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Repeated exposure to psychostimulant drugs such as cocaine or amphetamine can promote drug-seeking and -taking behavior. In
rodent addiction models, persistent changes in excitatory glutamatergic neurotransmission in the nucleus accumbens (NAc) appear to
drive this drug-induced behavioral plasticity. To study whether changes in glutamatergic signaling are shared between or exclusive to
specific psychostimulant drugs, we examined synaptic transmission from mice following repeated amphetamine or cocaine
administration. Synaptic transmission mediated by AMPA-type glutamate receptors was potentiated in the NAc shell 10–14 days
following repeated amphetamine or cocaine treatment. This synaptic enhancement was depotentiated by re-exposure to
amphetamine or cocaine. By contrast, in the NAc core only repeated cocaine exposure enhanced synaptic transmission, which was
subsequently depotentiated by an additional cocaine but not amphetamine injection during drug abstinence. To better understand the
drug-induced depotentiation, we replicated these in vivo findings using an ex vivo model termed ‘challenge in the bath,’ and showed that
drug-induced decreases in synaptic strength occur rapidly (within 30 min) and require activation of metabotropic glutamate receptor
5 (mGluR5) and protein synthesis in the NAc shell, but not NAc core. Overall, these data demonstrate the specificity of neuronal
circuit changes induced by amphetamine, introduce a novel method for studying drug challenge-induced plasticity, and define NAc
shell medium spiny neurons as a primary site of persistent AMPA-type glutamate receptor plasticity by two widely used
psychostimulant drugs.
Neuropsychopharmacology (2016) 41, 464–476; doi:10.1038/npp.2015.168; published online 5 August 2015
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INTRODUCTION

The nucleus accumbens (NAc) is a key constituent of the
mesocorticolimbic circuit involved in the acquisition and
expression of reward-dependent learning, and it is an
important locus where drugs of abuse exert their rewarding
and reinforcing effects (Hyman et al, 2006; Kalivas and
Volkow, 2005). Cortical and limbic glutamatergic afferents to
NAc medium spiny neurons (MSNs), the major neuron type
in the NAc, drive neural activity and synaptic plasticity,
and experience-dependent changes in the strength of
these connections are central to the development and
persistence of addiction-related behavior (Kombian and

Malenka, 1994; Pennartz et al, 1993; Pennartz et al, 1990;
Uchimura et al, 1989). An abundance of data indicates that
this experience-dependent plasticity in NAc glutamatergic
synaptic transmission is primarily expressed via dynamic
changes in AMPA-type glutamate receptors (AMPARs),
making these receptors a key target for studying how
drug experiences modify behavior in models of addiction
(Bowers et al, 2010; Kalivas and Hu, 2006; Kauer and
Malenka, 2007; Pierce and Wolf, 2013).
Neural adaptations that are conserved across multiple drug

classes provide likely candidate mechanisms underlying core
features of addiction. For example, exposure to cocaine and
amphetamine produce a similar set of outcomes at both the
behavioral and cellular level. Specifically, both promote
development of behavioral sensitization and increase drug
self-administration, enhance extracellular dopamine (DA)
and glutamate levels in the NAc, and produce parallel
adaptations in MSN intrinsic excitability (Kourrich and
Thomas, 2009; Reid et al, 1997; Vezina, 2004; Xue et al,
1996). However, more drug-specific effects on NAc plasticity,
most notably AMPAR expression, have also been demon-
strated. For example, while repeated cocaine exposure
produces robust and widespread increases in AMPAR
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subunit and cell surface expression (Boudreau and Wolf,
2005), the effects of repeated amphetamine on AMPAR cell
surface levels are modest at best (Nelson et al, 2009).
Furthermore, while it has been demonstrated that repeated
cocaine promotes a time-dependent augmentation of AMPAR-
mediated synaptic transmission in the NAc shell (Kourrich
et al, 2007), electrophysiology data regarding amphetamine-
induced alterations in AMPAR plasticity is lacking.
On the other hand, blocking AMPAR endocytosis

during drug abstinence has been reported to prevent the
expression of behavioral sensitization to amphetamine
(Brebner et al, 2005), suggesting an important role
for AMPARs in behaviors triggered by amphetamine
re-exposure. These results raise questions of whether
amphetamine alters excitatory synaptic strength in the
NAc and whether the two major subdivision of the NAc,
the core and shell, display similar adaptations. These areas
are distinguished based on anatomical connectivity,
involvement in reward-related responses, and have been
shown to be differentially affected by drugs of abuse
(Everitt et al, 1999; Heimer et al, 1991; Kourrich and
Thomas, 2009; Zahm and Brog, 1992). Therefore, we
investigated how repeated exposure to amphetamine and
cocaine may differentially alter excitatory signaling in the
NAc, focusing on region-specific changes in synaptic
strength and AMPAR-mediated signaling in the core and
shell. We also explored potential bidirectional changes in
this plasticity elicited by re-exposure to these drugs during
abstinence, and the potential underlying mechanisms of
this plasticity using a novel ex vivo approach.

MATERIALS AND METHODS

Animals

Adult (P48-60) male C57BL/6J mice (Jackson Laboratories,
Bar Harbor, Maine, USA) were group housed on a 12 h light/
dark cycle with food and water available ad libitum. All
experiments were approved by the University of Minnesota
Institutional Animal Care and Use Committee.

