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Transcriptome-based drug discovery has identified new treatments for some complex diseases, but has not been applied to alcohol use
disorder (AUD) or other psychiatric diseases, where there is a critical need for improved pharmacotherapies. High Drinking in the Dark
(HDID-1) mice are a genetic model of AUD risk that have been selectively bred (from the HS/Npt line) to achieve intoxicating blood
alcohol levels (BALs) after binge-like drinking. We compared brain gene expression of HDID-1 and HS/Npt mice, to determine a
molecular signature for genetic risk for high intensity, binge-like drinking. Using multiple computational methods, we queried LINCS-L1000
(Library of Integrated Network-Based Cellular Signatures), a database containing gene expression signatures of thousands of compounds,
to predict candidate drugs with the greatest potential to decrease alcohol consumption. Our analyses predicted novel compounds for
testing, many with anti-inflammatory properties, providing further support for a neuroimmune mechanism of excessive alcohol drinking.
We validated the top 2 candidates in vivo as a proof-of-concept. Terreic acid (a Bruton’s tyrosine kinase inhibitor) and pergolide (a
dopamine and serotonin receptor agonist) robustly reduced alcohol intake and BALs in HDID-1 mice, providing the first evidence for
transcriptome-based drug discovery to target an addiction trait. Effective drug treatments for many psychiatric diseases are lacking, and the
emerging tools and approaches outlined here offer researchers studying complex diseases renewed opportunities to discover new or
repurpose existing compounds and expedite treatment options.
Neuropsychopharmacology (2018) 43, 1257–1266; doi:10.1038/npp.2017.301; published online 14 March 2018
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INTRODUCTION

Brain transcriptome data are becoming more affordable to
generate and more accessible via large public repositories.
The healthcare field stands to benefit tremendously by
harnessing the power of high-throughput omics data (Chen
and Butte, 2016). One approach is to compare the molecular
profiles disrupted by disease states with those altered by
therapeutic compounds to target the disease phenotype
(Lamb et al, 2006; Nakagawa et al, 2016; Wagner et al, 2015).
It is now feasible to integrate the molecular profiles of drugs
and diseases to advance drug discovery and repurposing
due to increased access to transcriptome data from public
repositories and the continued development of databases that
catalog the transcriptional response to different pharmaco-
logical agents in human cell lines, such as the Broad
Institute’s Connectivity Map database (CMap; https://www.
broadinstitute.org/connectivity-map-cmap) and the Library

of Integrated Network-Based Cellular Signatures (LINCS-
L1000; http://www.lincsproject.org/; http://clue.io). This
approach has successfully pointed to novel therapeutics for
several diseases, mostly cancers, as the cancer research field
has devoted considerable effort to using genomic data for
drug discovery, but also for other diseases such as
inflammatory bowel disease and skeletal muscle atrophy
(see Chen and Butte, 2016; Iorio et al, 2013 for review).
There are limited studies applying CMap to neurological
diseases including Huntington’s (Smalley et al, 2016),
Parkinson’s (Gao et al, 2014), and Alzheimer’s (Fowler
et al, 2015). One study used genome-wide association study
data for psychiatric illnesses to query CMap and identified
potential therapeutic compounds, but did not provide any
validation (So et al, 2017). The number of cell lines and
compounds in the CMap database was recently expanded
significantly through LINCS-L1000. This expansion relied on
the development of the L1000 technology, in which the
effects of a drug on expression of ~ 22 000 genes were
inferred from the direct measurement of ~ 1000 ‘landmark’
genes (Subramanian et al, 2017). LINCS-L1000 has been
used for drug discovery, albeit to a much lesser extent than
CMap (Lipponen et al, 2016; Liu et al, 2015; Mirza et al,
2017; Siavelis et al, 2016). One new LINCS-L1000 study
evaluated a modification of the computational approach to
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select and prioritize compounds for breast, colon, and liver
cancer, providing in vivo validation for the top compound
and found a positive correlation between a drug’s negative
connectivity score with their cancer signature and its half-
maximal inhibitory concentration, a measure of in vitro drug
efficacy (Chen et al, 2017). LINCS-L1000 is therefore
emerging as a vital tool for drug discovery and repurposing,
but its predictive power for psychiatric disorders, where
there is a large unmet need for improved pharmacother-
apeutics, has not been evaluated.
Alcohol use disorder (AUD) is a devastating psychiatric

illness with few efficacious therapies (Koob and Mason,
2016). A major risk factor for developing AUD is binge
drinking, a drinking pattern that raises blood alcohol levels
(BALs) to those that significantly impair motor and cognitive
functioning. Binge drinking carries a high cost to society and
the individual in the form of AUD risk, vehicular accidents,
violence, injury, sexual assault, and death (Esser et al, 2014).
Pre-clinical models play a central role in the target

