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Recent evidence suggests that anterior cingulate cortex (ACC) maturation during adolescence contributes to or underlies the
development of major depressive disorder (MDD) during this sensitive period. The ACC is a structure that sits at the intersection of
several task-positive networks (eg, central executive network, CEN), which are still developing during adolescence. While recent work
using seed-based approaches indicate that depressed adolescents show limited task-evoked vs resting-state connectivity (termed
‘inflexibility’) between the ACC and task-negative networks, no study has used network-based approaches to investigate inflexibility of the
ACC in task-positive networks to understand adolescent MDD. Here, we used graph theory to compare flexibility of network-level
topology in eight subregions of the ACC (spanning three task-positive networks) in 42 unmedicated adolescents with MDD and 53
well-matched healthy controls. All participants underwent fMRI scanning during resting state and a response inhibition task that robustly
engages task-positive networks. Relative to controls, depressed adolescents were characterized by inflexibility in local efficiency of a key
ACC node in the CEN: right dorsal anterior cingulate cortex/medial frontal gyrus (R dACC/MFG). Furthermore, individual differences in
flexibility of local efficiency of R dACC/MFG significantly predicted inhibition performance, consistent with current literature demonstrating
that flexible network organization affords successful cognitive control. Finally, reduced local efficiency of dACC/MFG during the task was
significantly associated with an earlier age of depression onset, consistent with prior work suggesting that MDD may alter functional
network development. Our results support a neurodevelopmental hypothesis of MDD wherein dysfunctional self-regulation is potentially
reflected by altered ACC maturation.
Neuropsychopharmacology (2017) 42, 2434–2445; doi:10.1038/npp.2017.103; published online 19 July 2017
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INTRODUCTION

Major depressive disorder (MDD) is a highly debilitating
disorder with enormous personal costs and societal burden.
MDD often first emerges during adolescence (Kessler et al,
2005), a sensitive period of brain development coinciding
with significant changes in physical and social development
(Blakemore and Choudhury, 2006). Brain maturation during
adolescence includes not only structural changes such as
increased myelination and changes in gray matter density,
but also functional changes that occur at the level of network
connectivity and organization (Fair et al, 2007a, 2009; Power

et al, 2010). Therefore, examining the functional networks
associated with MDD early in the course of the disorder,
during this sensitive period of development, is important for
determining how the developmental organization of
functional brain networks is affected by the onset of
depression.
The human brain is intrinsically organized into functional

networks (Fox et al, 2005; Yeo et al, 2011), several of which
have been investigated in the context of MDD (Kaiser et al,
2015a). These intrinsic functional networks (IFNs) include
task-negative networks, such as the default mode network
(DMN), and task-positive networks, such as the central
executive network (CEN) and salience network (SN) (Menon,
2011). Studies on depression have increasingly focused on
IFNs centered on the anterior cingulate cortex (ACC), a
structure situated medially in the cerebral cortex and superior
to the corpus callosum. The ACC exhibits diverse functioning
—including conflict error monitoring, attentional orienting,
affective processing, and behavioral selection (Bush et al,
2000)—and has been implicated in many psychopathologies
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(Menon, 2011). Importantly, the ACC can be subdivided into
several regions, with distinct portions being connected to
distinct IFNs (Margulies et al, 2007). The subgenual ACC
(sgACC), for instance, has typically been reported to be
connected with cortical limbic structures and the DMN, and is
implicated in affective and self-referential processing
(Hamilton et al, 2015). In contrast, the dorsal ACC (dACC)
is connected with regions in the CEN and SN that are
implicated in goal maintenance and the integration of sensory
and visuomotor input to guide behavior (Seeley et al, 2007;
Uddin, 2014). In the context of understanding adolescent
development and vulnerability to MDD, compelling evidence
indicates that ACC connectivity undergoes tremendous
reorganization during adolescence (Fair et al, 2007a; Kelly
et al, 2009; Power et al, 2010). Specifically, the sgACC
becomes more strongly connected with the DMN over
adolescent development, whereas the dACC is more tightly
connected with the CEN during childhood but is then more
strongly connected with the SN by adulthood (Fair et al, 2009;
Power et al, 2010; Sole-Padulles et al, 2016; Uddin et al, 2011).
Given the role of the ACC in integrating multimodal

inputs and orchestrating complex behavioral outputs and the
maturational changes that occur during adolescence,
researchers suggest that altered developmental changes in
IFNs that stem from the ACC impact self-regulation
processes, which then confer heightened risk of adolescent
MDD (Lichenstein et al, 2016). Indeed, studies of resting-
state functional connectivity in adolescent MDD have found
that depression is associated with altered connectivity among
ACC regions and the CEN, SN, and DMN (Connolly et al,
2013; Davey et al, 2012; Jacobs et al, 2014; Sacchet et al,
2016). Longitudinal changes in resting-state functional
connectivity of the ACC have also been shown to predict
the development of depressive symptoms during adolescence
(Davey et al, 2014; Strikwerda-Brown et al, 2015), which
suggests that altered developmental trajectories of IFNs
anchored by the ACC may contribute to the development of
MDD. Complementing these findings are task-based fMRI
studies showing that hyperconnectivity of the DMN with
ACC regions in the CEN and SN during active task
processing is associated with an earlier age of depression
onset (Ho et al, 2015). Furthermore, unlike their healthy
peers, depressed adolescents fail to exhibit state-dependent
changes (ie, between active task processing and resting state)
in DMN-based connectivity with ACC regions in task-
positive IFNs. This absence of connectivity change as a
function of brain state, herein termed ‘inflexibility,’ may be a
neurodevelopmentally sensitive marker of MDD (Ho et al,
2015). Interpreted in light of recent work demonstrating that
flexible configuration of task-positive IFNs subserves adap-
tive cognitive control (Cole et al, 2013, 2014a; Dwyer et al,
2014; Shine et al, 2016) and reflects developmental processes
during adolescence (Hutchison and Morton, 2016), these
findings support current theoretical models of ACC-based
connectivity in the development of self-regulatory processes
during adolescence (Lichenstein et al, 2016). Under this
model, adolescent MDD is characterized by maladaptive or
developmentally atypical inflexibility of ACC-based connec-
tivity. However, previous studies have been limited in their
examinations of state-dependent ACC-based functional
connectivity of adolescents with MDD by assessing only
connectivity during resting state, as well as relying on seed-