Drug Treatment

Mice were habituated to experimenter handling and injec-
tions (i.p.) over a 2-day period (H1–2), followed by five
consecutive once-daily injections of cocaine (15 mg/kg),
amphetamine (5 mg/kg), or saline. For all test days, animals
were habituated to testing chambers for 30 min and
motor activity was monitored for 120 min following drug
or saline administration. Following the final day of drug
treatment, animals were returned to their home cage for
10–14 days. For experiments involving an in vivo drug
re-exposure (challenge), animals were handled periodically
throughout withdrawal in an attempt to mitigate any
potential effects of stress during subsequent challenge
injection. For in vivo drug challenge studies, cocaine-
and amphetamine-treated mice received an injection of
either cocaine or amphetamine, after which activity was
monitored and acute slices were prepared 24 h following
testing. For experiments involving repeated amphetamine
and/or in vivo amphetamine challenge (Figures 1 and 3),
additional groups of mice were administered a saline
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Figure 1 In vivo amphetamine induces bidirectional plasticity in synaptic
AMPAR function in the NAc shell. (a) Experimental timeline (top) including
5 days of saline or amphetamine (5 mg/kg; i.p.) injections, a 10–14-day
abstinence period, and in some instances in amphetamine-treated mice a
challenge injection of saline or amphetamine. Electrophysiological recordings
were performed during abstinence or 24 h following a challenge injection.
Recording locations were performed in the rostral portion of the NAc core
or shell regions (gray) shown in anatomical schematics (bottom). (b)
Representative AMPAR and NMDAR excitatory postsynaptic current
(EPSC) traces (left) and mean AMPAR/NMDAR (A/N) ratios (right) from
NAc shell neurons in saline+no challenge (Sal, gray; n= 10, N= 6),
amphetamine+no challenge (Amph, black fill; n= 9, N= 5), amphetamine
+saline challenge (Amph–Sal, black fill; n= 8, N= 5), and amphetamine
+amphetamine challenge (Amph–Amph, black outline; n= 8, N= 5) mice.
Scale bars, 20 pA/100 ms. (c) Representative miniature EPSCs (mEPSCs)
traces. (d) Mean mEPSC amplitude (pA; left) and frequency (Hz; right) in the
NAc shell (Sal: n= 6, N= 3; Amph: n= 10, N= 5; Amph–Amph: n= 8,
N= 3). Scale bars, 10 pA/100 ms. All data are presented as mean± SEM. n,
number of cells; N, number of animals. *p⩽ 0.05 vs Sal; #p⩽ 0.05 vs Amph–
Amph. AMPAR, AMPA-type glutamate receptor; Amph, Amphetamine;
NAc, nucleus accumbens; Sal, saline.
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challenge injection to demonstrate that bidirectional
changes in plasticity are drug dependent, rather than stress
related to handling/injection, similar to previous findings
with cocaine (Kourrich et al, 2007).
For initial ex vivo experiments (Figure 4) examining

ex vivo amphetamine and cocaine ‘bath challenge’, tissue was
transferred to a separate ACSF chamber containing 10 μM
amphetamine or 10 μM cocaine, or ACSF (no challenge) for
10 min. For inhibitor experiments (Figure 5), slices received:
(1) no challenge (ex vivo bath exposure to ACSF); (2) ex vivo
bath exposure to inhibitors MTEP (5 μM, 5min; mGluR5
antagonist) or cyclohexamide (60 μM, 30min; protein
synthesis inhibitor) alone; (3) ex vivo bath exposure to
cocaine only (10 μM); or (4) ex vivo bath exposure to
inhibitors followed by exposure to cocaine+inhibitor.
Following drug treatment, slices were transferred to the
recording chamber and allowed to recover for 30 min.
Recordings were obtained up to 2 h following transfer to the
recording chamber.

Electrophysiology

Following 10–14 days of abstinence from psychostimulant
drug treatment, mice were anesthetized with isofluorane
and 250 μm sagittal slices containing the NAc core or
shell were prepared as previously described (Thomas et al,
2001). Slices were recovered for at least 30 min in ACSF
solution saturated with 95% O2/5% CO2 containing
(in mM) 119 NaCl, 2.5 KCl, 1.0 NaH2PO4, 1.3 MgSO4,
2.5 CaCl2, 26.2 NaHCO3, and 11 glucose. For electro-
physiological recordings, picrotoxin (100 μM) was added
to ACSF during AMPAR-mediated miniature excitatory
postsynaptic current (mEPSC) and AMPA/NMDA ratio
recordings to block GABAergic neurotransmission, while
lidocaine (0.7 mM) was present during mEPSC recordings
to prevent action potentials. Cells were visualized in
sagittal slices using infrared-differential contrast micro-
scopy, and MSNs were identified by their morphology and
typical hyperpolarized resting potential (−70 to − 80 mV).
Using an Axon Instruments Multiclamp 700B (Molecular
Devices, Sunnyvale, CA, USA), MSNs were voltage
clamped at − 80 mV using electrodes (3–5 MΩ) containing
a cesium-gluconate-based internal solution previously
described (Kourrich et al, 2007). Data were filtered
at 2 kHz by Axonclamp amplifier (Molecular Devices)
and digitized at 5 kHz via custom Igor Pro software
(Wavemetrics, Lake Oswego, OR, USA). At the beginning
of each sweep, a depolarizing step (4 mV, 100 ms) was
generated by a Master-8 stimulator (Jerusalem, Israel) to
monitor series (10–40 MΩ) and input resistance
(4400 MΩ). For AMPAR/NMDAR and mEPSCs measure-
ments, data collection and analysis were performed as
previously described (Kourrich et al, 2007).

