Review

Neuronal Mechanisms for Sleep/Wake Regulation and Modulatory Drive

  • Neuropsychopharmacology volume 43, pages 937952 (2018)
  • doi:10.1038/npp.2017.294
  • Download Citation
Received:
Revised:
Accepted:
Published:

Abstract

Humans have been fascinated by sleep for millennia. After almost a century of scientific interrogation, significant progress has been made in understanding the neuronal regulation and functions of sleep. The application of new methods in neuroscience that enable the analysis of genetically defined neuronal circuits with unprecedented specificity and precision has been paramount in this endeavor. In this review, we first discuss electrophysiological and behavioral features of sleep/wake states and the principal neuronal populations involved in their regulation. Next, we describe the main modulatory drives of sleep and wakefulness, including homeostatic, circadian, and motivational processes. Finally, we describe a revised integrative model for sleep/wake regulation.

  • Subscribe to Neuropsychopharmacology for full access:

    $481

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. , , , , (2007). Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450: 420–424.

  2. , , , , (1992). Multiple neurotransmitters in the tuberomammillary nucleus: comparison of rat, mouse, and guinea pig. J Comp Neurol 323: 103–116.

  3. (2012). Timing to perfection: the biology of central and peripheral circadian clocks. Neuron 74: 246–260.

  4. , (2010). Circadian organization of behavior and physiology in Drosophila. Annu Rev Physiol 72: 605–624.

  5. , , (2017). Molecular mechanisms of sleep homeostasis in flies and mammals. Cold Spring Harbor Perspect Biol 9 pii: a027730; doi: 10.1101/cshperspect.a027730.

  6. , , , (2001). Stopping time: the genetics of fly and mouse circadian clocks. Annu Rev Neurosci 24: 1091–1119.

  7. , (2008). Unearthing the phylogenetic roots of sleep. Curr Biol 18: R670–R679.

  8. , , , , , et al (2014). The GABAergic parafacial zone is a medullary slow wave sleep-promoting center. Nat Neurosci 17: 1217–1224.

  9. , , , , , et al (2009). Orexin/hypocretin and histamine: distinct roles in the control of wakefulness demonstrated using knock-out mouse models. J Neurosci 29: 14423–14438.

  10. , , , , , et al (2015). Basal forebrain control of wakefulness and cortical rhythms. Nat Commun 6: 8744.

  11. , , (2005). Dopaminergic modulation of arousal in Drosophila. Curr Biol 15: 1165–1175.

  12. , , , , , et al (2009). Sleep-wake regulation and hypocretin-melatonin interaction in zebrafish. Proc Natl Acad Sci USA 106: 21942–21947.

  13. , (2015). How sleep and wakefulness influence circadian rhythmicity: effects of insufficient and mistimed sleep on the animal and human transcriptome. J Sleep Res 24: 476–493.

  14. , , (2016). The anatomical, cellular and synaptic basis of motor atonia during rapid eye movement sleep. J Physiol 594: 5391–5414.

  15. , (2017). The Drosophila circuitry of sleep-wake regulation. Curr Opin Neurobiol 44: 243–250.

  16. , (1981a). Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1: 876–886.

  17. , (1981b). Norepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J Neurosci 1: 887–900.

  18. , , , , (2016). Sleep ecophysiology: integrating neuroscience and ecology. Trends Ecol Evol 31: 590–599.

  19. , , (1984). Restoration of circadian behavioural rhythms by gene transfer in Drosophila. Nature 312: 752–754.

  20. , (2017). Zebrafish sleep: from geneZZZ to neuronZZZ. Curr Opin Neurobiol 44: 65–71.

  21. , (1995). Restoration of brain energy metabolism as the function of sleep. Prog Neurobiol 45: 347–360.

  22. , , (1991). Efferent projections from the external parabrachial area to the forebrain: a Phaseolus vulgaris leucoagglutinin study in the rat. Neurosci Lett 122: 257–260.

  23. , (2000). Synergistic sedative effects of noradrenergic alpha(1)- and beta-receptor blockade on forebrain electroencephalographic and behavioral indices. Neuroscience 99: 495–505.

  24. , (1998). What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28: 309–369.

  25. , , (2007). Effects of saporin-induced lesions of three arousal populations on daily levels of sleep and wake. J Neurosci 27: 14041–14048.

  26. , , , (2013). Socially synchronized circadian oscillators. Proc Biol Sci 280: 20130035.

  27. , (2010). Hypocretins in the control of sleep and wakefulness. Curr Neurol Neurosci Rep 10: 174–179.

  28. , , , (2015). Antagonistic interplay between hypocretin and leptin in the lateral hypothalamus regulates stress responses. Nat Commun 6: 6266.