based analyses rather than network-based approaches, which
provide more comprehensive assessments of the topology
and organization of IFNs (although see Sacchet et al, 2016).
To address this limitation, we used graph theory, a

mathematical approach from network science that provides
summary measures of network-level properties, to investi-
gate ACC connectivity in unmedicated adolescents with
MDD and well-matched healthy controls. The benefit of
network-based approaches is that we gain an understanding
of the topology of network organization and the importance
of specific regions in the context of the entire brain as a
network (Rubinov and Sporns, 2010). For example, with
graph theory, we can quantify the degree of a region, which
reflects the region’s total number of connections, or its
clustering coefficient, which quantifies local connectivity, or
how tightly a region is connected with its neighbors.
Similarly, local efficiency, which is the inverse distance
connecting a region with its neighbors, is thought to provide
insight into a region’s involvement in information transfer.
Indeed, such graph metrics have commonly been examined
to understand the topology of resting-state networks in
adults and adolescents with depression (Jin et al, 2011;
Sacchet et al, 2016; Zhang et al, 2011, 2015). However, no
studies to date have directly examined flexibility, or state-
dependent changes in connectivity, in the ACC to elucidate
the neuropathophysiology of adolescent MDD.
Thus, in the present study, we computed local graph

metrics (ie, degree, clustering coefficient, local efficiency)
from eight subregions of the ACC that span major task-
positive IFNs. Specifically, we computed these graph metrics
during resting state and during a response inhibition task
that robustly engages the CEN and other task-positive IFNs.
We identified which ACC regions exhibited topological
properties that differed between groups as a function of
change in brain state (rest vs task). We hypothesized that,
compared to healthy controls, depressed adolescents would
show neural inflexibility of the ACC, operationalized by
limited state-dependent changes in graph metrics of the
ACC. Guided by previous literature demonstrating that state-
dependent changes in the topology of task-positive IFNs
(specifically, CEN) relate to performance on demanding
cognitive tasks in adolescents (Dwyer et al, 2014) and current
theoretical models positing that adolescent MDD reflects
altered neurodevelopmental trajectories of ACC connectivity
underlying self-regulation (Lichenstein et al, 2016), we
hypothesized that state-dependent changes (ie, flexibility)
in ACC connectivity as measured by local graph metrics
would be associated with successful task performance.
Finally, based on prior work demonstrating that depressed
adolescents with greater inflexibly elevated ACC connectivity
with the DMN during active affective challenge endorsed
greater severity of depressive symptoms and had an earlier
age of depression onset (Ho et al, 2015), we hypothesized
that network-level organization of task-evoked ACC con-
nectivity would be associated with greater depressive severity
and an earlier age of depression onset among the
MDD group.
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MATERIALS AND METHODS

Participants and Clinical Information

Sixty-three MDD and 70 healthy control (CTL) adolescents
participated in this study. Eighteen MDD and 17 CTL
participants were excluded for excessive motion during
either the task or resting-state scans (see ‘MRI Data
Preprocessing’ below and the Supplementary Information
for more details). Three MDD participants were excluded for
active antidepressant usage, given evidence that antidepres-
sants can significantly alter functional connectivity patterns
(Ho et al, 2015). Thus, we report results from 42
unmedicated adolescents with MDD and 53 CTL partici-
pants. Study protocol, recruitment procedures, clinical and
diagnostic assessments, and inclusion/exclusion criteria have
been previously described (Connolly et al, 2013; Ho et al,
2015; Sacchet et al, 2016) and are included in the
‘Participants and Clinical Information’ section of the
Supplementary Information. Resting-state data from all
participants in this report have been previously reported
(Sacchet et al, 2016); we report fewer participants in the
present study as our analyses necessitated that participants
have both usable resting-state and task-based fMRI data.

Notably, in our prior investigation we used a different
parcellation scheme with only 17 whole IFNs as nodes. In the
present study, we used 51 spatially isolated regions compris-
ing 7 IFNs as nodes and focused our examination of local
graph metrics to regions of the ACC that span task-positive
IFNs. Finally, we wish to note two previous seed-based
connectivity studies wherein resting-state data from 18 MDD
and 31 CTL were previously reported (Connolly et al, 2013;
Ho et al, 2015). Those studies focused only on connectivity
patterns of regions based in the DMN and did not leverage
network-based approaches. Critically, in the present study,
we report novel fMRI and behavioral data from the response
inhibition task and utilize graph theory to examine ACC-
based topology as a function of brain state (ie, neural
flexibility).
Participants were 13–18 years of age, right-handed, and

neurologically and physically healthy. All participants and
their parent(s) and/or legal guardian(s) provided written
informed assent and consent, respectively, in accordance
with the Declaration of Helsinki. The Institutional Review
Boards at the University of California San Diego, Rady
Children’s Hospital in San Diego, the County of San Diego,
and the University of California San Francisco approved