Drugs

Cyclohexamide, D-AP-5, and MTEP were purchased
from Tocris Bioscience (Bristol, United Kingdom), while
amphetamine and picrotoxin were purchased from Sigma
Aldrich (St Louis, MO, USA). Cocaine was obtained from
Boynton Pharmacy (University of Minnesota, Minneapolis,
MN, USA).

Data Analysis

All data shown are expressed as a mean± SEM. AMPAR/
NMDAR ratios and mEPSCs were analyzed with a Student’s
t-test, one-way or two-way ANOVA using SigmaPlot (Systat
Software) or GraphPad Prism (GraphPad Software, La Jolla,
CA). Student–Newman–Keuls post hoc tests were used for
pairwise comparisons when appropriate. The threshold for
statistical significance was po0.05.

RESULTS

In vivo Amphetamine Induces Bidirectional Plasticity in
Synaptic AMPAR Function in the NAc Shell

Cocaine-induced AMPAR plasticity has been extensively
studied in the NAc, while synaptic physiology data from
amphetamine studies are scarce. To investigate potential
long-lasting effects of repeated amphetamine exposure on
glutamatergic synaptic transmission, we treated mice
with an amphetamine regimen that produces robust
psychomotor sensitization (eg, Kourrich and Thomas,
2009; Figure 3a) and prepared acute sagittal slices contain-
ing the NAc shell (Figure 1) or core (Figure 2) 10–14 days
following the final drug (or saline) injection. In two
additional groups of amphetamine-sensitized mice, we
examined whether re-exposure to amphetamine (Amph–
Amph) or saline (Amph–Sal) with a challenge injection
induced ‘depotentiation,’ a form of long-term synaptic
depression (LTD) that has been observed 24 h following
drug re-exposure (Boudreau et al, 2007; Kourrich et al,
2007; Pascoli et al, 2012; Rothwell et al, 2011). Interest-
ingly, this form of experience-dependent LTD, whether it is
induced by drug re-exposure or stress, appears to be
restricted to animals with previous drug exposure
(Kourrich et al, 2012; Kourrich et al, 2007; Pascoli et al,
2012; Rothwell et al, 2011). We measured the ratio of peak
AMPAR- to NMDAR-mediated evoked synaptic currents
in whole-cell recordings from MSNs in NAc shell and
observed a ~ 65% increase in the AMPAR/NMDAR ratio in
cells from amphetamine- vs saline-treated control mice.
This was reversed by a single re-exposure to amphetamine,
but not saline, during abstinence (Figure 1b, right; Sal
(1.05± 0.04), Amph (1.53± 0.05), Amph–Sal (1.55± 0.08),
Amph–Amph, 1.03± 0.06); F(3,34)= 26.79; po0.001). No
significant differences were observed in AMPAR/NMDAR
ratios between drug-naïve and saline-treated mice (data
not shown; t(17)= 0.011, p= 0.991).
As an additional test for drug-induced synaptic AMPAR

plasticity, we recorded mEPSCs (Figure 1c and d). Both the
amplitude (Figure 1d, left; Sal (11.25± 0.59), Amph
(14.57± 0.85), Amph–Amph (12.14± 0.77); F(2,22)= 6.778,
p= 0.005) and frequency (Figure 1d, right; Sal (3.85± 0.94),
Amph (9.22± 1.81), Amph–Amph (5.28± 0.92)) of
AMPAR mEPSCs were significantly increased in MSNs
from amphetamine- vs saline-treated mice and both
parameters were reversed 24 h following amphetamine
challenge (amplitude: F(2,22)= 6.778, p= 0.005); frequency:
F(2, 20)= 4.20, p= 0.03). Thus, the pattern of amphetamine-
induced AMPAR plasticity bears a striking similarity to
published data for cocaine in NAc shell (Kourrich et al,
2007; Rothwell et al, 2011; Kourrich et al, 2012).
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Figure 2 In vivo cocaine, but not amphetamine, induces bidirectional AMPAR plasticity in the NAc core. (a) Experimental timeline including 5 days of
saline or cocaine (15 mg/kg; i.p.) injections, a 10–14-day abstinence period, a challenge injection of cocaine, and electrophysiological recordings 24 h
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In vivo Cocaine, but not Amphetamine, Induces
Bidirectional AMPAR Plasticity in the NAc Core

