
Sex Differences in Regional Brain Glucose Metabolism
Following Opioid Withdrawal and Replacement

Giovanni C Santoro1,4, Joseph Carrion1,4, Krishna Patel1, Crystal Vilchez1, Jennifer Veith1, Jonathan D Brodie2

and Stephen L Dewey*,1,2,3

1Center for Neurosciences, Laboratory for Molecular and Behavioral Neuroimaging, Feinstein Institute for Medical Research, Manhasset, NY, USA;
2Psychiatry Department, New York University School of Medicine, New York, NY, USA; 3Department of Molecular Medicine, Hofstra Northwell
School of Medicine, Hempstead, NY, USA

Methadone and buprenorphine are currently the most common pharmacological treatments for opioid dependence. Interestingly, the
clinical response to these drugs appears to be sex specific. That is, females exhibit superior therapeutic efficacy, defined as extended
periods of abstinence and longer time to relapse, compared with males. However, the underlying metabolic effects of opioid withdrawal
and replacement have not been examined. Therefore, using 18FDG and microPET, we measured differences in regional brain glucose
metabolism in males and females following morphine withdrawal and subsequent methadone or buprenorphine replacement. In both
males and females, spontaneous opioid withdrawal altered glucose metabolism in regions associated with reward and drug dependence.
Specifically, metabolic increases in the thalamus, as well as metabolic decreases in insular cortex and the periaqueductal gray, were noted.
However, compared with males, females exhibited increased metabolism in the preoptic area, primary motor cortex, and the amygdala,
and decreased metabolism in the caudate/putamen and medial geniculate nucleus. Methadone and buprenorphine initially abolished these
changes uniformly, but subsequently produced their own regional metabolic alterations that varied by treatment and sex. Compared with
sex-matched control animals undergoing spontaneous opioid withdrawal, male animals treated with methadone exhibited increased
caudate/putamen metabolism, whereas buprenorphine produced increased ventral striatum and motor cortex metabolism in females, and
increased ventral striatum and somatosensory cortex metabolism in males. Notably, when treatment effects were compared between
sexes, methadone-treated females showed increased cingulate cortex metabolism, whereas buprenorphine-treated females showed
decreased metabolism in cingulate cortex and increased metabolism in the globus pallidus. Perhaps the initial similarities in males and
females underlie early therapeutic efficacy, whereas these posttreatment sex differences contribute to clinical treatment failure more
commonly experienced by the former.
Neuropsychopharmacology (2017) 42, 1841–1849; doi:10.1038/npp.2017.69; published online 3 May 2017
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INTRODUCTION

Opioid abuse is an urgent public healthcare concern. The
2014 National Survey on Drug Use and Health estimated that
4.3 million Americans used prescription pain relievers
nonmedically (Center for Behavioral Health Statistics and
Quality, 2015). In addition, although they constitute only
5.6% of the world’s populations, Americans consume ∼ 80%
of the global opioid supply, 99% of the global hydrocodone
supply, and two-thirds of the world’s illegal drugs
(Manchikanti et al, 2010; NIDA, 1991). The surge in opioid
abuse has been attributed to factors including the social
acceptance of medications, the aggressive culture of

pharmaceutical advertising, and the increasing availability
of prescription analgesics (Chang et al, 2014; Daubresse et al,
2013). Subsequently, concerns have been raised over drug
prescribing patterns (Compton and Volkow, 2006), the social
and economic costs of opioid addiction (Connock et al, 2007;
McCarty et al, 2010; Polsky et al, 2010; Schackman et al,
2012), as well as the safety (Maremmani and Gerra, 2010),
availability (Bonhomme et al, 2012; Nosyk et al, 2013; Novick
et al, 2015) and expansion of current treatment options,
mainly methadone (METH) and buprenorphine (BUP)
replacement (Bonhomme et al, 2012; Kraus et al, 2011;
Wesson and Smith, 2010).
METH is an agonist of μ-opioid receptors. These G-protein-