Table 1 Demographic and Clinical Information

MDD CTL Statistic

Final n 42 53

Gender (M/F) 17/25 21/32 χ1= 0.05; p= 0.82

Age (years) 16.0± 1.3 16.1± 1.3 t93=− 0.05; p= 0.96

Hollingshead 40± 38 (11–73)* 29± 35.5 (0–77) [1]* W= 1241; p= 0.36

Tanner Score 4± 0.5 (3–5)* 4± 1 (3–5)* W= 1290; p= 0.25

WASI 100.8± 12 (77–129) 113.6± 25.8 (84–137) t93=− 0.41, p= 0.69

CGAS 64± 12 (41–90) 90.7± 6 (75–100) t58.86=− 13.32, po0.001

CDRS-R 70.2± 9.5 (44–85) 33.6± 6.1 (30–61) t68.71= 21.82, po0.001

MASC 58.9± 9.4 (34–83) 42± 8.5 (25–61) [1] t85.58= 9.11, po0.001

RADS-2 65.5± 8.7 (41–87) 41± 7.3 (30–56) [1] t82.1= 14.66, po0.001

Response time on non-missed GO trials 777.78± 20.04 [5] 769.52± 21.33 [8] F1,80= 0.08; p= 0.78

Percentage of successful STOP trials 71.66± 3.67 [5] 70.41± 3.55 [8] F1,80= 0.06; p= 0.81

Percentage of successful HARD trials 56.50± 4.40 [5] 54.65± 4.30 [8] t80= 0.30; p= 0.77

Percentage of successful EASY trials 86.82± 3.74 [5] 86.18± 3.57 [8] t80= 0.12; p= 0.90

Comorbidities n (%)

No comorbidities 18 (42.86%)

GAD 15 (35.71%)

PTSD 2 (4.76%)

ADHD 2 (4.76%)

Conduct disorder 1 (2.38%)

Anxiety disorder not otherwise specified 1 (2.38%)

PTSD+ADHD 2 (4.76%)

GAD+ADHD+social phobia 1 (2.38%)

Abbreviations: χ2, χ2 test for equality of proportions; ADHD, attention deficit hyperactivity disorder; CDRS-R, Children’s Depression Rating Scale-Revised; CGAS,
Children’s Global Assessment Scale; GAD, generalized anxiety disorder; IQR, interquartile range; MASC, Multidimensional Anxiety Scale for Children; PTSD, post
traumatic stress disorder; RADS-2, Reynolds Adolescent Depression Scale 2nd edition; t, Student’s t-test; W, Wilcoxon rank-sum test; WASI, Wechsler Abbreviated
Scale of Intelligence.
Values are presented as mean± SEM (min–max) or median± IQR (min–max) if indicated by *. The optional number in brackets indicates the number of missing
participants. Statistic: W, χ2, t (when conditions of homogeneity of variance are met), or Welch’s t-test (when conditions of homogeneity of variance are not met).
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this study. All potential MDD participants were administered
the Schedule for Affective Disorders and Schizophrenia for
School-Age Children-Present and Lifetime Version (KSADS-
PL) to establish a DSM-IV diagnosis. All potential CTL
participants were administered the Diagnostic Interview
Schedule for Children (Shaffer et al, 2000) Diagnostic
Predictive Scale (Lucas et al, 2001) to screen for the presence
of any Axis I disorders. All participants completed several
self-report and clinical assessments, including the self-report
Reynolds Adolescent Depression Scale (RADS-2; Reynolds,
2002). See ‘Participants and Clinical Information’ in the
Supplementary Information for details and Table 1 for more
details.

Task and Behavioral Data

Participants performed a modified response inhibition task
that has been shown to robustly activate regions in
task-positive IFNs (Dodds et al, 2011) (see also ‘Task Effects
in Task-Positive Networks’ in Supplementary Information).
During the task, participants were instructed to make binary
gender discriminations of faces using a two-finger button box
but to withhold a response when presented with a stop tone
delivered through their headphones. Participants were en-
couraged to respond as accurately and as quickly as possible.
The task consisted of 292 trials (228 GO, 64 STOP); on half of
the STOP trials, the stop tone occurred 150ms after stimulus
onset (EASY) and on the other half, 450ms after stimulus
onset (HARD). See ‘Response Inhibition Task’ in the
Supplementary Information for more details. A repeated-
measures ANOVA with group and difficulty modeled as
factors was used to test for group differences in response time
on GO trials and accuracy (percentage of successful stops).
Five MDD and eight CTL participants did not have their
behavioral responses properly recorded and were therefore
excluded from all analyses requiring behavioral responses.
Prior to their scan, all participants practiced the
response inhibition task in a behavioral session. All statistical
analyses were conducted in R version 3.3.1 unless
otherwise noted.

MRI Acquisition

All participants underwent a structural scan and two
functional scans (resting state and task). See ‘MRI Acquisi-
tion’ in the Supplementary Information for details.

MRI Data Preprocessing

Data were preprocessed using AFNI (Cox, 1996) and FSL
(Smith et al, 2004) software. T1-weighted images were skull-
stripped using AFNI’s 3dSkullStrip and transformed into
MNI152 space using FSL’s FLIRT with subsequent non-
linear alignment using FNIRT. EPI data were despiked, slice-
time and motion corrected, bandpass filtered, and smoothed
using AFNI’s preprocessing suite. Multiple linear regression
was used to regress out effects of motion and physiological
signals from each volume and volumes associated with
excessive movement were censored. Individuals with more
than 20% of their volumes exhibiting excessive motion in
either the task or resting-state scans were excluded from all
subsequent analysis (18 MDD and 17 CTL were excluded).
See ‘MRI Data Preprocessing’ in the Supplementary
Information for details. We further conducted control
analyses to test for group differences in motion-related
parameters. See ‘Control Analyses for Movement and
Censored Volumes’ in the Supplementary Information for
details.