identification and validation process. Here we studied High
Drinking in the Dark (HDID-1) mice, a genetic model of
high intensity, binge-like drinking, as a predictive model for
drug discovery and repurposing (Crabbe et al, 2009). Gene
expression data sets from experimentally naive HDID-1 and
HS/Npt (the genetically diverse, low-drinking line from
which HDID-1 were selectively bred) were used to construct
transcriptional signatures from eight brain regions known to
be important for alcohol drinking (Ozburn et al, 2015). The
HDID-1 signatures, reflecting the molecular state induced by
selection for drinking to intoxicating BALs, were submitted
as a LINCS-L1000 query to predict drugs with the potential
to reduce binge-like drinking in HDID-1 mice. The rationale
for our application of this computational approach is that
genetic selection has altered brain networks and these
alterations are reflected in changes in gene expression. The
basis of this drug selection algorithm is that the drug
signature can be compared with the disease signature to
select compounds that will ‘correct’ the biological functions
of the system. A LINCS-L1000 query is comprised of
three steps: (1) construct the input signature, (2) run the
comparison algorithm, and (3) prioritize the candidate
compounds for in vivo testing. At each step, there are
several user-defined parameters that can greatly affect
the outcome of a query, although these have not been
carefully investigated. We reasoned that a strong candidate
compound should not depend heavily on methodological
choices. Thus, we took a combinatorial approach and ran
several LINCS-L1000 queries with varying parameter set-
tings, finally prioritizing drug candidates that scored highly
across all analyses. We exploited the availability of multiple
gene expression data sets to conduct a meta-analysis, which
helped to mitigate technological and biological biases. Our
proof-of-concept study successfully identified novel com-
pounds and the top 2 candidates tested in vivo significantly
reduced alcohol intake and BALs in HDID-1 mice.

MATERIALS AND METHODS

Animals

Mice were bred and housed in the Veterinary Medical
Unit at the Veterans Affairs Portland Health Care System

(Portland, OR). Generation and selective breeding informa-
tion for these mice were described previously (Crabbe et al,
2014). Briefly, selective breeding began with HS/Npt mice
(an outbred, heterogeneous stock originally constructed by
intercrossing eight inbred mouse strains (Crabbe et al, 2014;
Crabbe et al, 2009). Mice attaining the highest BALs (after
limited access to a 20% ethanol solution during their
circadian dark cycle) were bred together each generation to
increase the population’s BALs. Experimentally naive adult
male HDID-1 mice from selection generation 16 (S16) and
HS/Npt mice from unselected generation 68 (G68) (12 per
genotype) were used for gene expression analysis. Experi-
mentally naive adult male and female HDID-1 mice were
used for in vivo drug testing (from generations S34–S36).
Mice were bred and maintained on a reverse light cycle
(lights off at 0930 h, lights on at 2130 h), with temperature
held near 20 °C. Food (and water, except where noted) were
available ad libitum. Mice were habituated to the behavioral
testing room, individual housing, and new sippers/drinking
tubes 5–7 days before experiment. All procedures were
conducted in accordance with the NIH Guidelines for
the Care and Use of Laboratory Animals and were approved
by the local Institutional Animal Care and Use Committee.

Processing and Analysis of Gene Expression Datasets

We used laser capture microdissection to precisely collect
tissue from the prefrontal cortex (PFC), nucleus accumbens
core (AcbC), nucleus accumbens shell (AcbSh), bed nucleus
of the stria terminalis (BNST), basolateral amygdala (BLA),
central nucleus of the amygdala (CeA), and ventral tegmental
area (VTA) of naive HDID-1 (S16) and HS/Npt lines (G68)
(GEO accession number GSE93311). Iancu et al (2013)
previously dissected the ventral striatum (VS) from naive
HDID-1 (S22) and HS/Npt mice (G72) (48 mice/genotype)
(GEO accession number GSE93515). Methods for the VS
gene expression data set are described in detail elsewhere
(Iancu et al, 2013). For the other seven brain areas, detailed
methods are in Supplementary Materials and Methods.
Briefly, total RNA was extracted, purified, amplified, and
hybridized to Illumina Mouse WG-6 v2.0 Expression
BeadChips (Illumina, Inc., San Diego, CA, USA). The data
were preprocessed using the Bioconductor lumi package in
the R programming environment (Du et al, 2008). Differ-
ential expression analysis was conducted within each brain
region using empirical Bayes moderated t-statistics from the
Bioconductor limma package in R to compare HS/Npt and
HDID-1 mice (Ritchie et al, 2015).

LINCS-L1000 Search

We identified candidate compounds by submitting a LINCS-
L1000 query via C3 (Compute Connectivity on the Cloud), a
command line interface with the LINCS-L1000 database. The
LINCS-L1000 datasets can also be downloaded (GEO
accession numbers GSE70138 and GSE92742). There are
several user-defined parameters that affect the outcome of a
query: the input signature, rowspace, and columnspace
(discussed below). As the settings that produce the most
biologically relevant outputs are not known a priori, we
elected to run 32 LINCS-L1000 queries with different
parameter settings and prioritize drug candidates that scored
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highly across all analyses. A LINCS-L1000 input signature is
comprised an ‘up’ and a ‘down’ list of genes, and the top 100
upregulated genes and the top 100 downregulated genes for
each brain region (HDID-1 vs HS/Npt mice) were used as
the input signature in the current study (Supplementary
Table S1). This represented the top ~ 10% genes differentially
expressed between HDID and HS/Npt mice (po0.05): 624 in
PFC, 1350 in AcbC, 1219 in AcbSh, 1666 in BNST, 1275 in
BLA, 1238 in CeA, 1312 in VTA, and 1430 in VS. In addition,
we generated a second input signature for each of the eight
data sets comprised exclusively of the differentially expressed
‘landmark’ genes (Supplementary Table S1). Landmark genes
are those that are directly measured to generate the L1000
gene expression database. As the L1000 platform is designed
to imitate the Affymetrix HG-133A probe sets, we converted
gene names to the corresponding HG-133A probe set using
the ‘hgu133a.db’ package in R (Carlson, 2016). We ran the
query in two gene rowspaces: the landmark and best inferred
gene (‘bing’) rowspaces. The rowspace is the subset of genes
within the LINCS-L1000 database used in the query to
compute the connectivity scores. The ‘bing’ rowspace
contains genes deemed by the Broad Institute to be the
best inferred from the directly measured landmark genes.
Therefore, we created two input signatures for each of the
eight data sets and ran the query in two gene rowspaces
(2 × 8 × 2= 32 inputs).
The LINCS-L1000 database was then queried with the 32