While NAc shell MSNs exhibit cocaine-induced synaptic
plasticity that is clearly bidirectional, little is known about
AMPAR plasticity in the NAc core (Kourrich et al, 2007;
Rothwell et al, 2011; Thomas et al, 2001). To test this
directly, we measured AMPAR/NMDAR ratios 10–14 days
following a sensitizing regimen of cocaine (5 once-daily,
15 mg/kg) or saline, with a third group of cocaine-treated
mice receiving a cocaine challenge 24 h prior to recording
(Figure 2a). Consistent with previous observations (Conrad
et al, 2008; Moussawi et al, 2011), repeated cocaine adminis-
tration increased excitatory synaptic strength in NAc core
MSNs from cocaine-treated mice compared with saline
controls (Figure 2b; Sal (1.15± 0.03) vs Coc (1.59± 0.06)).
Furthermore, cocaine re-exposure reversed the potentia-
tion to control levels (Coc–Coc: 0.95± 0.04; F(2,28)= 53.83,
po0.001). Repeated cocaine treatment also enhanced
AMPAR mEPSC amplitude (Figure 2c, left; Sal (11.05±
0.52) vs Coc (13.92± 0.68), F(3,29)= 6.23, p= 0.002). This
potentiation was subsequently reversed 24 h following
cocaine re-exposure (Coc–Coc: 11.084± 0.72).
Surprisingly, with amphetamine, AMPAR/NMDAR ratios

in core were neither enhanced by repeated administration
nor altered by re-exposure during abstinence (Figure 2e;
Sal (1.02± 0.07), Amph (1.11± 0.05), Amph–Amph (1.05±
0.05); F(3,28)= 0.44, p= 0.73)). As in the shell, no significant
differences were observed in AMPAR/NMDAR ratios
between drug-naïve and saline-treated mice (data not
shown; t(15)= 0.257, p= 0.801). Consistent with these AM-
PAR/NMDAR data, no significant differences were observed
in AMPAR mEPSCs following treatment with repeated
amphetamine (amplitude: Figure 2f, left; Sal (13.48± 0.74) vs
Amph (12.61± 0.82); t(16)= 0.4779, p= 0.6392; frequency:
Figure 2f, right, Sal (5.76± 0.59) vs Amph (5.29± 0.57);
t(16)= 0.7926, p= 0.4396). Interestingly, a trend toward a
bimodal distribution is observed in mEPSC frequency. This
could reflect differing effects of amphetamine within
subpopulations of MSNs that express either DA D1 or D2
receptors, which have been observed with repeated cocaine
exposure (Lee et al, 2006; Lobo et al, 2010; Pascoli et al, 2012)
Together, these results demonstrate that in contrast to
amphetamine’s region-specific effect (shell only), cocaine
induces bidirectional AMPAR plasticity in MSNs in both
NAc shell and core.

In vivo Amphetamine Depotentiates AMPAR Function
in NAc Shell, but not Core, of Mice Sensitized to Cocaine

While amphetamine fails to potentiate AMPAR function in
the NAc core, we hypothesized that it may conserve the
ability to depotentiate synapses on core MSNs that already
exhibit enhanced AMPAR function. To test this, we took
advantage of cocaine’s ability to potentiate synaptic trans-
mission in the NAc core. We first verified that amphetamine
exposure during abstinence in cocaine-pretreated mice
produced cross-sensitization, a phenomenon known to occur
between psychostimulant drugs (Kalivas and Weber, 1988;
Liu et al, 2007; Pierce and Kalivas, 1995; Vanderschuren et al,
1999). Following repeated saline or cocaine treatment and
10–14 days of drug abstinence (Figure 3a), mice received a

challenge injection of saline (Sal–Sal, Coc–Sal) or ampheta-
mine (Sal–Amph, Coc–Amph). Repeated cocaine treatment
increased locomotion (meters traveled/90 min) on day 1 of
exposure compared with saline controls, and locomotion was
significantly higher on day 5 vs day 1 in cocaine-treated
mice, indicating sensitization to cocaine (Figure 3b left;
F(3,41)= 28.59, po0.001). Following 10–14 days of absti-
nence, amphetamine challenge increased locomotion (meters
traveled per 20 min) in saline- (Sal–Amph: 97.96± 2.83) and
cocaine-treated (Coc–Amph: 156.29± 10.98) mice compared
with saline-challenged groups (Sal–Sal (21.1± 5.46), Coc–Sal
(29.59± 4.68)). Most importantly, this amphetamine chal-
lenge produced an augmented locomotor-activating effect in
cocaine- vs saline-pretreated mice, (Figure 3b right; F(3,22)=
62.82, po0.001), confirming that this treatment produced
cross-sensitization.
Twenty-four hours following in vivo amphetamine chal-

lenge, we measured synaptic AMPAR function in the NAc
core and shell directly via AMPAR mEPSC recordings. For
these and subsequent experiments, we focused on mEPSCs,
as a direct measure of synaptic AMPAR function. In the core,
we observed a significant effect of cocaine pretreatment
(F(1,34)= 9.28, p= 0.005) and drug challenge (F(1, 34)= 4.57,
p= 0.0.04) on mEPSC amplitude (Figure 3d, left), with no
significant interaction (F(1,34)= 0.127, p= 0.724), suggesting
that cocaine pretreatment increases mEPSC amplitude, and
that while acute amphetamine augments mEPSC amplitude
in drug naïve animals an amphetamine challenge does not
further potentiate AMPAR function beyond that already
induced by repeated cocaine (Sal–Sal (12.20± 0.39), Sal–
Amph (14.47± 0.59), Coc–Sal (15.30± 1.16), Coc–Amph
(16.91± 0.76). Analysis of mEPSC frequency (Figure 3d,
right) revealed a main effect of challenge (F(1,34)= 7.46,
p= 0.01), but not pretreatment (F(1, 34)= 1.28, p= 0.266),
without significant interaction (F(1,34)= 0.085, p= 0.773),
indicating that acute amphetamine, but not repeated cocaine
increases the frequency of these events in the NAc core
(Sal–Sal (3.13± 0.47), Sal–Amph (4.84± 0.62), Coc–Sal
(3.94± 0.80), Coc–Amph (5.32± 0.36).
In the NAc shell, unlike the core, an in vivo amphetamine