Network Node and Edge Definition

Graphs are defined as sets of nodes and their edges (ie,
connections between nodes). In this study, we defined nodes
based on the 51 unique regions comprising the 7 Yeo
networks (Yeo et al, 2011) (see also Figure 1 and Table 2).
We defined edges as the strength of functional connections
between pairs of nodes, operationalized using the absolute
value of partial correlation coefficients (Sacchet et al, 2016;
Zhang et al, 2011). See Figure 2 for a summary of the analysis
pipeline.

Global and Local Graph Metrics

Global graph metrics summarize whole-graph properties.
Local graph metrics characterize single nodes in a graph
based on network characteristics related to that node. Global
and local graph metrics were computed from binarized
correlation matrices using an adaptive thresholding proce-
dure. See ‘Network Binarization’ in the Supplementary
Information for details. On the basis of previous work
(Jin et al, 2011; Sacchet et al, 2016), our local graph metrics
of interest included: (1) degree; (2) clustering coefficient, and
(3) local efficiency. Although our hypotheses focused on

Figure 1 The seven-network solution from the Yeo atlas. Upper left panel= lateral view of left hemisphere; upper middle panel= lateral view of right
hemisphere; upper right panel= anterior view (right hemisphere shown on left); middle left panel=medial view of left hemisphere; middle panel=medial view
of right hemisphere; middle right panel= posterior view (left hemisphere on the left); lower left panel= dorsal view (left hemisphere on the left); lower middle
panel= ventral view (right hemisphere on the left). See Table 2 for a list of locations for each of the 51 regions of interest comprising the seven networks.

Anterior cingulate connectivity in depressed adolescents
TC Ho et al

2437

Neuropsychopharmacology



local graph metrics of the ACC, based on prior graph studies
of MDD (Jin et al, 2011; Sacchet et al, 2016; Zhang et al,
2011), we also computed the global graph metrics of (1)

clustering coefficient, (2) characteristic path length, (3)
small-worldness, and (4) global efficiency. Graph analyses
were conducted using the Brain Connectivity Toolbox

Table 2 Location of the 51 Nodes Comprising the 7 Yeo Networks

Region (Brodmann’s areas) x y z Network

L occipital cortex, fusiform gyrus (BA 17/18/19/36) − 21 − 79 3 Visual

L precentral/postcentral gyrus (BA 4/6) − 35 − 22 44 Somatosensory

L postcentral gyrus, superior parietal lobule (BA 2/7) − 28 − 54 52 Dorsal attention

L precentral gyrus, middle frontal gyrus (BA 6) − 26 − 4 55 Dorsal attention

L inferior frontal gyrus (BA 9) − 49 4 32 Dorsal attention

L postcentral gyrus, inferior parietal lobule (BA 40) − 59 − 32 28 Salience

L superior temporal gyrus (BA 22) − 56 − 55 12 Salience

L anterior insula, superior temporal gyrus (BA 13/38) − 41 6 3 Salience

L superior frontal gyrus (BA 9) − 29 42 31 Salience

L cingulate gyrus, superior frontal gyrus (BA 32)* − 6 12 − 40 Salience

L orbitofrontal cortex/subgenual anterior cingulate cortex (BA 11/25)* − 12 36 − 21 Limbic

L parahippocampal cortex, uncus, temporal gyrus (BA 20/38) − 35 − 3 − 35 Limbic

L inferior parietal lobule (BA 40) − 43 − 52 48 CEN

L interior temporal gyrus (BA 20) − 59 − 48 − 18 CEN

L middle frontal gyrus (BA 6) − 23 14 58 CEN

L middle frontal gyrus, inferior frontal gyrus (BA 9/10/46) − 40 36 19 CEN

L middle frontal gyrus, superior frontal gyrus (BA 11) − 28 44 − 14 CEN

L insula, inferior frontal gyrus (BA 13/47) − 30 22 − 4 CEN

L precuneus (BA 7) − 3 − 71 46 CEN

L cingulate (BA 32)* − 5 − 14 28 CEN

L dorsal anterior cingulate cortex/middle frontal gyrus (BA 8/6)* − 4 26 45 CEN

L angular gyrus/supramarginal gyrus (BA 39/40) − 47 − 62 33 DMN

L middle and inferior temporal gyrus (BA 21/22) − 56 − 16 15 DMN

L frontal gyrus (BA 10/9/47) − 14 44 28 DMN

L posterior cingulate cortex, precuneus (BA 23/31/7) − 8 − 52 30 DMN

L parahippocampal gyrus, culmen − 21 − 29 − 20 DMN

R occipital cortex, fusiform gyrus (BA 17/18/19/36) 25 − 74 3 Visual

R precentral and postcentral gyrus (BA 4/6) 38 − 19 40 Somatosensory

R postcentral gyrus, superior parietal lobule (BA 2/7) 27 − 54 − 55 Dorsal attention

R precentral gyrus, middle frontal gyrus (BA 6) 29 − 3 55 Dorsal attention

R inferior frontal gyrus (BA 9) 48 8 27 Dorsal attention

L postcentral gyrus, inferior parietal lobule (BA 40) 62 − 31 25 Salience

R precentral gyrus/middle frontal gyrus (BA 6) 53 2 47 Salience

R anterior insula, superior temporal gyrus (BA 13/38) 44 9 2 Salience

R inferior frontal gyrus (BA 46) 52 40 4 Salience

R middle and superior frontal gyrus (BA 9/10) 30 45 30 Salience

R superior frontal gyrus, anterior cingulate cortex (BA 6, 32/24)* 9 22 49 Salience