input signatures, and a connectivity score based on the
Kolmogorov–Smirnov statistic was computed to assess the
overlap of the input signature and more than 3000
compound’s signatures in the LINCS-L1000 database (see
Lamb et al, 2006 for details). A compound’s connectivity
scores range from − 100 to +100, where a negative score
indicates dissimilarity between the HDID vs HS/Npt input
and compound’s signature, and a positive connectivity score
indicates similarity. A connectivity score of 0 is assigned if
there is no clear pattern in gene regulation between the input
query and drug signature. We performed the queries in the
‘touchstone’ columnspace, which contains the most repro-
ducible signatures for well-characterized compounds. We
used the ‘sig_gutc’ tool available on C3 to summarize the
connectivity scores and provide a measure of reliability. Each
compound has been profiled under multiple experimental
conditions (different cell lines, drug doses, and exposure time
points). To attain a compound-level analysis, sig_gutc
reports the maximum quartile connectivity score to sum-
marize the scores across cell line, dose, and time point. The
25th and 75th percentile scores are computed for the
distribution of scores for a compound across all experiments.
The maximum quartile score is either the 25th or 75th
percentile of a given set of connectivity scores, whichever
magnitude is largest. The tool then ranks the connectivity
score between the query signature and the compound
signature, based upon the compound’s pre-computed
distribution of connectivity scores with the other hundreds
of thousands of signatures in the LINCS-L1000 database.
This provides a measure of the likelihood of a connectivity
score for a drug given that drug’s connectivity with the
database as a whole, thus mitigating false positives from
drugs with widespread effects on transcription.

Drugs

Terreic acid (catalog number SML0480, Sigma-Aldrich, St.
Louis, MO, USA) was dissolved in saline and administered
intraperitoneally at doses of 0, 3.75, 5, 7.5, or 15mg/kg. These
doses have been shown to have anti-inflammatory, anti-
microbial, and anti-tumor actions (Han et al, 2010; Kawakami
et al, 1999; Kawakami et al, 2007; Olesen et al, 2014; Yamamoto
et al, 1980). Pergolide mesylate salt (catalog number P8828,
Sigma-Aldrich) was dissolved in saline and administered
intraperitoneally at doses of 0, 1, 2, or 4mg/kg. These doses
have been shown to have anti-inflammatory actions, without
altering locomotor activity or prepulse inhibition of startle in
mice (Bendele et al, 1991; Martin and Bendesky, 1984; Ralph-
Williams et al, 2003). Injection volumes were 10ml/kg. A 20%
ethanol solution (v/v, in tap water) was used for the alcohol
drinking experiments (catalog number 2701, Decon Labs) and
an 8.5mM saccharin solution (in tap water) was used for the
tastant drinking experiments (catalog number 24,431-7, Sigma-
Aldrich). All solutions were prepared fresh daily.

Drinking in the Dark

Drinking in the dark (DID) was performed as described
(Crabbe et al, 2014) with minor modifications. We
performed 3 weeks of serial testing to examine the effects
of candidate drugs on intake of 20% ethanol (week 1), water
(week 2), or 8.5 mM saccharin (week 3). These limited-access
drinking sessions (termed DID sessions) were carried out on
the first 2 days of each week. On the first DID day, 3 h after
lights off, individual water bottles were replaced with a single
graduated tube offering 20% ethanol in tap water (v/v) for
2 h. At the end of the drinking session, the volume was
recorded and water bottles were returned. On the second
DID day, mice received an intraperitoneal injection of
vehicle or drug 30 min before the DID session. For the
second DID session, tube volumes were measured at 2 h (for
terreic acid testing) or at 2 and 4 h (for pergolide testing).
Terreic acid has a short duration of action based on our time
course study (Supplementary Fig 2) and previous reports
(Kawakami et al, 1999; Yamamoto et al, 1980). After the final
volume of ethanol solution was recorded, a peri-orbital sinus
blood sample (20 μl) was collected to measure BALs (Finn
et al, 2007). Mice were left undisturbed for the next 5 days.
The second and third weeks of DID testing were carried out
in the same manner, with the exception that water intake and
then saccharin intake was measured and no blood samples
were collected. An additional point on serial testing in mice
from the terreic acid studies is discussed here. As the lowest
dose of terreic acid tested (3.75 mg/kg) did not reduce
ethanol drinking or BAL in week 1 of testing (Supplementary
Fig 3a,b), we proceeded to test whether 5 mg/kg terreic acid
would reduce ethanol drinking (as compared with vehicle) in
week 2. Thus, the schedule for this subgroup is shifted by one
week (with water intake tested in week 3 and saccharin
intake tested in week 4). Mice in this subgroup were either
tested with vehicle four times or terreic acid four times
before drinking assays. Pharmacological testing was carried
out in two cohorts for each compound, where the number
of mice tested for terreic acid was 23–24 mice/sex in the
0 mg/kg group, 12 mice/sex in the 3.75 and 5mg/kg group,
12 mice/sex in the 7.5 mg/kg group, and 12 mice/sex in the
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15 mg/kg group and the number of mice tested for pergolide
was 23–24 mice/sex in the 0 mg/kg group, 12 mice/sex in the
1 mg/kg group, 12 mice/sex in the 2 mg/kg group, and 12
mice/sex in the 4 mg/kg group.