coupled receptors modulate dopamine, a catecholamine
neurotransmitter that regulates reward-motivated behavior
(Spanagel and Weiss, 1999). METH is a lipid-soluble
compound, and although its analgesic duration of action is
only 4 to 8 h, it has a relatively long half-life of 8 to 59 h and a
high oral bioavailability. This allows for continuous
receptor occupation and effective opioid maintenance
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(Ball and Ross, 1991; Dole, 1989; Eap et al, 2002; Ward et al,
1999). However, METH has been used and sold by opioid-
dependent individuals seeking to subsidize the cost of illicit
drug use (Davis and Johnson, 2008). Therefore, because of its
potential for abuse, it must be administered in a supervised
setting, thus creating logistic and compliance concerns
(Haskew et al, 2008). In addition, METH detoxification can
produce severe withdrawal lasting several days to weeks (Eap
et al, 2002). In current clinical practice it is titrated to a
therapeutic level that prevents withdrawal without requiring
increased dosing. However, effective clinical dosing often
varies substantially (Trafton et al, 2006). Emerging as an
alternative to METH is Suboxone, which is BUP prepared
with naloxone. This formulation enables its use as a
prescription drug in primary care settings. When taken orally,
its partial μ-opioid agonist activity allows for successful opioid
replacement and maintenance. However, if Suboxone tablets
are crushed, dissolved, and injected or insufflated, the
antagonistic effects of naloxone in the preparation causes
immediate opioid withdrawal, thereby limiting recreational
diversion. This formulation has gained popularity in clinical
detoxification settings because of its less intense withdrawal
severity (Ling et al, 1996), but although Suboxone is effective
for treating moderate opioid dependence, high levels of
dependence usually require METH (Johnson et al, 2000).
Although these pharmacotherapies represent first-line

treatments for opioid withdrawal, their efficacies are variable
(Johnson et al, 2000). This is thought to be due in part to

personal motivation and treatment adherence. However,
there is an understudied observation that sex significantly
affects therapeutic response, which is often measured as time
to relapse. A 25-year follow-up of heroin-dependent patients
prescribed METH indicated that surviving women were
significantly more likely than men to have stopped heroin
use (Jimenez-Trevino et al, 2011). Similarly, a 7-year follow-
up study of heroin-dependent patients treated with BUP
showed that, again, women were significantly more likely
than men to have stopped heroin use (Ohlin et al, 2015).
Finally, Sheynin et al (2016) observed that only males
receiving replacement therapy (METH or BUP) demon-
strated abnormal avoidance behavior.
Differences in rates of substance abuse and dependence

have long been reported. Specifically, women are generally
considered more susceptible to drug cravings and relapse
(Fox et al, 2014; Hitschfeld et al, 2015; Kennedy et al, 2013;
Kippin et al, 2005; Robbins et al, 1999; Rubonis et al, 1994).
Men are more likely to abuse illicit drugs, but women are just
as likely to develop drug dependence (Anthony et al, 1994).
Despite these findings, there continues to be a marked
paucity of studies focused on the development of potential
sex-directed pharmacological interventions.
In an effort to better understand these reported

sex-specific differences in treatment efficacy, we imaged
adolescent male and female animals using micro-positron
emission tomography (microPET) in combination with
18F-fluorodeoxyglucose (18FDG) following morphine

Figure 1 Experimental timeline. This flowchart provides a summary of the experimental timeline. From top to bottom, the progression of 18FDG microPET
scans and treatment with morphine, methadone (METH), and buprenorphine (BUP) is delineated by postnatal day (PND). Scan 1 refers to the baseline
(pretreatment) imaging time point. Scan 2 refers to images obtained after spontaneous withdrawal (control), subchronic METH replacement, and subchronic
BUP replacement. Study group drug dosing, treatment duration, and sample size are noted in the figure.
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cessation and subsequent METH or BUP replacement. For
this study, BUP was chosen rather than Suboxone so as to
not potentially confound the metabolic representation of the
primary treatment modality. Adolescent animals were
chosen as this age group is generally associated with incipient
drug use, lifetime developmental consequences of drug
exposure (Vassoler et al, 2014), as well as gestational
complications following opioid abuse (Ross et al, 2015).
Each of these factors may be due, at least in part, to neuronal
pairing, incomplete maturation of frontal cortices, and
elevated levels of brain glucose metabolism, all of which
are hallmarks of the adolescent brain. We postulated that sex
likely influences neural pathways associated with reward and
addiction. Specifically, we hypothesized that male and female
rats would respond uniquely to opioid withdrawal and
replacement as represented by regional changes in brain
glucose metabolism.