  29. (1977). Sleep in the rat during food deprivation and subsequent restitution of food. Brain Res 124: 457–471.

  30. (1982). A two process model of sleep regulation. Hum Neurobiol 1: 195–204.

  31. , (1999). Sleep homeostasis and models of sleep regulation. J Biol Rhythm 14: 557–568.

  32. , , , (2016). The two-process model of sleep regulation: a reappraisal. J Sleep Res 25: 131–143.

  33. , , , , (2014). Discharge profiles across the sleep-waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J Neurosci 34: 4708–4727.

  34. , (2004). What keeps us awake: the neuropharmacology of stimulants and wakefulness-promoting medications. Sleep 27: 1181–1194.

  35. , , , , , et al (2016). Progressive loss of the orexin neurons reveals dual effects on wakefulness. Sleep 39: 369–377.

  36. , , , (2009). Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proc Natl Acad Sci USA 106: 4894–4899.

  37. , , , , (2012). Control of sleep and wakefulness. Physiol Rev 92: 1087–1187.

  38. , , (2010). Temperature as a universal resetting cue for mammalian circadian oscillators. Science 330: 379–385.

  39. , (2005). Metabolic state signalling through central hypocretin/orexin neurons. J Cell Mol Med 9: 795–803.

  40. , , , , , et al (2006). Tandem-pore K+ channels mediate inhibition of orexin neurons by glucose. Neuron 50: 711–722.

  41. , , , , , (1988). Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J Neurosci 8: 4007–4026.

  42. , (1984). Animal sleep: a review of sleep duration across phylogeny. Neurosci Biobehav Rev 8: 269–300.

  43. , , , , , (2012). Mechanism for Hypocretin-mediated sleep-to-wake transitions. Proc Natl Acad Sci USA 109: E2635–E2644.

  44. , (2011). Optogenetic investigation of neural circuits in vivo. Trends Mol Med 17: 197–206.

  45. , , (2013). Functional wiring of hypocretin and LC-NE neurons: implications for arousal. Front Behav Neurosci 7: 43.

  46. , , , , , et al (2010). Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci 13: 1526–1533.

  47. , , (2017). Unraveling the neurobiology of sleep and sleep disorders using drosophila. Curr Top Dev Biol 121: 253–285.

  48. , , , , , et al (1999). Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98: 437–451.

  49. , , , , , et al (2016a). Basal forebrain cholinergic neurons primarily contribute to inhibition of electroencephalogram delta activity, rather than inducing behavioral wakefulness in mice. Neuropsychopharmacology 41: 2133–2146.

  50. , , , , (2016b). TRP channel mediated neuronal activation and ablation in freely behaving zebrafish. Nat Methods 13: 147–150.

  51. , , , , , et al (2017). Dorsal raphe dopamine neurons modulate arousal and promote wakefulness by salient stimuli. Neuron 94: 1205–1219.e1208.

  52. , , , , (2009). The GABA(A) receptor RDL acts in peptidergic PDF neurons to promote sleep in Drosophila. Curr Biol 19: 386–390.

  53. , (2008). Is sleep essential? PLoS Biol 6: e216.

  54. , , , , (2012). Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 482: 85–88.

  55. , (2011). Effects and mechanisms of wakefulness on local cortical networks. Neuron 69: 1061–1068.

  56. , (2017) Human Circadian Timing System and Sleep-Wake Regulation. In: , , (eds). Principles and Practice of Sleep Medicine. Sixth Edition. Elsevier. Chapter 35, pp 362–376.

  57. , , , , , (2007). Prominent burst firing of dopaminergic neurons in the ventral tegmental area during paradoxical sleep. Neuropsychopharmacology 32: 1232–1241.

  58. , (1979). Dependence of sleep on nutrients' availability. Physiol Behav 22: 735–740.

  59. (2015). Optogenetic control of hypocretin (orexin) neurons and arousal circuits. Curr Top Behav Neurosci 25: 367–378.

  60. , , , , , et al (1998). The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA 95: 322–327.

  61. , (2005). The hypocretins and sleep. FEBS J 272: 5675–5688.

  62. , , , , (1987). Evidence that locus coeruleus is the site where clonidine and drugs acting at alpha 1- and alpha 2-adrenoceptors affect sleep and arousal mechanisms. Br J Pharmacol 90: 675–685.

  63. , (2005). Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: implications for the circadian control of behavioural state. Neuroscience 130: 165–183.

  64. , , (1989). Sleep changes in fasting rats. Physiol Behav 46: 179–184.

  65. , , (2010). The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72: 517–549.

  66. , , (1987). EEG power density during nap sleep: reflection of an hourglass measuring the duration of prior wakefulness. J Biol Rhythm 2: 207–219.