R orbitofrontal cortex/subgenual anterior cingulate cortex (BA 11/25)* 13 38 − 21 Limbic

R parahippocampal cortex, uncus, temporal gyrus (BA 20/38) 37 − 2 − 36 Limbic

R inferior parietal lobule (BA 40) 50 − 48 47 CEN

R inferior and middle temporal gyrus (BA 20/21) 63 − 36 − 15 CEN

R insula, inferior frontal gyrus (BA 14/47) 32 23 − 6 CEN

R middle and superior frontal gyrus (BA 6/8/9/10) 40 − 35 24 CEN

R precuneus (BA 7) 8 − 70 43 CEN

R cingulate (BA 32)* 7 − 14 29 CEN

R dorsal anterior cingulate cortex/middle frontal gyrus (BA 8/6)* 7 30 40 CEN

R angular gyrus/supramarginal gyrus (BA 39/40) 53 − 55 29 DMN

R middle and inferior temporal gyrus (BA 21/22) 57 − 10 − 17 DMN

R inferior frontal gyrus (BA 47) 46 29 − 10 DMN

R frontal gyrus (BA 10/9/47) 12 48 12 DMN

R posterior cingulate cortex, precuneus (BA 23/31/7) 8 52 28 DMN

All locations reported are center of mass in MNI coordinates. Global graph metrics are computed across all 51 nodes. Regions with an asterisk (*) indicate the specific
nodes used to examine local graph metrics.
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(Rubinov and Sporns, 2010) and in-house scripts in
MATLAB (2014a; The MathWorks, Natick, MA). See ‘Global
and Local Graph Metrics’ and Supplementary Table S1 in
the Supplementary Information for the equations and
descriptions of each metric.

Ineffective Task-Related Suppression of the Default
Mode Network

To replicate previous findings regarding ineffective task-
related suppression of the DMN in depressed adolescents
(Ho et al, 2015), we examined group differences in activation
during the response inhibition task within the DMN
(Figure 1). See ‘Ineffective Task-Related Suppression of the
Default Mode Network’ in the Supplementary Information
for more details.

Group by Brain State Effects in Global Graph Metrics

For each global graph metric, we conducted a linear mixed
effects (LME) model with group (MDD, CTL) and brain state
(rest, task) modeled as fixed effects, participant modeled as a
random effect, and age, gender, IQ, and motion (defined as
the Euclidean norm of the six motion parameters averaged
across all time points) included as covariates. All LME
models were fit by restricted maximum likelihood (REML)
t-tests and Sattherthwaite approximations for degrees of
freedom provided by R’s lmerTest package (Kuznetsova et al,
2015) were used to compute significance values.

Group by Brain State Effects in Local Graph Metrics

For each local graph metric in eight-specific ACC nodes of
interest (bilateral cingulate gyrus, ACC/superior frontal
gyrus, dACC/middle frontal gyrus, orbitofrontal/sgACC),
we conducted an LME with group (MDD, CTL) and brain
state (rest, task) modeled as fixed effects, participant
modeled as a random effect, and age, gender, IQ, and
motion included as covariates. All LME models were fit by
REML t-tests and Sattherthwaite approximations for degrees
of freedom were used to compute significance values.

Correction for Multiple Comparisons

To conservatively account for false-positive inflation from
multiple statistical comparisons, we applied Bonferroni
correction for the tests of significance in the three local
graph metrics from the eight ACC nodes of interest (ie, 24
tests) and the four additional global graph metrics
(α= 0.05/28= 0.0018).

Correlations between Graph Metrics and Task
Performance

On the basis of prior work showing that state-dependent
changes in the topology of the CEN relate to performance on
demanding cognitive tasks in adolescents (Dwyer et al,
2014), we also computed correlations between flexibility of
local graph metrics of the ACC and task performance.
Specifically, for the local graph metric that showed a
significant interaction of group and brain state (see ‘Results’
section below), we computed the difference in this metric
across brain states (rest—task) and correlated this difference
value with successful inhibition across all participants. Five
MDD and 8 CTL did not have their behavioral responses
properly recorded; these 13 individuals were therefore not
included in this analysis. A two-tailed Pearson’s correlation
coefficient test was used for this analysis.

Correlations between Graph Metrics and Clinical
Characteristics

To test whether inflexibly elevated task-evoked functional
between the ACC and DMN was associated with greater
depression severity and an earlier age of depressive onset
(Ho et al, 2015), we computed correlations between the local
graph metric that showed a significant interaction of group
and brain state (see ‘Results’ section below) during the task
with severity of depression and age of depression onset
within the MDD participants only. Severity of depression
was measured as total t-scores on RADS-2. Age of depression
onset was measured as the integer age (in years) that
adolescents with MDD reported their first depressive episode
occurred. One MDD participant was missing RADS-2 scores

Figure 2 Illustration of graph analysis pipeline. (a) Nodes were defined as the 51 non-adjacent regions from the Yeo 7-network solution atlas (see Figure 1
and Table 2 for a summary of the locations of each node). (b) A total of 51 × 51 partial correlation adjacency matrices were computed from each pairwise
correlation, controlling for the signal from all other regions, for resting-state and task-evoked fMRI data separately, and then thresholded and binarized to create
an unweighted adjacency matrix such that all correlations above the threshold will be given a value of 1, and below the threshold will be given a value of 0 (see
‘Network Binarization’ in the Supplementary Information for more details). (c) The resulting 51× 51 binarized matrices were then analyzed as whole-brain
graphs for each individual for resting-state and task data separately. Graph metrics were then computed to assess global and local network properties (see
‘Global and Local Graph Metrics’ in the Supplementary Information for more details). Global graph metrics were computed from all 51 regions, resulting in a
single value for each individual for each scan. Local graph metrics were computed from the eight ACC regions for each individual for each scan.
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and five MDD participants did not provide age of onset
information; these individuals were not included in their
respective analyses. Because of the non-normality of the
RADS-2 scores and age of depression onset in the MDD
sample, two-tailed Spearman’s rank correlation coefficient
tests were used for these analyses.