challenge depotentiated cocaine-dependent increases in
AMPAR mEPSC amplitude (Figure 3c left) and frequency
(Figure 3c right) to saline control levels (amplitude: Sal–Sal
(10.96± 0.64), Coc–Sal (14.29± 1.26), Coc–Amph (11.31±
0.58), F(1,28)= 6.67, p= 0.02; frequency: Sal–Sal (3.64± 0.83),
Coc–Sal (7.49± 1.17), Coc–Amph (3.89± 0.59), F(1281)=
7.56, p= 0.01). However, an acute exposure to amphetamine
in saline pretreated mice did not increase mEPSC amplitude
(Sal–Amph: 11.98± 0.27) or frequency (4.62± 0.69). To
determine whether acute amphetamine may be promoting
alterations in synaptic strength in NAc shell that are not
reflected by changes in AMPARs, A/N ratios were evaluated
24 h following acute exposure to saline or amphetamine;
however, no significant difference was observed (Sal (1.16±
0.04, n= 8) vs Amph (1.20± 0.05, n= 7); t(13)=− 0.751,
p= 0.47; data not shown). Taken together, these data reveal
several new features of amphetamine-induced plasticity in
NAc MSNs. First, acute amphetamine exposure in drug
naïve mice selectively increases AMPAR-mediated synaptic
signaling in the NAc core. Second, only MSNs in the shell
remain sensitive to acute amphetamine’s effects following
repeated cocaine exposure. Last, expression of cocaine/
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amphetamine cross-sensitization may rely on bidirectional
plasticity within the shell.

Ex vivo Cocaine and Amphetamine Challenge Mimics
in vivo Challenge-Induced Plasticity in NAc Core and
Shell

To study the underlying cellular and molecular mechanisms
responsible for the psychostimulant drug challenge-induced
reversal of synaptic strength and AMPAR-mediated signal-
ing, we investigated whether this plasticity could be studied
ex vivo in the acute slice using a novel ‘challenge-in-the-dish’
approach. We first tested the ability of ex vivo cocaine bath
application to induce depotentiation of synaptic strength in
the NAc shell and core. For ex vivo psychostimulant
challenge studies, a dose of 10 μM was used as this
concentration has been shown to promote plasticity in acute
slice preparations without causing local anesthetic effects
(Brodie and Dunwiddie, 1990; Schilstrom et al, 2006; Yasuda
et al, 1984). Similar to in vivo psychostimulant drug expo-
sure, incubation of acute slices for 10 min in cocaine (10 μM)
reversed in vivo cocaine-induced increases in synaptic

strength in the NAc shell (Figure 4b; Sal (0.70± 0.02), Coc
(1.15± 0.07), Coc–Coc (0.81± 0.03); F(2,16)= 17.15,
po0.001) and NAc core (Figure 4d; S (0.85± 0.03), C
(1.23± 0.13), C-C (0.70± 0.06); F(2,13)= 7.81, p= 0.009). We
next investigated whether ex vivo psychostimulant drug
application would mirror the drug- and brain-region-
selective alterations in AMPAR-mediated signaling. In the
NAc shell of cocaine-treated mice, bath application of either
cocaine or amphetamine (10 μM) reversed the in vivo
cocaine-induced increase in mEPSC amplitude (Figure 4c
left; Sal (11.69± 0.43), Coc (16.05± 0.67), Coc–Coc (10.52±
0.32), Coc–Amph (11.86± 0.64); F(4,58)= 14.92, po0.001)
and frequency (Figure 4c right; Sal (6.01± 0.66), Coc
(9.59± 1.02), Coc–Coc (3.53± 0.47), Coc–Amph (6.37±
0.66); F(3,41)= 10.92, po0.001). Ex vivo cocaine application
to acute slices from saline pretreated mice (Sal–Coc) did not
significantly increase mEPSC amplitude (13.66± 0.7) or
frequency (4.95± 0.73) compared with slices from saline-
treated mice exposed to ACSF (Sal).
In the NAc core, bath application of cocaine, but not

amphetamine, to slices from cocaine-pretreated mice
reversed increases in mEPSC amplitude (Figure 4e left;
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Sal (11.73± 0.36), Coc (13.45± 0.39), Coc–Coc (10.75± 0.43),
Coc–Amph (13.84± 0.46); F(4,52)= 11.17, po0.001). In con-
trast to NAc shell, we observed no significant differences in
frequency between groups (Figure 4e right; S (4.26± 0.34),
Sal–Coc (4.55± 0.54), Coc(5.28± 0.54), Coc–Coc (3.18± 0.29),
Coc–Amph (3.80± 0.31)). Interestingly, ex vivo cocaine
application to acute slices from saline pretreated animals
(Sal–Coc) did significantly increase mEPSC amplitude
(15.98± 1.31) and frequency (4.55± 0.54) in the NAc core.
In summary, ex vivo psychostimulant exposure mirrors the
bidirectional plasticity observed with in vivo challenge
injections. This highlights the viability of using a challenge-
in-the-dish approach to study mechanisms underlying
psychostimulant-induced AMPAR depotentiation during drug
abstinence.