Locomotor Activity Assay
To ascertain whether reductions in ethanol drinking could be
explained by general sedation (reduced locomotor activity), we
assessed locomotor activity in response to vehicle or drug
(terreic acid or pergolide) by testing a subset of mice from the
serial DID testing for each drug. For terreic acid, mice had
previously been treated with either 0, 3.75, or 5mg/kg prior to
DID (for a total of four previous exposures to either vehicle or
terreic acid). For pergolide, mice had previously been treated
with either 0 or 1mg/kg pergolide before DID (for a total of
three previous exposures to pergolide). Unlike serial testing
before DID for the different fluids, seven to eight mice/sex/dose
were randomized into new treatment groups for activity testing.
At 2.5 h after lights out, mice received an intraperitoneal

injection of vehicle or a dose of a drug. For terreic acid,
mice received 0, 5, or 7.5mg/kg. For pergolide, mice received
0, 1, or 2mg/kg. Three hours after lights out, mice were
placed in activity monitoring chambers for either 2 h (for
terreic acid) or 4 h (for pergolide). Testing was carried out in
automated monitors (Accuscan Instruments, Columbus, Ohio).
Activity boxes were constructed of clear plastic chambers
(40×40×30 cm) and activity was monitored from grids of
8×8 infrared beams affixed 6 cm above the test chamber floor
and 2 cm above the floor. Software recorded beam breaks in
5min epochs, which were summed across time periods of
interest to calculate distance traveled during the assay.

Behavioral Statistics

We performed two-way ANOVAs (sex × dose) on data from
the drinking studies and one-way ANOVAs on data from the
locomotor activity assay using GraphPad Prism 7 and Systat
v. 13. Where we identified a significant main effect of dose
(in the absence of a significant sex × dose interaction), we
followed up with one-way ANOVA and Tukey’s post-hoc
testing (corrected for multiple comparisons) to compare
doses. Means ± SEM are presented in the graphs of the
behavioral data and Po0.05 was considered significant.

RESULTS

Generation of the Input Query Signatures

We performed a meta-analysis to identify differentially
expressed genes that were dysregulated in ethanol-naive,
male HDID-1 mice compared with HS/Npt mice in each
brain region (VS, PFC, AcbC, AcbSh, BNST, BLA, CeA, and
VTA; see Materials and Methods). Genetic selection for
drinking to intoxication was associated with global changes
in gene expression between HDID-1 and HS/Npt mice,
although these effects varied across brain regions. Only six
genes were regulated across all eight brain areas (Pak1, Prcp,
Ciapin1, Mrpl48, Klc1, and Atf4) (Supplementary Table S1).
The finding that the effects of selection were highly brain
region-specific reinforces the importance of submitting
separate queries for each brain region. Two input signatures

per brain region were constructed from the differentially
expressed genes (HDID-1 vs HS/Npt mice) as described in
the Materials and Methods.

Identification and Prioritization of Drug Candidates

We submitted a total of 32 queries to LINCS-L1000: two
input signatures for each of the eight brain areas in two
rowspaces (see Materials and Methods). Thus, each com-
pound had 32 connectivity scores, 1 for each query (see
Supplementary Table S2).
We prioritized compounds with highly negative connectivity

scores across inputs (brain areas) to maximize the likelihood
that the drug would reduce binge drinking. Multiple
approaches were used to identify compounds with consistently
negative connectivity scores (for details, see Materials and
Methods; Figure 1 and Supplementary Figure S1). First, the
resulting 32 scores/compound were summarized using the 75th
percentile score and then ranked from the least to greatest 75th
percentile score (Figures 1a and b). Quantiles provided a more
useful descriptive statistic than averages, because the con-
nectivity scores were not distributed according to any assumed
distribution. For example, the connectivity scores could be
normally distributed for one drug, but have a bimodal
distribution for another drug. Compounds with a highly
skewed distribution of connectivity scores were selected, as this
would indicate highly negative scores for all inputs.
As an alternative approach, we used a threshold of − 90 for