RESULTS

Demographics

The groups did not differ significantly in age, gender,
pubertal status, socioeconomic status, or IQ (all ps40.05).
The MDD group endorsed significantly higher levels of
depression and anxiety and lower levels of psychosocial
function than did the CTL group (all pso0.05). See Table 1
for a summary of clinical and demographic information.

Behavioral Results on Response Inhibition Task

The groups did not differ significantly in mean response time
on non-missed GO trials (F1,80= 0.016, p= 0.90). For
percentage of successful STOP trials, there was also no main
effect of a group (F1,80= 0.06, p= 0.81), nor an interaction
effect between group and difficulty (F1,80= 0.05, p= 0.80).
There was a main effect of difficulty (F1,80= 155.626,
po0.001), with participants successfully stopping more often
on EASY trials. Table 1.

Group by Brain State Effects in Global Graph Metrics

There was no significant main effect for group and no
significant interaction of group and brain state for any global
graph metric.

Group by Brain State Effects in Local Graph Metrics

Only local efficiency of the right dorsal anterior cingulate
cortex/middle frontal gyrus (R dACC/MFC), a region of the
CEN (Figure 1), showed significant group by brain state
effects after Bonferroni correction (t96.08= 3.23; p= 0.0017).
Post hoc t-tests revealed that whereas the MDD group was
inflexible in this metric (ie, local efficiency of the R dACC/
MFG did not differ significantly between rest and task), the
CTL group exhibited flexibility (ie, local efficiency of R
dACC/MFG during task was lower than rest). Figure 3.

Group by Brain State Effects on Weighted Graph Metrics

As a supplementary analysis, we tested whether there were
group by brain state effects in global and local graph metrics
computed based on weighted matrices, ie, graphs that have
not been thresholded or binarized. We computed all of the
metrics with the exception of degree, which is the equivalent
as it is for thresholded/binarized matrices, and small-
worldness, given controversy regarding generating random
weighted matrices and their influence on this metric
(Hosseini and Kesler, 2013; Opsahl et al, 2008; Zlatic and
Stefancic, 2009). None of these weighted metrics exhibited
significant group by brain state interactions (all ps40.09).

Testing for Group Differences in Task Activation and
Rest in ACC Nodes

As a supplementary analysis, we tested whether there were
group differences in overall task activation, during rest, and in
task vs rest in the eight ACC nodes where we focused our local
graph analyses. Please see ‘Testing for Group Differences in
Task Activation in ACC Nodes’ in the Supplementary
Information and Supplementary Tables S4A, B, C for more
details. No ACC regions showed significant group differences
in overall task activation (all ps40.10), rest (all ps40.16), or a
significant group by brain state interaction (all ps40.19).

Correlations between Graph Metrics and Task
Performance

Adolescents with lower local efficiency of R dACC/MFG
during the task relative to rest (ie, positive flexibility values)
performed more poorly on the response inhibition task
(r=− 0.228, p= 0.039). Figure 4.

Correlations between Graph Metrics and Clinical
Characteristics

Depressed adolescents with lower local efficiency of R
dACC/MFG during the task had an earlier age of MDD

Figure 3 Local efficiency of right dorsal anterior cingulate cortex/middle
frontal gyrus (R dACC/MFG) showed a significant group difference between
task and rest. For global graph metrics, linear mixed effects (LME) models
used to assess graph metric showed a significant interaction of group (MDD,
CTL) by brain state (REST, TASK); for local graph metrics, LMEs testing
group by brain state interaction effects were conducted for each of the 16
nodes of interest. Only local efficiency of the right dACC/MFG was
significant after Bonferroni correction. (a) Graph representation of
unweighted connections between right dACC/MFG (shown in black) with
all other network nodes colored according to network membership (see
Figure 1) using Gephi (https://gephi.org/). (b) Sagittal view of right dACC/
MFG in MNI space (radiological convention). (c) Post hoc t-tests indicated
that individuals with MDD did not significantly differ in local efficiency of
right dACC/MFG between rest and task, whereas the CTL individuals
showed lower local efficiency of right dACC/MFG during the task compared
to rest.
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onset (rs= 0.353, p= 0.032); this metric was not related with
depression severity (rs= 0.088, p= 0.60).