  67. (2003). Sleeping and vigilance in Black-tailed Godwit. J Ethol 21: 57–60.

  68. , (2015). Use of Drosophila in the investigation of sleep disorders. Exp Neurol 274(Pt A): 72–79.

  69. , , (2017). Neuronal substrates of sleep homeostasis; lessons from flies, rats and mice. Curr Opin Neurobiol 44: 228–235.

  70. , , (2014). Neuronal machinery of sleep homeostasis in Drosophila. Neuron 81: 860–872.

  71. , , (2009). Use-dependent plasticity in clock neurons regulates sleep need in Drosophila. Science 324: 105–108.

  72. , , , , (2011). Inducing sleep by remote control facilitates memory consolidation in Drosophila. Science 332: 1571–1576.

  73. , , (2011). Evolutionary convergence on sleep loss in cavefish populations. Curr Biol 21: 671–676.

  74. , , , (2000). EEG correlation of the discharge properties of identified neurons in the basal forebrain. J Neurophysiol 84: 1627–1635.

  75. , (2012). Social influences on circadian rhythms and sleep in insects. Adv Genet 77: 1–32.

  76. , (2015). The colony environment modulates sleep in honey bee workers. J Exp Biol 218(Pt 3): 404–411.

  77. , (2017a). Neuronal substrates for initiation, maintenance, and structural organization of sleep/wake states. F1000Res 6: 212.

  78. , , (2017b). To sleep or not to sleep: neuronal and ecological insights. Curr Opin Neurobiol 44: 132–138.

  79. , , , , (2016). VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors. Nat Neurosci 19: 1356–1366.

  80. , (2008). Differences in the sleep architecture of forager and young honeybees (Apis mellifera. J Exp Biol 211(Pt 15): 2408–2416.

  81. , , (1993). Effect of SCN lesions on sleep in squirrel monkeys: evidence for opponent processes in sleep-wake regulation. J Neurosci 13: 1065–1079.

  82. , , , , , et al (2017). Bmal1 function in skeletal muscle regulates sleep. eLife 6 pii: e26557; doi: 10.7554/eLife.26557.

  83. , , (2017). The hypocretin/orexin neuronal networks in zebrafish. Curr Top Behav Neurosci 33: 75–92.

  84. , , , , (2012). Genetic ablation of hypocretin neurons alters behavioral state transitions in zebrafish. J Neurosci 32: 12961–12972.

  85. , (2011). Sleep neurobiology from a clinical perspective. Sleep 34: 845–858.

  86. , , , , , (2006). Regulation of hypocretin (orexin) expression in embryonic zebrafish. J Biol Chem 281: 29753–29761.

  87. , (1982). The hippocampus as a possible site of action for increased locomotion during intracerebral infusions of norepinephrine. Behav Neural Biol 34: 421–426.

  88. (2013). A role for clock genes in sleep homeostasis. Curr Opin Neurobiol 23: 864–872.

  89. , , , , (2016). Potent social synchronization can override photic entrainment of circadian rhythms. Nat Commun 7: 11662.

  90. , , , , , et al (2017). Hypothalamic tuberomammillary nucleus neurons: electrophysiological diversity and essential role in arousal stability. J Neurosci 37: 9574–9592.

  91. , , , , (2011). Reassessment of the structural basis of the ascending arousal system. J Comp Neurol 519: 933–956.

  92. , (1984). Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res 319: 229–259.

  93. , , , , , et al (2016). Forward-genetics analysis of sleep in randomly mutagenized mice. Nature 539: 378–383.

  94. , , (1998). Sleep-vigilance trade-off in Green-winged Teals (Anas crecca crecca). Can J Zool 76: 2214–2218.

  95. , (2009). Basal forebrain activation enhances cortical coding of natural scenes. Nat Neurosci 12: 1444–1449.

  96. , , , (2003). A broad role for melanopsin in nonvisual photoreception. J Neurosci 23: 7093–7106.

  97. , , , (2001). Sleep and the fruit fly. Trends Neurosci 24: 142–145.

  98. , , , , , et al (2011). Inflammation-induced lethargy is mediated by suppression of orexin neuron activity. J Neurosci 31: 11376–11386.

  99. , (2007). Challenging the omnipotence of the suprachiasmatic timekeeper: are circadian oscillators present throughout the mammalian brain? Eur J Neurosci 25: 3195–3216.

  100. , , , , , et al (2014). Natural neural projection dynamics underlying social behavior. Cell 157: 1535–1551.

  101. , , , , , et al (2016). Circadian neuron feedback controls the Drosophila sleep—activity profile. Nature 536: 292–297.

  102. , , (2008). Histamine in the nervous system. Physiol Rev 88: 1183–1241.