each connectivity score and ranked drugs based on the total
number of scores ⩽− 90 across the 32 queries (Figures 1c
and d). Compounds were ranked according to the number of
queries with connectivity scores ⩽− 90 (Figure 1c).
In addition, to increase the robustness of our approach,

we used a third method based on a modified rank product
score to prioritize compounds (Supplementary Figure S1)
(Breitling et al, 2004; Fortney et al, 2015). For each input
query, we ranked the compounds by connectivity score in
increasing order (ie, rank 1 was assigned to the compound
with the most negative connectivity score and rank 3021 was
assigned to the compound with the most positive score). We
calculated the product of connectivity score ranks for each of
the 32 inputs and then prioritized compounds with the
lowest modified rank product score.
Two compounds were consistently ranked in the top 15

from each of the 3 prioritization methods: terreic acid, a
selective Bruton’s tyrosine kinase (BTK) inhibitor and
pergolide, a dopamine and serotonin receptor agonist used
to treat Parkinson’s disease (Figure 1e). Thus, we selected
these candidates for in vivo testing.

In vivo Testing of Drug Candidates

Terreic acid. Acute administration of terreic acid produced
a robust reduction in 20% ethanol intake (Figure 2a; main
effect of dose F(3,111)= 8.9, Po0.0001). There was no
significant effect of sex (F(1,111)=2.8, P40.09) nor a sex × dose
interaction (F(3, 111)=1.2, P40.29). To compare the effects of
different terreic acid doses on ethanol intake, we followed up
with a one-way ANOVA and Tukey’s post-hoc test and found
that 5, 7.5, and 15mg/kg terreic acid reduced ethanol intake
as compared with 0mg/kg (Po0.01, Po0.01, and Po0.001,
respectively).
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Acute administration of terreic acid resulted in a robust
reduction in BALs achieved after ethanol drinking (Figure 2b;
main effect of dose F(3,111)=7.4, Po0.001). There was no
significant effect of sex (F(1,111)=0.1, P40.74) nor a sex×dose
interaction (F(3, 111)=0.3, P40.82). To compare the effects of
different terreic acid doses on BAL, we followed up with a
one-way ANOVA and Tukey’s post-hoc test and found that 5,
7.5, and 15mg/kg terreic acid reduced BALs as compared with
0mg/kg (Po0.05, Po0.05, and Po0.001, respectively). Terreic
acid reduced BALs below the level associated with binge drinking

and intoxication in humans. Terreic acid also reduced water
intake (Figure 2c; main effect of dose: F(3,111)=9.9, Po0.0001).
We observed a main effect of sex (F4M; F(1,111)=4.5,
Po0.05), but not a sex×dose interaction (F(3,111)=0.7,
P40.56). To compare the effects of different terreic acid doses
on water intake, we followed up with a one-way ANOVA and
Tukey’s post-hoc test and found that 15mg/kg terreic acid
reduced water intake as compared with 0, 5, and 7.5mg/kg
(Po0.0001, Po0.001, and Po0.01, respectively). To determine
whether terreic acid might reduce fluid intake in a nonselective

Figure 1 Prioritization of candidate compounds from the LINCS-L1000 (Library of Integrated Network-Based Cellular Signatures) search results. Using the
constructed input gene expression signatures (see Supplementary Table S1) with various algorithm parameter settings, a total of 32 input queries were
submitted to LINCS using the sig_gutc tool via C3 (Compute Connectivity on the Cloud, see Materials and Methods). Queries represented the top
differentially expressed genes or the differentially expressed landmark genes (those directly measured in the LINCS-L1000 database) between ethanol-naive,
male High Drinking in the Dark (HDID-1), and HS/Npt (the founder population) mice across eight brain areas. The sig_gutc tool reports a summary
connectivity score (aggregating across doses, time points, and cell lines) between the input signature and signatures of more than 3000 chemical compounds in
the LINCS-L1000 touchstone data set (comprised the most reproducible signatures for well-characterized compounds). Each compound had 32 scores (one
for each input query). To identify compounds that consistently had negative scores across brain areas irrespective of the query parameter settings, we rank
ordered compounds according to the 75th percentile score (out of the 32 scores) (a), and the number of significant connectivity scores (ie, ⩽− 90, see text)
(out of the 32 scores) (c). The boxplots summarizing the connectivity scores across the 32 input queries for the top 15 compounds from each prioritization
method are shown in b and d. Pergolide and terreic acid, circled in red in a and c, were the top 2 hits from both selection approaches (e). A full color version
of this figure is available at the Neuropsychopharmacology journal online.
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Figure 2 Effects of the candidate drug, terreic acid, on binge drinking in High Drinking in the Dark (HDID-1) mice. Terreic acid significantly reduced binge-
like ethanol (20%) intake (a) and blood alcohol levels (BALs) (b). NIAAA defines binge drinking as a pattern of drinking that produces BALs of 80 mg%,
designated in b by a dashed line (at y= 80). Although the highest dose of terreic acid tested reduced water intake (c), none of the doses tested significantly
reduced intake of saccharin (8.5 mM) (d). Furthermore, doses of terreic acid that reduced ethanol intake and BAL did not alter locomotor activity (e). Results
of Tukey’s post-hoc analysis are indicated above the SEM bars. In a and b, *Po0.05, **Po0.01, and ***Po0.001 vs the 0-dose groups and in c %= Po0.0001
for 15 vs 0 mg/kg, ^Po0.001 for 15 vs 5 mg/kg, and &Po0.01 for 15 vs 7.5 mg/kg terreic acid. Values represent mean± SEM (Drinking assays: n= 12-24/sex/
dose; data shown are collapsed on sex, thus each bar represents 24–47 mice; Activity assay: n= 7–8/sex/dose).