Cocaine-Induced Depotentiation Requires mGluR5
Activation and Protein Synthesis

In the striatum, excitatory synapses on MSNs are capable of
expressing LTD by several mechanisms (Luscher and Huber,
2010). In the NAc, activation of postsynaptic group I

mGluRs has been shown to promote reduced presynaptic
glutamate release probability and increased trafficking of
AMPARs (McCutcheon et al, 2011; Robbe et al, 2002). Thus,
we investigated whether blockade of mGluR5-dependent
signaling with bath application of the antagonist MTEP
prevented the cocaine-induced depotentiation of AMPAR-
mediated signaling in the NAc shell (Figure 5b) and core
(Figure 5c).
As in previous experiments, cocaine treatment increased

mEPSC amplitude in shell MSNs, which was subsequently
reversed by an ex vivo cocaine bath challenge (Figure 5b left;
Sal (10.87± 0.46), Coc (14.62± 0.90), Coc–Coc (10.52±
0.32)). However, incubation of acute slices in MTEP (5 μM)
prior to (and during) cocaine bath challenge prevented the
bath cocaine-induced reductions in mEPSC amplitude
(Figure 5b left; Coc–MTEP–Coc: 14.05± 0.49; F(6,71)= 5.93,
po0.001). Notably, while bath application of MTEP alone
had no effect on baseline mEPSC amplitudes in slices from
cocaine-treated animals (Coc–MTEP: 13.80± 0.52), MTEP
application to slices from saline-treated animals (Sal–MTEP)
significantly increased mEPSC amplitude (14.20± 0.97)
but not frequency (6.21± 1.02) compared with saline-no
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challenge controls (Sal). A common mechanism for mGluR-
dependent LTD in many brain regions, including the
striatum, is the reliance on rapid (in minutes) protein
synthesis (Luscher and Huber, 2010; Yin et al, 2006).
Consistent with this mechanism, we found that incubation
of slices from cocaine-treated mice in the protein translation
inhibitor, cyclohexamide (60 μM), for 30 min prior to
(and during) a cocaine bath challenge also prevented reduc-
tions in mEPSC amplitude (Coc–Cyclo–Coc: 13.45± 0.60;
F(6,66)= 5.93 po0.001). Interestingly, neither MTEP nor cyclo-
hexamide pretreatment prevented the cocaine challenge-
induced reversal of AMPAR mEPSC frequency (Figure 5b,
right; Sal (3.95± 0.42), Coc (5.78± 0.61), Coc–Coc

(3.33± 0.36), Coc–MTEP–Coc (3.87± 0.50), Coc–Cyclo–Coc
(3.52± 0.56); F(6,66)= 3.90, p= 0.002). MTEP application to
slices from cocaine-treated mice did not significantly alter
mEPSC frequency (Coc–MTEP: 6.27± 1.11) compared with
cocaine no challenge controls (Coc), and trended (p= 0.089)
toward increasing mEPSC frequency in slices from saline-
treated mice (Sal–MTEP: 6.21± 1.01).
In the NAc core, cocaine significantly increased mEPSC

amplitude compared with saline controls (Figure 5c); how-
ever, unlike the shell, incubation of acute slices in MTEP
prior to cocaine bath challenge failed to prevent reductions
in mEPSC amplitude (Figure 5c left; Sal (11.41± 0.48), Coc
(14.20± 1.08), Coc–Coc (11.30± 0.43), Coc–MTEP–Coc
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(11.85± 0.97); F(5,57)= 4.57, p= 0.002). MTEP application
alone had no effect on mEPSC amplitude in slices from
saline- (Sal–MTEP: 14.20± 1.08) or cocaine-treated (Coc–
MTEP: 14.51± 1.04) mice compared with their respective
controls. No significant effects were observed on mEPSC
frequency in the NAc core (Figure 5c right; F(5,57)= 2.04,
p= 0.09). Thus, while the phenomena of cocaine-induced
depotentiation in the NAc core vs shell are outwardly similar,
the mechanisms appear to be different, with NAc shell
depotentiation relying on mGluR5 activation and protein
translation.

DISCUSSION

Our study demonstrates four key findings. First, repeated
in vivo amphetamine treatment produces long-term changes
in AMPAR synaptic transmission selectively in the NAc
shell, while acute amphetamine treatment produces transient
increases in the NAc core. Second, similar to previous
findings in the shell, repeated cocaine promotes bidirectional
and AMPAR-dependent changes in MSNs of the core. Third,
using the ex vivo ‘challenge-in-the-bath’ approach is feasible
for studying the mechanisms of psychostimulant-induced
synaptic depotentiation, as this approach mirrored drug-
induced plasticity observed with in vivo drug re-exposure.
Finally, re-exposure to cocaine during abstinence depo-
tentiates AMPAR signaling in NAc shell, but not NAc core,
MSNs via an mGluR5- and protein synthesis-dependent
mechanism.