  103. , , , , , et al (2014). Selective activation of cholinergic basal forebrain neurons induces immediate sleep-wake transitions. Curr Biol 24: 693–698.

  104. , , , (2009a). Discharge profiles of identified GABAergic in comparison to cholinergic and putative glutamatergic basal forebrain neurons across the sleep-wake cycle. J Neurosci 29: 11828–11840.

  105. , , (2009b). Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle. Proc Natl Acad Sci USA 106: 2418–2422.

  106. , , , , , et al (2000). Rest in Drosophila is a sleep-like state. Neuron 25: 129–138.

  107. , , , , (2003). Modafinil maintains waking in the fruit fly drosophila melanogaster. Sleep 26: 139–146.

  108. , , , , , (2016). Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness. Nat Neurosci 19: 290–298.

  109. , , (1975). Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 189: 55–58.

  110. , , , (2004). Local sleep and learning. Nature 430: 78–81.

  111. , (2005). Vglut2 afferents to the medial prefrontal and primary somatosensory cortices: a combined retrograde tracing in situ hybridization study [corrected]. J Comp Neurol 483: 351–373.

  112. , , , , , et al (2012). Induction of prolonged, continuous slow-wave sleep by blocking cerebral H(1) histamine receptors in rats. Br J Pharmacol 165: 167–182.

  113. , (2014). Basal forebrain cholinergic modulation of sleep transitions. Sleep 37: 1941–1951.

  114. (1909). True cause of sleep: a hypnogenic substance as evidenced in the brain of sleep-deprived animals. Tokyo Igakkai Zasshi 23: 429–457.

  115. , (1993). 5-HT and motor control: a hypothesis. Trends Neurosci 16: 346–352.

  116. , (1971). Effects of food deprivation on sleep and wakefulness in the rat. Exp Neurol 30: 212–222.

  117. , , , , , (2006). Sleep is increased in mice with obesity induced by high-fat food. Physiol Behav 87: 255–262.

  118. , , , , , et al (2015). Visualizing hypothalamic network dynamics for appetitive and consummatory behaviors. Cell 160: 516–527.

  119. , , (2008). Rapid changes in glutamate levels in the posterior hypothalamus across sleep-wake states in freely behaving rats. Am J Physiol 295: R2041–R2049.

  120. (2016). Unraveling the evolutionary determinants of sleep. Curr Biol 26: R1073–R1087.

  121. (2003). Arousal systems. Front Biosci 8: s438–s451.

  122. (2017). Principal cell types of sleep-wake regulatory circuits. Curr Opin Neurobiol 44: 101–109.

  123. , , , (1973). The effect of lesions of catecholamine-containing neurons upon monoamine content of the brain and EEG and behavioral waking in the cat. Brain Res 58: 157–177.

  124. (1972). The role of monoamines and acetylcholine-containing neurons in the regulation of the sleep-waking cycle. Ergeb Physiol 64: 166–307.

  125. (1988). Busy bees need rest, too. J Comp Physiol A 163: 565–584.

  126. , , , , , et al (2013). Glutamatergic signaling from the parabrachial nucleus plays a critical role in hypercapnic arousal. J Neurosci 33: 7627–7640.

  127. , , (2017). Integration of optogenetics with complementary methodologies in systems neuroscience. Nat Rev Neurosci 18: 222–235.

  128. , , , , , et al (2015). Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations. Proc Natl Acad Sci USA 112: 3535–3540.

  129. , (1971). Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci USA 68: 2112–2116.

  130. , , , , , et al (2017). Cholinergic, glutamatergic, and GABAergic neurons of the pedunculopontine tegmental nucleus have distinct effects on sleep/wake behavior in mice. J Neurosci 37: 1352–1366.

  131. , , (2011). Cytokines in immune function and sleep regulation. Handb Clin Neurol 98: 229–240.

  132. , , , , , (2008). Sleep as a fundamental property of neuronal assemblies. Nat Rev Neurosci 9: 910–919.

  133. , , , , (2005). Dopamine is a regulator of arousal in the fruit fly. J Neurosci 25: 7377–7384.

  134. , , , , , et al (2012). Input-specific control of reward and aversion in the ventral tegmental area. Nature 491: 212–217.

  135. , , , , , et al (2013). Symmetrical serotonin release during asymmetrical slow-wave sleep: implications for the neurochemistry of sleep-waking states. J Neurosci 33: 2555–2561.

  136. , , , , , (2007). Cortical acetylcholine release is lateralized during asymmetrical slow-wave sleep in northern fur seals. J Neurosci 27: 11999–12006.

  137. , , , (2013). Role of the basal ganglia in the control of sleep and wakefulness. Curr Opin Neurobiol 23: 780–785.