Figure 3 Effects of the candidate drug, pergolide, on binge drinking in High Drinking in the Dark (HDID-1) mice. Pergolide significantly reduced binge-like
ethanol (20%) intake (a) and blood alcohol levels (BALs) (b). Pergolide also significantly reduced water (c) and 8.5 mM saccharin (d) intake but did not alter
locomotor activity (e). Results of Tukey’s post-hoc analysis are indicated above the SEM bars (*Po0.05, **Po0.01, ***Po0.001, ****Po0.0001vs the 0-dose
groups). Values represent mean ± SEM (Drinking assays: n= 12–24/sex/dose; data shown are collapsed on sex, thus each bar represents 24–47 mice; Activity
assay: n= 7–8/sex/dose).
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manner or produce general malaise, we assayed its effects on
saccharin consumption in HDID-1 mice. Terreic acid did not
alter the intake of 8.5mM saccharin (Figure 2d; F(3,107)=1.7,
P40.16). There was a significant effect of sex (F4M; F
(1,107)=6.9, Po0.01), but no sex×dose interaction (F(3,
107)=0.7, P40.52). Lastly, we assessed the effects of terreic
acid on locomotor activity (at the same time of day that the
drinking studies were carried out). Administration of 5 or
7.5mg/kg terreic acid did not alter locomotor activity (Figure 2e;
F(2,44)=1.6, P40.21). Therefore, reductions in ethanol intake
cannot be explained by terreic acid-induced changes in malaise
or by a general sedative effect of the drug on locomotor activity.

Pergolide. Acute administration of pergolide produced a
robust reduction in 20% ethanol intake (Figure 3a; main
effect of dose F(3,109)= 18.7, Po0.0001). There was a
significant effect of sex (F4M; F(1,109)= 2.8, Po0.09) but
no sex × dose interaction (F(3, 109)= 0.8, P40.47). To
compare the effects of different pergolide doses on ethanol
intake, we followed up with a one-way ANOVA and Tukey’s
post-hoc test and found that 1, 2, and 4mg/kg pergolide
reduced ethanol intake as compared with 0 mg/kg
(Po0.0001, Po0.001, and Po0.0001, respectively). Acute
administration of pergolide resulted in reduced BALs
(Figure 3b; main effect of dose F(3,109)= 3.2, Po0.05).
There was a significant effect of sex (F4M; F(1,109)= 9.9,
Po0.01), but no sex × dose interaction (F(3, 109)= 1.7,
P40.16). To compare the effects of different pergolide doses
on BAL, we followed up with a one-way ANOVA and
Tukey’s post-hoc test and found that 4 mg/kg pergolide
reduced BAL as compared with 0 mg/kg (Po0.05). Pergolide
also reduced water intake (Figure 3c; main effect of dose: F
(3,109)= 8.3, Po0.0001). We did not observe a significant
main effect of sex (F(1,109)= 3.8, P40.05), nor did we
observe a sex x dose interaction (F(3,109)= 1.1, P40.36). To
compare the effects of different pergolide doses on water
intake, we followed up with a one-way ANOVA and Tukey’s
post-hoc test and found that 1, 2, and 4mg/kg pergolide
reduced water intake as compared with vehicle (Po0.01,
Po0.001, and Po0.01, respectively). To determine whether
pergolide might reduce fluid intake in a nonselective manner
or produce general malaise, we assayed its effects on
saccharin consumption in HDID-1 mice. Pergolide also
resulted in reductions in the intake of 8.5 mM saccharin
(Figure 3d; F(3,107)= 3.1, Po0.05). There was a significant
effect of sex (F4M; F(1,107)= 12.8, Po0.001), but no
sex × dose interaction (F(3, 107)= 0.5, P40.69). We did not
identify effects of specific doses on saccharin intake (via one-
way ANOVA and Tukey’s post-hoc tests). Lastly, we assessed
the effects of terreic acid on locomotor activity (at the same
time of day that the drinking studies were carried out).
Administration of 1 or 2 mg/kg terreic acid did not alter
locomotor activity (Figure 3e; F(2,44)= 0.4, P40.66). There-
fore, reductions in fluid intake cannot be explained by
pergolide-induced changes in locomotor activity.