MATERIALS AND METHODS

Figure 1 provides a concise summary and timeline of the
methods used in this study, as well as the number of animals
per group. Drug-naive adolescent male and female Sprague-
Dawley rats from Taconic Farms arrived on postnatal day
(PND) 22. Animals were maintained on a 12 h light–dark
cycle and received food and water ad libitum. Before each
scan, animals were fasted for 12 h to ensure blood glucose
stability (Fueger et al, 2006; Wong et al, 2011). Following an
acclimation period (9 days), all animals received baseline
18FDG microPET scans on PND 31 (scan 1). On PND 35,
animals commenced morphine treatment for 5 days at a dose
of 10 mg/kg/day subcutaneously. This dose was selected
based on data indicating that 10 mg/kg was adequate to
achieve conditioned place preference within this time period
(Lu et al, 2005; Raghavendra et al, 2004), and that a single
dose was able to elicit conditioned place avoidance after a
naloxone challenge (Araki et al, 2004). Morphine adminis-
tration at this dose for 5 days also produced analgesic
tolerance (Beaudry et al, 2009), and after only 4 days,
produced withdrawal behaviors including increased defeca-
tion, urination, salivation, jumping, and wet dog shakes
(Pinelli et al, 1997). Finally, this dosing schedule activated
glial cells and enhanced proinflammatory cytokine expres-
sion in the spinal cord that has been implicated in morphine
tolerance and withdrawal-induced hyperalgesia
(Raghavendra et al, 2004).
Following day 5 of morphine treatment and 2 days of

spontaneous withdrawal (PND 40–41), animals were divided
into three treatment groups: (1) saline control, (2) METH, or
(3) BUP. The mean baseline bodyweights for the saline
control, METH, and BUP groups were 107.3, 127.3, and
109.3 g, respectively. Control animals received subcutaneous
volume-matched saline injections and continued on in
spontaneous withdrawal for 5 days (PND 42–46). The
remaining two groups received either METH (1mg/kg/day)
or BUP (0.1 mg/kg/day) subchronically for the same 5 days.
Following day 5 of opioid replacement treatment, and 3 days
of washout (PND 47–49), 18FDG scans (scan 2) were again
obtained (PND 50).
All images were acquired using a Siemens Inveon

microPET. Before scanning, each animal received a single

dose of 18FDG (1.8–2.0 mCi) via an intraperitoneal injection.
The 18FDG doses used are consistent with both intraper-
itoneal and intravenous doses reported previously using both
rats/mice and microPET (Chen et al, 2010; Parthoens et al,
2014; Yang et al, 2014). Perhaps most importantly, however,
18FDG doses were specifically designed to produce count
rates that did not exceed the dead time correction capabilities
of our scanner and images that could be reconstructed using
an iterative method (ie, maximum a posteriori (MAP)).
Relative to body weight, 18FDG is injected at significantly
higher doses in rodents than in humans. These higher doses
are necessary in order to achieve both sufficient counting
statistics and maximal spatial resolution in these physically
smaller rodent brains (Hildebrandt et al, 2008). In addition,
published reports have established that higher doses are
required for equivalent quality in these images. Specifically,
Jagoda et al (2004) determined that roughly the same total
amount of radiopharmaceutical used in humans should be
used in rodents.
After radiotracer injection, animals were returned to their

home cage and left undisturbed for 40 min to ensure
radiotracer uptake. Afterwards, animals were transferred to
a clear acrylic chamber, where isoflurane/oxygen was used to
induce anesthesia. At 5 min after induction, each animal was
transferred to the imaging platform and was secured.
Continuous isoflurane/oxygen at 2–2.5% was administered
via nasal cannula for the entire 10 min static scan. These
imaging protocols have previously been shown to adequately
reflect glucose metabolism in rodents (Marsteller et al, 2006;
Patel et al, 2008; Schiffer et al, 2007).
All microPET images were corrected for attenuation and