NAc Subregion-Specific Effects of Amphetamine on
Synaptic AMPAR Function

The current study provides the first electrophysiological
evidence that repeated amphetamine induces long-lasting
increases in MSN synaptic strength in the NAc shell, but not
core, and that this plasticity reflects increased AMPAR
signaling. While the selectivity of this plasticity is striking,
the lack of widespread synaptic AMPAR potentiation in NAc
is consistent with previously reported biochemical studies,
demonstrating that repeated in vivo amphetamine increased
AMPAR surface expression in NAc shell-enriched but not
NAc core-enriched tissue punches (Nelson et al, 2009).
Although the exact implications are unclear, regional
differences in amphetamine’s ability to induce AMPAR
plasticity might help to explain previous region-selective
effects on drug-induced behavior. For example, microinfu-
sion of amphetamine directly in the shell, but not core, elicits
sensitized locomotor responding in cocaine-pretreated
animals (Pierce and Kalivas, 1995). Consistent with this,
the present study demonstrates that acute amphetamine
exposure following repeated cocaine depotentiated AMPAR
signaling selectively within the NAc shell. This raises
intriguing questions about whether other drugs of abuse
known to produce cross-sensitization with psychostimulant
drugs might also produce depotentiation in the NAc shell,
and whether this may be a common mechanism that
promotes the expression of sensitization following chronic
drug exposure.
We demonstrate that AMPAR signaling was selectively

increased in the shell region following 10–14 days of

abstinence from repeated amphetamine, while 24 h following
an acute exposure AMPAR potentiation was confined to
MSNs of the core. The mechanism that accounts for this
region-specific difference in plasticity between acute and
repeated amphetamine is not yet clear. One possible factor is
the difference in amphetamine’s ability to increase extra-
cellular DA in core vs shell. For example, in drug-naïve
animals, the core is more sensitive to amphetamine than the
shell—producing a larger increase in extracellular DA at
lower concentrations of the drug (Siciliano et al, 2014).
Interestingly, following repeated amphetamine treatment,
amphetamine-induced increases in extracellular DA appear
to be enhanced in shell, but not core (Giorgi et al, 2005;
Pierce and Kalivas, 1995). As increased DA receptor
signaling can promote AMPAR trafficking to synapses in
NAc MSNs (Sun et al, 2008), it remains to be determined
whether changes in the DA-enhancing properties of
amphetamine in core vs shell might explain the region-
selective AMPAR plasticity effects of acute vs repeated
amphetamine.

Ex vivo Psychostimulant Exposure Induces Synaptic
Depotentiation

The ‘challenge-in-a-dish’ approach provides a potentially
advantageous means to study drug-induced neuronal plas-
ticity as it greatly facilitates co-application of antagonists or
inhibitors with cocaine. Despite the fact that network
connections to the NAc are reduced in a brain slice
preparation, ex vivo cocaine bath application was able to
promote synaptic depotentiation that mirrored previous
results in which in vivo cocaine reduced synaptic transmis-
sion in cocaine-pretreated mice (Kourrich et al, 2007; Pascoli
et al, 2012; Rothwell et al, 2011). Interestingly, ex vivo
cocaine also increased mEPSC amplitude (but not frequency)
selectively within the NAc core 30 min following bath
exposure. While it was previously shown that increases in
AMPAR surface expression in the NAc occur 24 h but not
30 min or 2 h following acute cocaine exposure (Ferrario
et al, 2010), NAc core and shell subregions were not
evaluated separately. Furthermore, both ex vivo cocaine and
amphetamine recapitulated their in vivo depotentiation
effects—reversing cocaine-induced increases in AMPAR
signaling in the NAc core (cocaine) and NAc shell (cocaine
and amphetamine). While it is difficult to exclude the
possibility that synaptic properties are modified as a result of
slice preparation and maintenance, the striking consistency
in results between in vivo and ex vivo experiments suggests
that the cellular and molecular machinery responsible for
reducing synaptic transmission remains intact and that this
type of preparation can be useful for investigating the
mechanisms by which psychostimulant exposure promotes
bidirectional AMPAR plasticity.
Previous work from our laboratory demonstrated that

depotentiation of AMPAR/NMDAR ratios is present 24 h
after the last exposure during abstinence (Kourrich et al,
2007) and as early as 2 h following re-exposure to cocaine
(Kourrich et al, 2007; Rothwell et al, 2011). Recent data
indicate that this depotentiation is specific to AMPAR-
mediated synaptic transmission and occurs as early as 1 h
following cocaine re-exposure (Pascoli et al, 2012). The
challenge-in-a-dish ex vivo method should be useful in
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further defining the induction timeframe. Here, we used a
between-slice (or before vs after) design for measuring
psychostimulant drug effects on synaptic AMPAR function
and found that depotentiation occurs within 30 min of
exposure—the earliest time point yet measured. Future
studies, using a within-cell design and monitoring synaptic
transmission as cocaine or amphetamine is applied, should
be able to pin down the time course of induction even more
precisely, providing data useful for defining the possible role
for this plasticity in psychostimulant-induced changes in
behavior.

