site Fellowships: PhD 3-6 months. Fully funded. Undergraduate trainees: 5-6 months.

:… Non-curated Models

```
:...Search
```


Submit Your Model

:-... Curation tips
:-... Annotation tips

${ }_{6}$ Sign-in

Show 10 Only

BioModels ID ∇	Name	Publication ID	Last Modified
MODEL0995500644	Rodriguez2005_denovo_pyrimidine_biosynthesis	15784266	2006-09-30T21:48:57
MODEL5662324959	Feist2006_methanogenesis_OptiMethanol	10.1038/msb4100046...	2006-10-02T16:52:30
MODEL5662377562	Feist2006_methanogenesis_OptiAcetate	10.1038/msb4100046...	2006-10-02T16:46:28
MODEL5662398146	Feist2006_methanogenesis_OptiH2-CO2	10.1038/msb4100046...	2006-10-02T16:47:09
MODEL5662425708	Feist2006_methanogenesis_OptiPyruvate	10.1038/msb4100046...	2006-10-02T16:50:56
MODEL5974712823	FangeElf2006_MinSystem_MesoRD	$\underline{16846247}$	2006-09-29T22:28:23
MODEL6623597435	Fuentes2005_ZymogenActivation	15634334	2006-09-29T22:39:28
MODEL6623610941	Hornberg2005_ERKcascade	15634347	2006-09-29T22:50:28
MODEL6623617994	Lambeth2002_Glycogenolysis	12220081	2006-09-30721:46:54
MODEL6623628741	Kolomeisky2003_myosin	12609867	2006-09-29T23:36:52
MODEL6624091635	Hoefnagel2002_Glycolysis	12241048	2006-09-29T22:45:45
MODEL6624139162	Cronwright2003_GlycerolSynthesis	12200299	2006-09-29T22:34:13
MODEL6624199343	Martins2001_glyoxalase	11453985	2006-10-02T10:53:31
MODEL6762427183	plant_1981_version01	$\underline{7252375}$	2006-09-30T18:30:12
MODEL7944007619	Maeda2006_MyosinPhosphorylation	16923126	2006-09-30T18:25:23
MODEL8293171637	Yeast_glycolysis_model_of_Pritchard_and_Kell	12180966	2006-09-30T21:49:59
MODEL8568434338	Raman2006_MycolicAcid	16261191	2006-09-29T23:24:10
MODEL8583955822	Singh_Ghosh2006_TCA_eco_glucose	10.1186/1742-4682-3-...	2006-09-29T23:47:42
MODEL8584137422	Singh_Ghosh2006_TCA_eco_acetate	10.1186/1742-4682-3-...	2006-09-29723:47:20
MODEL8584292730	Singh_Ghosh2006_TCA_mtu_model1	10.1186/1742-4682-3-...	2006-09-29T23:48:15
MODEL8584468482	Singh_Ghosh2006_TCA_mtu_model2	10.1186/1742-4682-3-...	2006-09-29T23:49:52
MAncionzonoxา1E	dAlantaraา002 Eunantianlantiait,	17072 ¢50	$=I$