DISCUSSION

This study was designed to test the hypothesis that
adolescent MDD reflects altered neurodevelopmental trajec-
tories of ACC connectivity underlying self-regulation, as
measured by neural flexibility of network-level topological
characteristics. Specifically, we assessed local graph metrics
of ACC-based connections among task-positive IFNs during
resting state and during a response inhibition task in a cohort
of depressed and well-matched non-depressed adolescents.
We report three main results. First, depressed adolescents
showed inflexibility in local efficiency of right dACC/MFG.
Second, although the groups did not differ in behavioral
performance, flexibility of right dACC/MFG local efficiency
significantly predicted successful performance on the re-
sponse inhibition task, consistent with recent work indicat-
ing that the neural bases of cognitive control depends on the
coordinated organization of large-scale task-positive and
task-evoked networks (Cole et al, 2013; Dwyer et al, 2014;
Shine et al, 2016). Third, depressed adolescents with lower
local efficiency in right dACC/MFG during the task reported
an earlier age of onset of MDD, which is consistent with the
formulation that the ACC has a critical role in adolescent
brain development and that early-onset MDD affects typical
development (Ho et al, 2015; Lichenstein et al, 2016).
Strengths of our study include the application of graph
theory to examine how network-level topology and organi-
zation changes as a function of brain state (ie, during resting
state as compared to during active task processing) in MDD.
Given that we found no significant differences between
groups in overall task activation or during rest in our ACC
regions of interest, our analyses and findings highlight the
importance of assessing network-level topology to elucidate
the neuropathophysiology of MDD. Furthermore, our study
sample of depressed adolescents who are free from potential
confounds of chronic disease and medication usage offers
potential insight into the processes by which the develop-
ment of IFNs may go awry in MDD. Importantly, we extend
previous work implicating task-related neural inflexibility
between ACC and the DMN in depressed adolescents by
applying graph theoretical analyses to both resting-state
fMRI and task-evoked fMRI in a task assessing cognitive
control. Together, our findings support a neurodevelop-
mental model of ACC connectivity in adolescent MDD,
whereby altered typical development of a key region of the
CEN (dACC/MFG), as measured by inflexible local connec-
tions, may impact self-regulation processes underlying the
pathophysiology of MDD.
Our finding of inflexibility in local efficiency of the dACC/

MFG in depressed adolescents extends the current literature
on cognitive control brain regions in MDD (Kaiser et al,
2015a; Miller et al, 2015) and supports the importance of
ACC circuitry in adolescent MDD (Lichenstein et al, 2016).
The dACC and MFG are involved in the stable maintenance
of task representation and behavior, error-related processing,
motivational behavior, and the integration of affective
stimuli in cognitive control (Bush et al, 2000). Functional
and structural abnormalities in ACC and MFG have been

identified in individuals with MDD and are posited to be
related to impairments in cognitive and emotional proces-
sing domains (Lichenstein et al, 2016). Moreover, connec-
tions between nodes in the CEN, including ACC/MFG, are
differentially engaged depending on task demands (Braun
et al, 2015; Krienen et al, 2014; Kumfor et al, 2015);
researchers have recently posited that maladaptive engage-
ment of ACC nodes in task-positive IFNs are likely to
underpin psychiatric conditions characterized by impair-
ments in self-regulation, including MDD (Cole et al, 2014b;
Kaiser et al, 2015a). Indeed, investigators are increasingly
finding that network-level connectivity patterns predict
behavioral performance on cognitive control tasks (eg,
attention, working memory) and clinical symptoms relevant
to self-regulatory processes (eg, ADHD; Giessing et al, 2013;
Rosenberg et al, 2016; Sato et al, 2013). Nevertheless, we wish
to emphasize that ‘neural inflexibility’ should not be taken as
a blanket term reflecting maladaptive cognitive processes or
suboptimal neurodevelopment. It is crucial to note that
whether the balance between stable and shifting topological
organization of IFNs is adaptive is likely dependent on the
specific cognitive process in question (eg, working memory,
sustained attention, numerical processing) as well as the
developmental stage of the individual (Alavash et al, 2014,
2016; Hutchison and Morton, 2016). We thus speculate that
the patterns of neural flexibility promoting adaptive
cognitive control may differ from those supporting success-
ful socioemotional regulation, and recommend that future
studies incorporate several cognitive and affective tasks to
map out these distinctions in adolescents with and without
MDD. We further speculate that abnormalities in state-
dependent dACC/MFG network connectivity may represent
transdiagnostic neural markers of self-regulatory difficulties.
Future studies are needed to examine these brain–behavior
associations across relevant diagnostic groups that span a
range of self-regulation difficulties in the realm of cognitive
control and socioemotional contexts (eg, ADHD, anxiety).
Although the MDD and healthy comparison groups did

not differ significantly in behavioral performance on the task
(which gives us confidence that the group differences in
state-dependent graph metrics are not driven by group
differences in performance), we nonetheless found that

Figure 4 Individual differences in flexibility (ie, rest minus task) of local
efficiency of right dorsal anterior cingulate cortex/middle frontal gyrus (R
dACC/MFG) predicted task performance. Lower local efficiency of R dACC/
MFG during the task relative to rest (ie, positive values on the ordinate) was
significantly associated with worse inhibition success on the task
(r82=− 0.228, p= 0.039).
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individual differences in flexibility of dACC/MFG local
efficiency predicted behavioral performance across our entire
sample. Given previous research that task-related decreases
in local efficiency—coupled with task-related increases in
global efficiency—are associated with better performance on
an attention task (Giessing et al, 2013), it is interesting to
note that the healthy comparison group exhibited lower local
efficiency of dACC/MFG during the task relative to rest,
whereas the MDD group showed limited change in local
efficiency of dACC/MFG across brain states. Although
speculative, our results may indicate that early MDD alters
the development of IFNs that are still maturing during this
sensitive period. Indeed, several studies have demonstrated
development typical shifts from local to global (or ‘dis-
tributed’) network organization, and that these architectural
changes support adaptive higher-level cognition (Fair et al,
2007a; 2009). Ultimately, longitudinal studies in at-risk
groups are needed to definitively test these hypotheses.
In our previous investigation examining solely resting-