  138. , , , (2005a). Cholinergic basal forebrain neurons burst with theta during waking and paradoxical sleep. J Neurosci 25: 4365–4369.

  139. , , (2005b). Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci 25: 6716–6720.

  140. , (1913). Recherches sur le besoin de sommeil consecutif a une veille prolongee. Z Allgem Physiol 14: 235–262.

  141. (1984). Sleeping and vigilance in birds, II. An experimental study of the Barbary dove (Streptopelia risoria. Animal Behaviour 32: 243–248.

  142. , , , , , (2008). Predator-induced plasticity in sleep architecture in wild-caught Norway rats (Rattus norvegicus. Behav Brain Res 189: 298–305.

  143. , , , , , et al (2012). Adaptive sleep loss in polygynous pectoral sandpipers. Science 337: 1654–1658.

  144. , (2017). Modeling sleep and neuropsychiatric disorders in zebrafish. Curr Opin Neurobiol 44: 89–93.

  145. (1974). The effect of lesions of ascending noradrenaline pathways on sleep and waking in the rat. Brain Res 74: 19–40.

  146. , , , (2005). Sleeping under the risk of predation. Anim Behav 70: 723–736.

  147. , , , , , et al (1999). The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98: 365–376.

  148. , (2016). Genetically encoded indicators of neuronal activity. Nat Neurosci 19: 1142–1153.

  149. , , , , , et al (2014). WIDE AWAKE mediates the circadian timing of sleep onset. Neuron 82: 151–166.

  150. , , , (2016). Sleep drive is encoded by neural plastic changes in a dedicated circuit. Cell 165: 1347–1360.

  151. , , , , , (1992). The period gene encodes a predominantly nuclear protein in adult Drosophila. J Neurosci 12: 2735–2744.

  152. , (2017). Monoaminergic control of brain states and sensory processing: existing knowledge and recent insights obtained with optogenetics. Prog Neurobiol 151: 237–253.

  153. , , (2006). Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter. J Neurosci 26: 193–202.

  154. , , (2017). Not a single but multiple populations of GABAergic neurons control sleep. Sleep Med Rev 32: 85–94.

  155. , , , , , et al (2016). Monoamine release during unihemispheric sleep and unihemispheric waking in the fur seal. Sleep 39: 625–636.

  156. , , , , (2008a). Electroencephalogram asymmetry and spectral power during sleep in the northern fur seal. J Sleep Res 17: 154–165.

  157. , , , , (2008b). Cetacean sleep: an unusual form of mammalian sleep. Neurosci Biobehav Rev 32: 1451–1484.

  158. , , (2017). Sleep in the northern fur seal. Curr Opin Neurobiol 44: 144–151.

  159. , , , , , et al (2017). Identification of octopaminergic neurons that modulate sleep suppression by male sex drive. eLife 6 e23130, doi: 10.7554/eLife.23130.

  160. , , , (1996). Volatile anesthetics depress glutamate transmission via presynaptic actions. Anesthesiology 85: 823–834.

  161. , , , , (2014). Motivational activation: a unifying hypothesis of orexin/hypocretin function. Nat Neurosci 17: 1298–1303.

  162. , , (2013). Central control of circadian phase in arousal-promoting neurons. PloS ONE 8: e67173.

  163. , (2015). Genetic dissection of sleep homeostasis. Curr Top Behav Neurosci 25: 25–63.

  164. , , , , , et al (2016). Altered sleep homeostasis in rev-erbalpha knockout mice. Sleep 39: 589–601.

  165. (2007). Circadian genes, rhythms and the biology of mood disorders. Pharmacol Ther 114: 222–232.

  166. , , , , , et al (2015). Waking state: rapid variations modulate neural and behavioral responses. Neuron 87: 1143–1161.

  167. , (1976). Dorsal raphe neurons: depression of firing during sleep in cats. Brain research 101: 569–575.

  168. , (2014). Unraveling the complexities of circadian and sleep interactions with memory formation through invertebrate research. Front Syst Neurosci 8: 133.

  169. , , (2005). Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46: 787–798.

  170. , , , , (1983). Activity of mesencephalic dopamine and non-dopamine neurons across stages of sleep and walking in the rat. Brain Res 273: 133–141.

  171. , , (2012). Central and peripheral circadian clocks in mammals. Annu Rev Neurosci 35: 445–462.

  172. , , , , , et al (2013). A role for cortical nNOS/NK1 neurons in coupling homeostatic sleep drive to EEG slow wave activity. Proc Natl Acad Sci USA 110: 20272–20277.

  173. , (2017). Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat Rev Neurosci 18: 73–85.