:... Non-curated Models

```
:".. Search
```


Submit Your Model

:".. Curation tips :-... Annotation tips

Sign-in

Show 10 Only

:... Non-curated Models

```
:".. Search
```


Submit Your Model

:".. Curation tips :-... Annotation tips

Sign-in

Show 10 Only

BioModels ID ∇	Name	Publication ID	Last Modified
MODEL0995500644	Rodriguez2005_denovo_pyrimidine_biosynthesis	15784266	2006-09-30T21:48:57
MODEL5662324959	Feist2006_methanogenesis_OptiMethanol	10.1038/msb4100046...	2006-10-02T16:52:30
MODEL5662377562	Feist2006_methanogenesis_OptiAcetate	10.1038/msb4100046..	2006-10-02T16:46:28
MODEL5662398146	Feist2006_methanogenesis_OptiH2-CO2	10.1038/msb4100046...	2006-10-02T16:47:09
MODEL5662425708	Feist2006_methanogenesis_OptiPyruvate	10.1038/msb4100046...	2006-10-02T16:50:56
MODEL5974712823	FangeElf2006_MinSystem_MesoRD	16846247	2006-09-29T22:28:23
MODEL6623597435	Fuentes2005_ZymogenActivation	15634334	2006-09-29T22:39:28
MODEL6623610941	Hornberg2005_ERKcascade	15634347	2006-09-29T22:50:28
MODEL6623617994	Lambeth2002_Glycogenolysis	12220081	2006-09-30T21:46:54
MODEL6623628741	Kolomeisky2003_myosin	12609867	2006-09-29T23:36:52
MODEL6624091635	Hoefnagel2002_Glycolysis	12241048	2006-09-29T22:45:45
MODEL6624139162	Cronwright2003_GlycerolSynthesis	12200299	2006-09-29T22:34:13
MODEL6624199343	Martins2001_glyoxalase	11453985	2006-10-02T10:53:31
MODEL6762427183	plant_1981_version01	$\underline{7252375}$	2006-09-30T18:30:12
MODEL7944007619	Maeda2006_MyosinPhosphorylation	16923126	2006-09-30T18:25:23
MODEL8293171637	Yeast_glycolysis_model_of_Pritchard_and_Kell	12180966	2006-09-30T21:49:59
MODEL8568434338	Raman2006_MycolicAcid	16261191	2006-09-29T23:24:10
MODEL8583955822	Singh_Ghosh2006_TCA_eco_glucose	10.1186/1742-4682-3-...	2006-09-29T23:47:42
MODEL8584137422	Singh_Ghosh2006_TCA_eco_acetate	10.1186/1742-4682-3-...	2006-09-29T23:47:20
MODEL8584292730	Singh_Ghosh2006_TCA_mtu_model1	10.1186/1742-4682-3-...	2006-09-29T23:48:15
MODEL8584468482	Singh_Ghosh2006_TCA_mtu_model2	10.1186/1742-4682-3-...	2006-09-29T23:49:52
MAncionzonoxา15	dabantamanoz eumantianlantiait.	1 1าอาวงรก	ZII

:... Non-curated Models

```
:".. Search
```


Submit Your Model

:".. Curation tips
:-... Annotation tips

Sign-in

Show 10 Only

BioModels ID ∇	Name	Publication ID	Last Modified
MODEL0995500644	Rodriguez2005_denovo_pyrimidine_biosynthesis	15784266	2006-09-30T21:48:57
MODEL5662324959	Felst2006_methanogenesis_Optilvethan	10.1038/msb4100046...	2006-10-02T16:52:30
MODEL5662377562	Feist2006_methanogenesis_OptiAcetate	10.1038/msb4100046...	2006-10-02T16:46:28
MODEL5662398146	Feist2006_methanogenesis_OptiH2-CO2	10.1038/msb4100046...	2006-10-02T16:47:09
MODEL5662425708	Feist2006_methanogenesis_OptiP yrungle	10.1038/msb4100046...	2006-10-02T16:50:56
MODEL5974712823	FangeElf2006_MinSystem_MesoRD	16846247	2006-09-29T22:28:23
MODEL6623597435	Fuentes2005_ZymogenActivation	15634334	2006-09-29T22:39:28
MODEL6623610941	Hornberg2005_ERKcascade	15634347	2006-09-29T22:50:28
MODEL6623617994	Lambeth2002_Glycogenolysis	12220081	2006-09-30721:46:54
MODEL6623628741	Kolomeisky2003_myosin	12609867	2006-09-29723:36:52
MODEL6624091635	Hoefnagel2002_Glycolysis	12241048	2006-09-29T22:45:45
MODEL6624139162	Cronwright2003_GlycerolSynthesis	12200299	2006-09-29T22:34:13
MODEL6624199343	Martins2001_glyoxalase	11453985	2006-10-02T10:53:31
MODEL6762427183	plant_1981_version01	$\underline{7252375}$	2006-09-30T18:30:12
MODEL7944007619	Maeda2006_MyosinPhosphorylation	16923126	2006-09-30T18:25:23
MODEL8293171637	Yeast_glycolysis_model_of_Pritchard_and_Kell	12180966	2006-09-30T21:49:59
MODEL8568434338	Raman2006_MycolicAcid	16261191	2006-09-29T23:24:10
MODEL8583955822	Singh_Ghosh2006_TCA_eco_glucose	10.1186/1742-4682-3-...	2006-09-29T23:47:42
MODEL8584137422	Singh_Ghosh2006_TCA_eco_acetate	10.1186/1742-4682-3-...	2006-09-29T23:47:20
MODEL8584292730	Singh_Ghosh2006_TCA_mtu_model1	10.1186/1742-4682-3-...	2006-09-29723:48:15
MODEL8584468482	Singh_Ghosh2006_TCA_mtu_model2	10.1186/1742-4682-3-.	2006-09-29T23:49:52
Mancion20nด*า1E.	dalanutamenos eumantianlantiait.	1าอาวงรก	רחกะ ח ח