state connectivity, we did not find group differences in local
graph measures, perhaps due to the fact that our node
definitions were whole IFNs that encompass functionally and
anatomically heterogeneous regions (Sacchet et al, 2016).
Further, our prior investigation utilized network-based
statistics to identify interconnected subnetworks among the
whole IFNs—most notably CEN, SN, and DMN—that were
hypoconnected in adolescents with MDD compared to
never-depressed controls. In contrast, in the present study
we applied a parcellation scheme with 51 spatially isolated
regions (instead of 17 large-scale networks) that we defined
as nodes in our graph analyses, focused on identifying group
differences in topological properties of the ACC, and, most
critically, investigated whether adolescent MDD is character-
ized by neural flexibility, or state-dependent changes, in ACC
topology. Together, our distinct yet complementary analyses
of these data suggest that adolescents with MDD are
characterized by large-scale hypoconnectivity among task-
positive and task-negative IFNs, and that inflexibility of a key
CEN hub, the dACC/MFG, may reflect MDD-related self-
regulatory processes in this population. How large-scale
hypoconnectivity among IFNs, or compromised structural
connectivity, underlie flexible shifts among localized regions
or hubs to support higher-order cognition remains an active
area of research (Behjat et al, 2015; Bolt et al, 2017). Overall,
our findings are difficult to compare with other graph studies
of resting-state networks in depressed adolescents (Sacchet
et al, 2016) and adults (Meng et al, 2014; Zhang et al, 2011)
because these studies examined graph metrics computed
only from resting-state connectivity, rather than state-
dependent changes in graph metrics. Nevertheless, our
results are consistent with previous research documenting
a lack of brain state-dependent changes between task-evoked
and intrinsic connectivity among regions in the ACC
(notably sgACC and cingulate gyrus) with nodes of the
DMN using seed-based functional connectivity methods (Ho
et al, 2015).
While no studies have compared network-level topology

between undirected and active task engagement in adoles-
cents with MDD, it is important to note that several studies
have examined functional connectivity metrics between in-
task rest (fixation blocks) with periods during active task
(Fair et al, 2007b). In contrast to such an approach, we

investigated state-dependent changes in IFNs from separate
task and resting-state scans. Our approach circumvents
potential task spillover effects during fixation and may thus
capture signals that are better suited for comparing task-
positive vs task-negative network topology. Indeed, Finn et al
(2017) have argued that assessing functional connectivity
across brain states enhances meaningful measures of
individual variation, and analyzed data from distinct
resting-state and several task scans from the Human
Connectome Project as a proof of this concept. Furthermore,
this approach of comparing brain states measured from
independent scans may permit assessments of slower
frequency bands at both task and rest, as such analyses
would not be limited to the duration of fixation (or active
task) blocks, and may be better suited for investigators
interested in examining the contribution of specific
frequency bands on network topology or how variability
unfolds in these signals within a scan or over time.
Although this is the first study to use graph analysis to

assess both task-positive and task-negative connectivity of
the ACC in MDD, the relatively narrow age range of our
participants limits the generalizability of our findings to
younger or older individuals with MDD. Further, our cross-
sectional design limits our understanding of the possible
causal role that neural inflexibility of the dACC/MFG plays
in the development of MDD. Research designs with
participants across a larger age range are needed to test if
our findings generalize to child and adult samples of MDD.
Greater variability in clinical characteristics would also
permit the assessment of varying ages of onset, chronicity,
and illness duration with neural flexibility of the dACC/MFG
in the context of self-regulatory processes. Another limita-
tion of our study is the lack of group-related behavioral
differences on the task. Our brain–behavior correlations
must therefore be interpreted with caution. Future studies
implementing cognitive control tasks that elicit sufficient
variability in task performance and that detect differences
between diagnostic and control groups are needed to extend
and replicate our findings. It must also be noted that our
current results may be influenced by specific frequency
bands and the correlation and density structure of the
functional networks. Given evidence that task-evoked con-
nectivity tends to be greater across the fullband, for
consistency we conservatively applied the same filter to both
sets of data, as has been done in previous studies comparing
task-based and resting-state connectivity (Dwyer et al, 2014;
Goparaju et al, 2014). Future research is thus needed to
systematically assess contributions of specific frequencies
and network density/correlation strength to network inflex-
ibility more generally, as well as in the context of disorders
such as MDD. Finally, our study assessed graph metrics
derived from time-resolved rather than time-varying (herein
termed ‘dynamic’) changes in functional connectivity. Recent
investigations in adults with MDD have documented
patterns of increased variability in SN, but decreased
variability in DMN (Kaiser et al, 2015b). Moreover, there
is evidence that over development, large-scale networks
become more variable in their coordination at rest, but less
variable in their coordination during tasks (Hutchison
and Morton, 2016). The correspondence between state-
dependent dynamics and flexibility of network properties
based on static signals is still unknown. Future work
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incorporating sliding window analyses (Kaiser et al, 2015b)
or multiplication of temporal derivatives (Shine et al, 2015)
on both task-based and resting-state fMRI data are needed to
clarify these relationships. Additional longitudinal research is
also needed to understand how neural flexibility in specific
circuits changes across typical development and how such
changes increase risk for MDD during adolescence.
In summary, this study is the first to use network science

to assess topological connectivity changes of the ACC across
brain states in order to characterize MDD from a
neurodevelopmental perspective. Our findings suggest that
depressed adolescents show inflexibility in network engage-
ment of the dACC/MFG, as measured by limited changes in
local efficiency between rest and active task processing.
Building from current evidence on maturational processes in
ACC connectivity during adolescence, our results fill a
significant gap in our understanding of the neuropathophy-
siology of depression by providing evidence that MDD alters
(or reflects altered) development of IFNs that are still
maturing during this sensitive developmental period and by
offering potential biomarkers in the form of quantifiable
network-based metrics. Validating these findings in long-
itudinal studies across a wider range of development
promises to advance the field by characterizing the typical
development of cognitive control networks and by determin-
ing if state-dependent dACC/MFG connectivity can be used
to identify individuals at risk for MDD, monitor disease
progression, and track or predict symptom changes in
response to treatments targeting ACC-based circuitry.
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