  174. , (2006). Neural consequences of sleep disordered breathing: the role of intermittent hypoxia. Adv Exp Med Biol 588: 75–88.

  175. , , , (2016). Circadian misalignment increases cardiovascular disease risk factors in humans. Proc Natl Acad Sci USA 113: E1402–E1411.

  176. , (1949). Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1: 455–473.

  177. , , , , , et al (2016). Postprandial sleep mechanics in Drosophila. eLife 5 e19334; doi: 10.7554/eLife.19334.

  178. , (2014). Monoamines and sleep in Drosophila. Behav Neurosci 128: 264–272.

  179. , , , , , et al (2017). The jellyfish cassiopea exhibits a sleep-like state. Curr Biol 27: e2983.

  180. , , , , , et al (2012). Lactate as a biomarker for sleep. Sleep 35: 1209–1222.

  181. , , , , , et al (2011). Regional slow waves and spindles in human sleep. Neuron 70: 153–169.

  182. , (2017). Attacking sleep from a new angle: contributions from zebrafish. Curr Opin Neurobiol 44: 80–88.

  183. , , , , , et al (2017a). Activation of ventral tegmental area dopamine neurons produces wakefulness through dopamine D2-like receptors in mice. Brain Struct Funct 222: 2907–2915.

  184. , , , , , et al (2017b). Slow-wave sleep is controlled by a subset of nucleus accumbens core neurons in mice. Nat Commun 8: 734.

  185. , , , , , et al (2008). PDF cells are a GABA-responsive wake-promoting component of the Drosophila sleep circuit. Neuron 60: 672–682.

  186. , , , , , (2002). Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep-wake control. J Neurosci 22: 7695–7711.

  187. , , , , , et al (2016). Role of histamine H1-receptor on behavioral states and wake maintenance during deficiency of a brain activating system: a study using a knockout mouse model. Neuropharmacology 106: 20–34.

  188. , , , , , et al (2017). Supramammillary glutamate neurons are a key node of the arousal system. Nat Commun 8: 1405.

  189. , (2017). The biology of REM Sleep. Curr Biol 27: R1237–R1248.

  190. , , , , , et al (2000). A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat medicine 6: 991–997.

  191. , , , , , (2016). Operation of a homeostatic sleep switch. Nature 536: 333–337.

  192. , , , , , et al (2013). Fast modulation of visual perception by basal forebrain cholinergic neurons. Nat Neurosci 16: 1857–1863.

  193. , , , , (2006). Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish. J Neurosci 26: 13400–13410.

  194. , , , (2016a). Stimulation of the pontine parabrachial nucleus promotes wakefulness via extra-thalamic forebrain circuit nodes. Curr Biol 26: 2301–2312.

  195. , , , , , (2012). The role of nucleus accumbens core/shell in sleep-wake regulation and their involvement in modafinil-induced arousal. PloS one 7: e45471.

  196. , , , , (2016b). Nigrostriatal dopamine acting on globus pallidus regulates sleep. Cereb Cortex 26: 1430–1439.

  197. , , , , (2008). Dopaminergic D1 and D2 receptors are essential for the arousal effect of modafinil. J Neurosci 28: 8462–8469.

  198. , , , , , et al (2008). Lethargus is a Caenorhabditis elegans sleep-like state. Nature 451: 569–572.

  199. , , , (2004). Slow wave sleep in crayfish. Proc Natl Acad Sci USA 101: 11857–11861.

  200. (1939). Somnolence caused by hypothalamic lesions in the monkey. Archives of Neurology & Psychiatry 41: 1–23.

  201. , , (2000). Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep. Neurosci Biobehav Rev 24: 817–842.

  202. , , , , , (2017). Sleep research goes wild: new methods and approaches to investigate the ecology, evolution and functions of sleep. Philos Transact R Soc Lond Ser 372 pii: 20160251; doi: 10.1098/rstb.2016.0251.

  203. , , , , , et al (2004). Migratory sleeplessness in the white-crowned sparrow (Zonotrichia leucophrys gambelii). PLoS Biol 2: E212.

  204. , , , , , et al (2016). Evidence that birds sleep in mid-flight. Nat Commun 7: 12468.

  205. , , , , , et al (2010). Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science 327: 348–351.

  206. , , , , , et al (2011). Optogenetic disruption of sleep continuity impairs memory consolidation. Proc Natl Acad Sci USA 108: 13305–13310.

  207. (2016). DREADDs for Neuroscientists. Neuron 89: 683–694.

  208. (2007). The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 8: 171–181.

  209. , , , , , et al (1998). Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92: 573–585.

  210. , , , , , (2016). Mesolimbic dopamine and the regulation of motivated behavior. Curr Top Behav Neurosci 27: 231–257.