reconstructed using a MAP probability estimate with 20
iterations as described previously (Schiffer et al, 2009;
Vo et al, 2014). Raw data files were uploaded into Pixel-
wise Modeling Tool software (PXMOD version 3.3, PMOD
Technologies LLC), and were aligned to a reference template
created using the Paxinos and Watson Sprague-Dawley rat
brain atlas. After being placed in anatomical space, images
were corrected for injected dose to ensure that regional
uptake values would be comparable and were skull-stripped
to eliminate extraneous metabolic activity (Schiffer et al,
2006, 2007). Statistical Parametric Mapping (SPM5, Well-
come Trust Centre for Neuroimaging) was used for
subsequent postprocessing steps including realignment to
an atlas, normalization to a mean template, and smoothing.
Between- and within-group comparisons were carried out
using paired and two-sample T-tests, respectively. Postpro-
cessed images were aligned to the Paxinos and Watson rat
brain atlas (Paxinos et al, 1980) and significant regions were
identified using x, y, and z coordinates. Increases and
decreases in relative brain metabolism were visually repre-
sented using color mapping. Images were overlaid onto an
anatomical cryostat template with metabolic increases set as
hot, and metabolic decreases set as winter in the color
selection options. The color scale used represents all T
distributions achieving statistical significance (Carrion et al,
2009; Nie et al, 2014; Soto-Montenegro et al, 2009). All
corresponding brain areas are significant at a value of
p⩽ 0.001 (corrected) with a cluster-extent threshold of k= 0
voxels. FSL (FMRIB Software Library, Oxford, UK) was used
for extraction of significant brain regions using threshold
values obtained in SPM (Jenkinson et al, 2012).
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RESULTS

Both longitudinal and cross-sectional comparisons within
and between groups, respectively, were used to uncover
metabolic alterations due to treatment and sex (Table 1). In
reality, there are numerous interactions that could be

examined. In this study, however, we chose to target our
analysis to 18FDG microPET scans acquired at baseline and
after treatment. Evaluation at these time points represents an
examination of the effects of subchronic opioid exposure and
replacement and, therefore, may be clinically relevant to the
earliest stages of opioid addiction.

Table 1 Summary of Group Comparisons and Significant Brain Regions

Description Figure 2 Scan pair Brain region Change ML AP DV

(A) Treatment effects

Effect of spontaneous opioid withdrawal A1 Saline scan 1 vs saline scan 2 Angular thalamic nuclei Increase − 1.6 − 6 − 6.6

Dysgranular insular cortex Decrease − 4.2 3.2 − 5.2

Agranular insular cortex Decrease 4 3.2 − 6

Ventrolateral periaqueductal gray Decrease − 0.6 − 8 − 6

Within-group effect of METH replacement A2 METH scan 1 vs METH scan 2 Ventromedial thalamic nuclei Increase 1 − 3.2 − 7.2

Agranular insular cortex Decrease − 3.6 3.4 − 5.8

Within-group effect of BUP replacement A3 BUP. scan 1 vs BUP. scan 2 Ventral posterior thalamic
nucleus

Increase 2.6 − 4.4 − 6.4

Anterior amygdaloid Increase − 3.6 − 1.6 − 6.4

Primary somatosensory cortex Increase − 4.6 − 1.2 − 2.4

Hippocampus (radiatum, CA3) Decrease − 5 − 4.6 − 5.2

Hippocampus (radiatum layer) Decrease 4.8 − 4.8 − 6.4

Reticular thalamic nucleus Decrease 1.8 − 1.4 − 7

Caudomedial entorhinal cortex Decrease − 4.8 7.6 − 7.4

Between-group effect of METH replacement A4 Saline scan 2 vs METH scan 2 Ventral striatum Increase − 2.4 0.8 − 8.2

Hippocampus (CA1/CA2) Increase 4.2 − 4.4 − 7.8

Between-group effect of BUP replacement A5 Saline scan 2 vs BUP scan 2 Ventral striatum Increase − 2.4 1.2 − 8.2

Ventral striatum Increase 1.4 1.6 − 7.8

Between-treatment effect (metabolic
changes in BUP relative to METH)

A6 METH scan 2 vs BUP scan 2 Dorsal raphe nucleus Increase 0 − 8.8 − 7
Medial geniculate nucleus Increase 3 − 5.4 − 6.2