DISCUSSION

Drug Development and Repurposing

The classic pharmacological approach of designing com-
pounds for a single molecular target has largely been

unsuccessful for the treatment of central nervous system
diseases (Hutson et al, 2017). Of the 45 drugs approved by
the FDA in 2015, only 3 were indicated for psychiatric
disorders (Breen et al, 2016). The last (and only the third)
FDA-approved treatment for AUD was acamprosate in 2004.
Clearly, new approaches are required to advance treatment
options for AUD and other psychiatric illnesses, which show
extensive comorbidity (Fein, 2015). Our study highlights the
utility of emerging computational approaches to prioritize
compounds that may target molecular profiles associated
with binge drinking, and potentially ‘drug’ the altered gene
networks. We provide the first evidence that brain gene
expression data can be combined with the LINCS-L1000
database to identify new compounds that reduce drinking in
a genetic animal model of AUD risk.
The cost and time investment for drug discovery roughly

doubles every 9 years (Nosengo, 2016). Therefore, drug
repurposing (adapting the use of existing compounds to
target other symptoms or diseases) is an expedient and cost-
efficient pathway to FDA approval given that the drug profile
data have already been established (eg, pharmacodynamics,
bioavailability, kinetics, interactions, toxicity, and side
effects). The LINCS-L1000 database contains many FDA-
approved drugs, making the approaches outlined here an
excellent pathway for repurposing efforts.
As an initial proof-of-concept, we chose the top 2 ranked

compounds to test in HDID-1 mice, irrespective of their
future potential use in humans. There are additional safety
and efficacy considerations that would need to be evaluated
for terreic acid or pergolide to become repurposed
candidates for AUD treatment in humans. Regardless of
whether terreic acid and/or pergolide are pursued for AUD
treatment, our study highlights the ability of our novel
approach to rapidly identify novel drugs/targets that reduce
alcohol intake and attests to its potential utility to predict
candidates for AUD treatment. Future studies will explore
alternative LINCS-L1000 queries using existing gene expres-
sion data sets from humans and other animal models of
AUD to continue refining our gene network approach and
focus on FDA-approved compounds within LINCS-L1000.

Using Omics Data from Animal Models to Select
Candidate Drugs

In this study, we utilized HDID-1 mice as a genetic model of
high intensity, binge-like drinking, and as a predictive model
for drug discovery. There are numerous advantages of this
model (Barkley-Levenson and Crabbe, 2014). For example,
490% of HDID-1 mice achieve pharmacologically relevant
BALs after binge drinking. They also show behavioral
impairment after binge-like drinking, escalate their intake
in response to the development of dependence (relapse-like
drinking), and exhibit withdrawal after a single binge
session. Importantly, genetic selection has not altered their
preference for other tastants or their ability to metabolize
alcohol (Crabbe et al, 2011). Overall, the value of individual
animal models can be attributed to their construct, face, and
predictive validity. HDID-1 mice have been shown to have
valuable construct and face validity, fulfilling many criteria
proposed for an animal model of excessive alcohol
consumption (reviewed in Barkley-Levenson and Crabbe,
2014). Our study provides evidence that the HDID-1

Targeting binge drinking: a translational approach
LB Ferguson et al

1263

Neuropsychopharmacology



model also offers predictive validity for successful drug
identification.
Genetic selection for drinking to intoxication was asso-

ciated with varying transcriptome changes across different
brain regions. As the brain areas that are most critical for the
specific binge drinking phenotype are not well defined and
because candidate drugs are administered systemically and
can reach many tissues, it may be important to incorporate
data from several brain regions important for addictive
behavior (Koob and Mason, 2016; Ozburn et al, 2015). We
thus included different gene expression datasets that profiled
the transcriptomic state across eight brain regions which
helped to mitigate technological and biological biases
(similar to other approaches (Fortney et al, 2015; Liu et al,
2015)). Instead of collapsing the available gene expression
datasets at the gene level and identifying a single molecular
signature, we ran each data set as a separate LINCS-L1000
query to prioritize drugs with the potential to target the
transcriptome in many brain areas, which has been shown to
produce candidate compounds more reliably (Fortney et al,
2015).

Rigor of Bioinformatics Approach

Successful use of CMap and LINCS-L1000 for drug discovery
and repurposing requires multiple approaches, which may be
different depending on the tissue type, disease, and a host of
other specific factors. However, a systematic evaluation of
the impact of parameter settings had not been tested
previously. Here we used multiple expression data sets,
algorithm parameter settings, and methods for prioritizing
compounds to increase the rigor and robustness of the
results and the ability to identify an effective drug candidate.
Another merit of our approach, and one that was likely
critical to our success, was focusing on top candidates
identified by all approaches across methodological choices.
The LINCS-L1000 reference library represents transcrip-

tional responses to compounds in different human cell types
from different tissue types (including two cell lines derived
from brain). The mouse brain tissue used to generate the
input signatures associated with binge drinking is also
heterogeneous (representing a diversity of brain cell types),
and yet, when tested in vivo, the drug candidates were
effective when delivered systemically (reaching many cell
types). This indicates that the targeted signatures likely affect
widespread biological responses and provides compelling
evidence that the LINCS-L1000 library can be applied to
many different diseases, even when there is not complete
concordance in cell and tissue types. Cross-species and cross-
cell-type generalizability is consistent with other successful
applications of CMap/LINCS-L1000 (Kidd et al, 2016; Liu
et al, 2015).