  211. (2013). The central circadian timing system. Curr Opin Neurobiol 23: 747–751.

  212. , (2017). Wake-sleep circuitry: an overview. Curr Opin Neurobiol 44: 186–192.

  213. , , , , (2010). Sleep state switching. Neuron 68: 1023–1042.

  214. , (1980). Efferent connections of the parabrachial nucleus in the rat. Brain research 197: 291–317.

  215. , , (2017). Neural circuitry of wakefulness and sleep. Neuron 93: 747–765.

  216. , , , (2009). Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci USA 106: 4453–4458.

  217. (2007). Multiple dopamine functions at different time courses. Annu Rev Neurosci 30: 259–288.

  218. , (1981). Barbiturate enhancement of GABA-mediated inhibition and activation of chloride ion conductance: correlation with anticonvulsant and anesthetic actions. Brain research 209: 177–188.

  219. , (1970). Behavioral activation of rats during intraventricular infusion of norepinephrine. Proc Natl Acad Sci USA 66: 289–293.

  220. , , , , , et al (2015). Identification of neurons with a privileged role in sleep homeostasis in Drosophila melanogaster. Curr Biol 25: 2928–2938.

  221. , , (2008). Light-arousal and circadian photoreception circuits intersect at the large PDF cells of the Drosophila brain. Proc Natl Acad Sci USA 105: 19587–19594.

  222. , , , , , et al (2011). Imaging analysis of clock neurons reveals light buffers the wake-promoting effect of dopamine. Nat Neurosci 14: 889–895.

  223. (2003). Adaptive significance of circadian clocks. Chronobiol Int 20: 901–919.

  224. , , , (2000). Correlates of sleep and waking in Drosophila melanogaster. Science 287: 1834–1837.

  225. , , , , , et al (2008). Large ventral lateral neurons modulate arousal and sleep in Drosophila. Curr Biol 18: 1537–1545.

  226. , , , , (2016). Slow waves, sharp waves, ripples, and REM in sleeping dragons. Science (New York, NY) 352: 590–595.

  227. , , , (1996). Activation of ventrolateral preoptic neurons during sleep. Science 271: 216–219.

  228. , , (2015). Norepinephrine is required to promote wakefulness and for hypocretin-induced arousal in zebrafish. eLife 4: e07000.

  229. , , (2015). A framework for quantitative modeling of neural circuits involved in sleep-to-wake transition. Front Neurol 6: 32.

  230. , , , (1983). Behavioral correlates of dopaminergic unit activity in freely moving cats. Brain Res 258: 217–228.

  231. , , , , (1999). Sleep-waking discharge of neurons in the posterior lateral hypothalamus of the albino rat. Brain Res 840: 138–147.

  232. (2002). The "other" circadian system: food as a Zeitgeber. J Biol Rhythms 17: 284–292.

  233. , , , , , (2011). The histaminergic system regulates wakefulness and orexin/hypocretin neuron development via histamine receptor H1 in zebrafish. Faseb j 25: 4338–4347.

  234. , (2015). Interactions of the orexin/hypocretin neurones and the histaminergic system. Acta Physiol 213: 321–333.

  235. , , (2017). Next-generation mammalian genetics toward organism-level systems biology. NPJ Syst Biol Appl 3: 15.

  236. , , (2017). The mammalian circadian clock and its entrainment by stress and exercise. J Physiolog Sci 67: 1–10.

  237. (2017). Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 18: 164–179.

  238. , , (2006). Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse. J Neurosci 26: 10292–10298.

  239. , , (2008). Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse. Neuroscience 153: 860–870.

  240. , , , , , et al (1984). Immunohistochemical evidence for the coexistence of histidine decarboxylase-like and glutamate decarboxylase-like immunoreactivities in nerve cells of the magnocellular nucleus of the posterior hypothalamus of rats. Proc Natl Acad Sci USA 81: 7647–7650.

  241. , , , , , et al (2016). Optogenetic activation of dopamine neurons in the ventral tegmental area induces reanimation from general anesthesia. Proc Natl Acad Sci USA 113: 12826–12831.

  242. , , , , , et al (2000). Reduced number of hypocretin neurons in human narcolepsy. Neuron 27: 469–474.

  243. , (1986). Sleep EEG in the rat as a function of prior waking. Electroencephalogr Clin Neurophysiol. 64: 74–76.

  244. , , (1991). Effects of local pontine injection of noradrenergic agents on desynchronized sleep of the cat. Prog Brain Res 88: 545–553.

  245. , (2016). Call it worm sleep. Trends Neurosci 39: 54–62.

  246. , (1979). Raphe unit activity in freely moving cats: correlation with level of behavioral arousal. Brain Res 163: 135–150.