Hippocampus (radiatum layer) Decrease 5 − 4.8 − 7.2

(B) Within-sex treatment effects

Effect of METH replacement on female rats
compared with spontaneous withdrawal

B7 Saline scan 2 female vs METH
scan 2 female

Reticular thalamic nucleus Increase 1.8 − 1.4 − 6.8

Effect of METH replacement on male rats
compared with spontaneous withdrawal

B8 Saline scan 2 males vs METH
scan 2 males

Caudate/putamen Increase 5 − 0.8 − 5.6
Caudate/putamen Increase − 4.6 − 0.8 − 5.6

Caudate/putamen (anterior) Increase 3.8 1.6 − 4.8

Caudate/putamen (anterior) Increase − 3.4 1.8 − 4.4

Effect of BUP replacement in female rats
compared with spontaneous opioid withdrawal

B9 Saline scan 2 females vs BUP
scan 2 females

Primary motor cortices Increase 2.4 0.4 − 1.8
Ventral striatum Increase 0.8 1.8 − 7.6

Effect of BUP replacement in male rats
compared with spontaneous opioid withdrawal

B10 Saline scan 2 males vs BUP
scan 2 males

Ventral striatum Increase 1.8 1.6 − 7.8

Primary somatosensory cortex Increase − 4.6 0.2 − 2.6

Dorsolateral entorhinal cortex Decrease − 5.8 − 8.2 − 7.2

Dorsal entorhinal cortex Decrease − 6.8 − 7.4 − 6.4

(C) Between-sex treatment effects

Effect of female sex on METH replacement C11 METH scan 2 males vs METH
scan 2 females

Cingulate cortex Increase 0.4 − 0.4 − 3.2

Effect of female sex on BUP replacement C12 BUP scan 2 males vs BUP
scan 2 females

Globus pallidus Increase 3.4 − 1.2 − 7.2
Cingulate cortex Decrease − 0.4 − 0.6 − 2.4

This table provides a summary and description of microPET scan group comparisons organized by (A) treatment effects, (B) within-sex treatment effects, and (C)
between-sex treatment effects. METH, BUP, and control (saline) group comparisons are presented. Scan 1 refers to group baseline scans (pretreatment). Scan 2 refers to
the subchronic opioid replacement treatment scans or spontaneous withdrawal scans in the case of saline controls. Brain regions with significant metabolic increases and
decreases in glucose metabolism are listed, as well as corresponding medial–lateral (ML), anterior–posterior (AP), and dorsal–ventral (DV) stereotaxic coordinates. All
reported increases and decreases are significant at a strict p-value threshold of p⩽ 0.001 (corrected) with a cluster-extent threshold of k= 0 voxels. A legend of
corresponding images from Figure 2 is also shown. The metabolic changes reported are relative to the scan order in the scan pair column. For example, in the first row,
saline scan 1 vs saline scan 2, the metabolic changes reported are the results of scan 2, relative to baseline scan 1. The description column is provided to summarize the
interpretation of each scan pair.
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Specific scan comparisons were utilized to assess (A)
treatment effects, (B) within-sex treatment effects, and (C)
between-sex treatment effects. Table 1 summarizes all group
comparisons, lists significant increases and decreases in
regional brain glucose metabolism, and provides a legend
for corresponding microPET images highlighted in Figure 2.
All reported increases and decreases are significant at a strict
p-value threshold of p⩽ 0.001 (corrected) with a cluster-
extent threshold of k= 0 voxels. These constraints were
chosen based on previous recommendations against liberal
primary cluster extent thresholds. By eliminating large
activations in overlapping anatomical areas, these parameters
ensure the statistical validity of the reported regions of
interest (Woo et al, 2014).
Spontaneous opioid withdrawal produced changes in both