Candidate Drugs for In Vivo Testing

Low doses of terreic acid and pergolide robustly decreased
alcohol intake in HDID-1 mice and reduced BALs. We note
that low doses of terreic acid appeared to reduce binge-like
ethanol drinking selectively, as we saw decreased water
intake only at the highest dose tested. In addition, we
observed no reduction in saccharin intake or locomotor
activity at any of the doses tested for terreic acid. The

behavioral profile of pergolide appeared to be less selective
for binge-like ethanol drinking, where we observed decreased
water intake for all doses tested, and reduced saccharin
intake. However, since pergolide did not alter locomotor
activity, reductions in fluid intake cannot be explained by
pergolide-induced sedation or malaise. It is well known that
dopamine is essential for normal locomotor, feeding and
drinking behavior (Myers, 1969; Szczypka et al, 1999; Zabik
et al, 1993). Most relevant to the current study, pergolide
(2 mg/kg; ip) increased water intake in rats during single-
bottle, limited access conditions (closely mirroring the
current study) (Zabik et al, 1993). It is possible that the
effects of pergolide in mouse are opposite of those in rat.
However, whether all dopamine agonists increased or
decreased water intake is inconsistent across studies and
seemed to depend on initial dopamine levels, route of
administration, time of day, and species, to name a few
experimental factors. We do not think the reduced water
consumption we report here is an indication that these
compounds cause general malaise. Animals are not physio-
logically challenged by the DID drinking test, which does not
involve general fluid deprivation (Toth and Gardiner, 2000).
All animals appeared normal, and pergolide, which had the
larger effect on water intake of the two compounds, is used
clinically for Parkinson’s in Europe and does not decrease
water consumption or cause malaise in those patients.
Furthermore, short-lasting reductions in water intake are
quite common in pre-clinical testing following intraperito-
neal drug administration.
The LINCS-L1000 input signature is designed to capture

the components of the expression signal that are most
relevant to the disease state, and does not include house-
keeping or other non-disease-related genes. However,
determining which genes is a complex process, representing
a dynamic, evolving area of research. Here we identified the
top differentially expressed known genes and differentially
expressed landmark genes to construct HDID signatures that
reflect the genetic selection for intoxication after binge-like
alcohol drinking (Supplementary Table S1). Future experi-
ments will integrate the transcriptomic signatures of drugs
and diseases at the gene-set level (ie, gene network/modular
level) as an alternative approach that might represent a more
refined input signature to identify compounds with greater
selectivity for ethanol consumption, and has shown some
success in CMap/LINCS-L1000 applications (Chung et al,
2015; Siavelis et al, 2016).
The identification of terreic acid, a BTK inhibitor with

antibiotic, anti-inflammatory, and anti-oxidative activity, is
especially noteworthy since this compound would not have
been predicted based on prior alcohol research. To the best of
our knowledge, BTK has not been implicated in any actions of
alcohol. BTK is expressed in the periphery, as well as in
microglia (Zhang et al, 2014). Pharmacological inhibition of
BTK is known to reduce inflammation and pro-inflammatory
cytokine expression. Specifically, BTK inhibition reduces
immune hypersensitivity responses and arthritis in rodents
(Xu et al, 2012) and suppresses infarct volume growth and
neurological damage in a brain ischemia model in mice (Ito
et al, 2015). Pergolide also has anti-inflammatory actions
(Bendele et al, 1991). Recent work has shown that increasing
levels of pro-inflammatory cytokines increases alcohol drink-
ing and reducing these levels can reduce drinking in C57BL/6
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mice (see Crews et al, 2017 for review). Genipin, the aglycon
of geniposide found in gardenia fruit, and alvespimycin, a
HSP90 inhibitor, were also highly ranked among all three
prioritization methods. Both have been reported to have anti-
inflammatory effects as well (Madrigal-Matute et al, 2010;
Nam et al, 2010). Another top ranking compound identified
in our analysis was BRD-K14355517 (Pubchem cid: 3989078),
a neuropeptide S antagonist. Interestingly, a similar neuro-
peptide S antagonist, NCGC00185684, reduced alcohol
consumption in rats (Thorsell et al, 2013). Neuropeptides
are biochemical mediators in neuroimmune crosstalk and can
counterbalance inflammatory responses (Delgado and Ganea,
2008). Although not initially selected for in vivo testing, these
compounds could also have potential to decrease binge
drinking in HDID-1 mice. Overall, our findings support a
key role for drugs that target inflammatory/immune pathways
as potential therapeutics to reduce alcohol drinking, in
agreement with neuroimmune evidence obtained from
other mouse models of alcohol consumption and human
alcoholics. Focusing repurposing on drugs that target
neuroimmune signaling may be a promising area for AUD
drug discovery.
In summary, our proof-of-concept findings highlight the

power of systems genomics approaches to successfully
predict compounds (and identify relevant gene targets) with
translational potential to reduce drinking. We identified
novel compounds (eg, a BTK inhibitor, HSP90 inhibitor,
neuropeptide S antagonist, and dopamine/serotonin ago-
nist), many with anti-inflammatory properties, providing
further support for a neuroimmune mechanism of excessive
alcohol drinking. We have shown that the HDID mouse
model, together with multiple computational methods, offer
predictive validity for drug discovery or repurposing to
reduce binge-like drinking. These novel approaches are part
of a dynamic, evolving area of research that promises to
uncover and expedite targeted drug treatments for AUD and
other psychiatric diseases.
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