  247. , (1984). Dopamine-containing ventral tegmental area neurons in freely moving cats: activity during the sleep-waking cycle and effects of stress. Exp Neurol 83: 367–377.

  248. , , (1981). Activity of substantia nigra units across the sleep-waking cycle in freely moving cats. Neurosci Lett 26: 183–188.

  249. , , , , , (2015). Glucose induces slow-wave sleep by exciting the sleep-promoting neurons in the ventrolateral preoptic nucleus: a new link between sleep and metabolism. J Neurosci 35: 9900–9911.

  250. , (2017). Hypocretin (orexin) is critical in sustaining theta/gamma-rich waking behaviors that drive sleep need. Proc Natl Acad Sci USA 114: E5464–E5473.

  251. , , , , (2016). A novel population of wake-promoting GABAergic neurons in the ventral lateral hypothalamus. Curr Biol 26: 2137–2143.

  252. , , , , , et al (1994). Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264: 719–725.

  253. (1930). Sleep as a problem of localization. J Nerv Mental Dis 71: 249–259.

  254. , , , (2014). Characterization of sleep in Aplysia californica. Sleep 37: 1453–1463.

  255. , , (2011a). Electrophysiological correlates of sleep homeostasis in freely behaving rats. Prog Brain Res 193: 17–38.

  256. , , , , , (2014). The dynamics of cortical neuronal activity in the first minutes after spontaneous awakening in rats and mice. Sleep 37: 1337–1347.

  257. , , , , , (2011b). Local sleep in awake rats. Nature 472: 443–447.

  258. , (2016). Circuit-based interrogation of sleep control. Nature 538: 51–59.

  259. , , , , , et al (2000). A clockwork organ. Biol Chem 381: 793–800.

  260. , , , , (2008). Adaptive sugar sensors in hypothalamic feeding circuits. Proc Natl Acad Sci USA 105: 11975–11980.

  261. , , , , (2007). Control of hypothalamic orexin neurons by acid and CO2. Proc Natl Acad Sci USA 104: 10685–10690.

  262. , , (2005). Stress and arousal: the corticotrophin-releasing factor/hypocretin circuitry. Mol Neurobiol 32: 285–294.

  263. (2004). Dopamine, learning and motivation. Nat Rev Neurosci 5: 483–494.

  264. , , , , , (2001). Dopaminergic role in stimulant-induced wakefulness. J Neurosci 21: 1787–1794.

  265. , , , , (2008). A genetic screen for sleep and circadian mutants reveals mechanisms underlying regulation of sleep in Drosophila. Sleep 31: 465–472.

  266. , , , (2010). Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat Rev Neurosci 11: 589–599.

  267. , , , , , et al (2015). Basal forebrain circuit for sleep-wake control. Nat Neurosci 18: 1641–1647.

  268. , , , , , et al (2017). Breathing control center neurons that promote arousal in mice. Science 355: 1411–1415.

  269. , , , (1990). Is the site of action of ketamine anesthesia the N-methyl-D-aspartate receptor? Anesthesiology 72: 704–710.

  270. , , , , , et al (2003). Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron 38: 701–713.

  271. , , , , , et al (2015). Hypocretin neuron-specific transcriptome profiling identifies the sleep modulator Kcnh4a. eLife 4: e08638.

  272. , , , , , et al (2007). Characterization of sleep in zebrafish and insomnia in hypocretin receptor mutants. PLoS Biol 5: e277.

  273. , , , , , et al (2015). Wakefulness is governed by GABA and histamine cotransmission. Neuron 87: 164–178.

  274. , , , , , et al (2014). Circadian factor BMAL1 in histaminergic neurons regulates sleep architecture. Curr Biol 24: 2838–2844.

  275. , , , , , et al (2012). GABAergic inhibition of histaminergic neurons regulates active waking but not the sleep-wake switch or propofol-induced loss of consciousness. J Neurosci 32: 13062–13075.

  276. , , , , (2014). A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci USA 111: 16219–16224.

  277. , , , (2008). Conservation of sleep: insights from non-mammalian model systems. Trends Neurosci 31: 371–376.

Download references

Acknowledgements

We thank Jeremy C. Borniger, Suszie Tyree, and the referees for helpful comments on this manuscript.

Author information

Affiliations

  1. Department of Psychology, University of Michigan, Ann Arbor, MI, USA

    • Ada Eban-Rothschild
  2. The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel

    • Lior Appelbaum
  3. Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA

    • Luis de Lecea

Authors

  1. Search for Ada Eban-Rothschild in:

  2. Search for Lior Appelbaum in:

  3. Search for Luis de Lecea in:

Corresponding authors

Correspondence to Ada Eban-Rothschild or Luis de Lecea.