cortical and subcortical brain metabolism (Figure 2, A1).
These bilateral changes were noted in the agranular thalamic
nuclei (increase), insular cortex (decrease), and periaqueduc-
tal gray area (decrease). When disaggregated by sex, several
differences were noted. Metabolism in the lateral preoptic
area, primary motor cortex, and medial amygdaloid nucleus
increased in females compared with males, whereas caudate
nucleus, putamen, and medial geniculate nucleus metabolism
decreased (images not shown). Subchronic treatment with
METH or BUP abolished these withdrawal-associated
changes in both sexes. However, both drugs increased ventral
striatum metabolism (Figure 2, A4 and A5), consistent with
their known effects on reward pathways. In addition, METH
produced increased hippocampal metabolism (Figure 2, A4
and A6) and decreased insular cortex metabolism (Figure 2,
A2), changes not seen in animals treated with BUP. METH
and BUP also produced sex-specific changes that varied by
drug. METH increased thalamic metabolism in females
(Figure 2, B7) and caudate/putamen metabolism in males
(Figure 2, B8). BUP increased motor cortex metabolism in
females (Figure 2, B9), but decreased entorhinal cortex
metabolism in males (Figure 2, B10). BUP also led to
activation of the ventral striatum in both females (Figure 2,
B9) and males (Figure 2, B10), compared with control
subjects undergoing spontaneous opioid withdrawal. Finally,
compared with males, females treated with METH expressed
increased cingulate cortex metabolism (Figure 2, C11),
whereas females treated with BUP expressed decreased
cingulate metabolism and a concomitant increase in globus
pallidus metabolism (Figure 2, C12).

DISCUSSION

Opioid withdrawal produced both similar and unique
alterations in regional brain metabolism in male and female
animals. Specifically, similar changes were observed in the
thalamus, insular cortex, and the periaqueductal gray.
However, compared with males, female exhibited increased
metabolism in the preoptic area, primary motor cortex, and
amygdala, but decreased metabolism in the caudate/putamen
and medial geniculate nucleus. Finally, methadone and
buprenorphine abolished these changes, yet each produced
their own regional metabolic alterations that varied by
treatment and sex.
The animal model used in the present study produced

distinct metabolic indicators of opioid withdrawal. Opioid

withdrawal resulted in specific metabolic patterns in brain
regions associated with sensory processing, salience modula-
tion, reward, and memory. These changes are consistent with
earlier reports using electrophysiological and behavioral
techniques. Zhu et al (2016) recently demonstrated that
activity in thalamic projections to the nucleus accumbens
mediates behavioral aversion. Furthermore, using muscimol
and morphine, Silva and Nobre (2014) demonstrated that
GABA and opioid receptors of the periaqueductal gray
impact the expression of unconditioned and conditioned fear
responses in animals experiencing alcohol withdrawal.
Interestingly, although brain lesions to the insula seem to
interrupt addictive behaviors, functional neuroimaging
studies show that addictive behaviors are associated with
reduced insular cortex activity, a disparity that might be
explained by regional heterogeneity (Droutman et al, 2015).
Finally, opioid withdrawal produced increases in thalamic
cyclic AMP, which is thought to play a role in the behavioral
physiology of withdrawal (Sadava and Mack, 1986). Despite
these data, our knowledge of the neural circuitry involved in
opioid withdrawal remains incomplete. However, recent
studies have shown that sex likely influences these pathways,
and may actually affect treatment outcomes (Jimenez-
Trevino et al, 2011; Ohlin et al, 2015).
Although we observed regional metabolic changes across

sex, other alterations were unique to either males or females.
Subchronic treatment with METH or BUP abolished these
effects. It is important to note, however, that these drugs also
produced their own sex-specific changes. Our findings are
supported by previous studies revealing clinical and beha-
vioral sex differences in opioid analgesia in the presence of
pain and addiction (Becker and Hu, 2008; Craft, 2003;
Fillingim and Gear, 2004; Terner et al, 2003). In line with
these data, sex appears to alter the expression of spontaneous
withdrawal, with males experiencing increased severity and
length of withdrawal (Cicero et al, 2002). This might be
explained by differences in receptor density as described by
Vijay et al (2016), who recently reported that in a group of
normal volunteers, males had a greater volume of distribu-
tion of κ-opioid receptors than females. The κ-opioid
receptors in the accumbens shell have been shown to
mediate aversive social motivation (Resendez et al, 2012).
These findings might be related to neuroanatomical sex
differences in the nucleus accumbens core and shell (Forlano
and Woolley, 2010). As both METH and BUP bind to this
receptor subtype, these findings could have clinical implica-
tions regarding the successful treatment of opioid with-
drawal. Together, these data suggest that males and females
respond to opioids differently. Therefore, they should be
studied separately and managed uniquely in an effort to
optimize treatment efficacy. Our data further support this
notion.
Here, we observed that METH and BUP abolished the

regional metabolic changes measured following spontaneous
morphine withdrawal, regardless of sex. Interestingly,
females expressed variable metabolism in the cingulate gyrus
and increased metabolism within the globus pallidus
following treatment. Furthermore, males exposed to BUP
demonstrated decreases in entorhinal cortex metabolism
compared with females. Frenois et al (2005) found that
withdrawal memories drive neuronal activity in commu-
nicating limbic areas with known involvement in aversive
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motivational processes. Decreased μ-opioid neurotransmis-
sion in limbic and paralimbic circuits seems to correlate with
negative affect (Zubieta et al, 2003), an emotional state that
induces hyperalgesia in heroin withdrawal (Carcoba et al,
2011). Our data suggest that females preferentially activate
limbic structures, regardless of drug treatment, compared
with males, who deactivate limbic structures when treated
with BUP. Perhaps the metabolic similarities observed
following spontaneous withdrawal or opioid replacement
produce the initial treatment efficacy experienced by both
sexes, whereas the differences detected underlie the treat-
ment failure more commonly observed in males.
Sanchis-Segura and Becker (2016) recently suggested that

studies should examine both sex differences and sex
similarities, so as to build a more accurate profile of male
and female neurobiology and neurophysiology in drug-
dependent states. In addition, in order to advance our
understanding of drug dependence, studies should adopt a
multidisciplinary approach, one that goes beyond the
explanation of biological responses to opioids. It is important
to not only consider the natural course of addiction between

sexes, but also the comorbid psychiatric and sociocultural
conditions that characterize males and females as well
(Buccelli et al, 2016).
The purpose of this preliminary study was to specifically

observe regional changes in brain glucose metabolism
following opioid withdrawal and replacement. Thus, no
formal assessment of locomotor activity or withdrawal
behavior was assessed. Pairing this imaging strategy with
verified behavioral measures may ultimately be useful in the
development of effective pharmacological interventions. This
experiment exemplifies how small animal imaging in
combination with suitable animal models of opioid depen-
dence and withdrawal may provide an experimental bridge
between preclinical studies and human trials.
MicroPET and other imaging modalities offer insight into

pharmacokinetics, central nervous system penetration, and
dosing that can help accelerate drug development (Pien et al,
2005). The rodent model used in this experiment can be
adapted to the study of other novel treatments for opioid
abuse. These include BUP implants (Ling et al, 2010;
Rosenthal et al, 2013), BUP–gabapentin combination therapy
(Sanders et al, 2013), memantine–naltrexone therapy (Bisaga
et al, 2011, 2014), slow-release morphine treatment
(Jegu et al, 2011), herbal and plant remedies (Gao et al,
2014; Tabatabai et al, 2014), as well as potential immu-
notherapies including conjugate morphine–heroin vaccines
(Li et al, 2011, 2015). Given the abundance of studies on
therapeutic intervention, as well as epidemiologic data
indicating escalating levels of opioid abuse, additional
investigations into existing and novel treatments are
warranted.
Current opioid replacement and maintenance therapies are

initially effective in both sexes. Unfortunately, over time, they
fail more commonly in males. Here, we report that
spontaneous opioid withdrawal produced similar regional
metabolic changes in males and females. METH or BUP
exposure attenuated these changes equally. However, each
drug produced unique sex-specific metabolic changes of its
own. This mutual attenuation may underlie that period of
time when therapeutic efficacy appears similar in both sexes.
Concomitantly, these sex-specific differences may contribute
to the long-term treatment failure often experienced by males.
These studies were conducted in the service of better

understanding the impact of opioid withdrawal and treat-
ment on regional brain glucose metabolism in males
and females. These data suggest that novel sex-directed
pharmacologic strategies may better serve this rapidly
growing patient population. As a result, we may ultimately
enhance the quality of life of those currently suffering from
opioid dependence, while simultaneously protecting indivi-
duals from the potential consequences of its likely
progression.
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