Mechanisms Underlying Synaptic Depotentiation

Of the signaling pathways engaged by psychostimulant drug
exposure, two are well known: increased dopaminergic and
glutamatergic transmission. DA concentration increases in
the extracellular space following exposure to either cocaine
or amphetamine in vivo and ex vivo (Castañeda et al, 1988;
Di Chiara and Imperato, 1988; Imperato and Di Chiara,
1984; Kelly and Wightman, 1987; Pontieri et al, 1995).
In terms of our current study, the resulting increase in
dopaminergic signaling is very likely a significant contributor
to the induction of drug-induced depotentiation in the NAc
shell. For example, while DA D1 receptor activation has been
shown to promote the delivery of AMPARs to the surface of
NAc MSNs (Chao et al, 2002), after repeated bouts of DA
exposure, this effect of D1R activation is lost (Sun et al,
2008). Furthermore, a recent study found that prolonged
ex vivo D1 receptor activation, while having no effect on
AMPARs in NAc shell MSNs during the first several days of
abstinence from cocaine self-administration, reduced the
AMPAR/NMDAR if delivered following several weeks of
abstinence (Ortinski et al, 2012). Taken together, these
results suggest that D1R activation may have a key role in the
drug re-exposure plasticity observed here.
Our initial efforts here to characterize the mechanisms

responsible for inducing cocaine-dependent depotentiation
in the NAc support a requirement for the glutamate receptor,
mGluR5. Evidence from in vivo and ex vivo studies show that
glutamatergic transmission in NAc and striatum can be
enhanced during psychostimulant re-exposure (Bamford
et al, 2008; McFarland et al, 2003; Park et al, 2002; Pierce
et al, 1996; Reid et al, 1997). This short-term increase in
glutamate provides a means by which mGluR5 receptors
could be engaged. On one hand, a role for mGluR5 in drug-
induced depotentiation is not surprising. There is substantial
literature documenting mGluR-mediated synaptic plasticity
in the striatum and its molecular and cellular mechanisms
(Gubellini et al, 2004; Luscher and Huber, 2010; Wang et al,
2004). Group 1 mGluRs (mGluR1 and mGluR5) are localized
postsynaptically in a perisynaptic area that surrounds
ionotropic receptors and are thus well positioned to regulate
excitatory synaptic strength by redistributing AMPARs
(Lujan et al, 1996), and activation of these mGluRs in the
NAc is known to promote long-lasting reductions in
presynaptic glutamate release probability (Robbe et al,
2002) and internalization of AMPARs (Mangiavacchi and
Wolf, 2004; McCutcheon et al, 2011). On the other hand,
mGluR5 dependence of cocaine-induced depotentiation
presents an apparent conundrum. Recent data suggest that
in vitro induction of mGluR5-dependent LTD in NAc shell

slices from cocaine-treated animals is disrupted, rather than
facilitated (Huang et al, 2014; Huang et al, 2011). These data
match a broader pattern of disruption of mGluR5-dependent
LTD in other striatal regions and the bed nucleus of the stria
terminalis in brain slices from cocaine-treated animals
(Grueter et al, 2006; Grueter et al, 2008; Knackstedt et al,
2014) that may be related to reduced mGluR5 expression
(Huang et al, 2011) or decreased presence on the cell surface
(Knackstedt et al, 2010). These studies have employed the
useful strategy of applying trains of electrical stimulation or
directly activating mGluRs with agonist (eg, DHPG) to
induce plasticity ex vivo. While experiments of this kind
provide invaluable and logical starting points from which
putative mechanisms for the drug-induced plasticity ob-
served here can be determined, it is difficult to predict the
degree to which the mechanisms of these types of plasticity
(ie, stimulation- vs agonist- vs drug-induced) will overlap.
Determining the relationship between these forms of LTD/
depotentiation and how they are modulated by prior in vivo
drug exposure, will require a much more thorough under-
standing of the signaling pathways initiated by the specific
plasticity-inducing stimulus.
The inability of MTEP to prevent cocaine-induced

depotentiation within the NAc core may be due in part to
reductions in mGluR5 receptor availability. In support of
this, mGluR5 protein expression is significantly reduced in
the medial portion of the NAc core 21 days following a
similar regimen of cocaine administration (Swanson et al,
2001). In addition, reductions in the intracellular scaffolding
protein, Homer1b/c, which is known to functionally link
mGluR5 with ionotropic glutamate receptors (Naisbitt et al,
1999; Tu et al, 1999; Naisbitt et al, 1999; Tu et al, 1999) is also
reduced in the core (Swanson et al, 2001), suggesting a
possible reduction in mGluR5 signaling efficacy. In contrast,
in the NAc shell, mGluR5 antagonism reduces cocaine-
and cue-induced reinstatement of drug-seeking behavior
(Kumaresan et al, 2009) and cocaine-induced reductions in
AMPAR signaling (present study), indicating that to some
degree mGluR5-mediated signaling in this region remains
intact. Interestingly, in the NAc shell, MTEP application to
slices from saline-treated mice increased mEPSC amplitude,
suggesting that mGluR5 activity under basal (saline) condi-
tions may normally serve to temper synaptic potentiation
(Robbe et al, 2002). Consistent with this possibility, mGluR5
agonist-independent receptor activity has been observed in
other brain regions (eg, cerebellum); however, whether this
occurs in striatal MSNs remains unknown (Ango et al, 2001).
While the failure of MTEP alone to increase AMPAR
function in slices from cocaine-treated mice may reflect
an occlusion, as AMPAR signaling is already enhanced
following cocaine treatment, it is also possible that repeated
cocaine exposure alters the functional capability of mGluR5-
dependent signaling normally observed under basal
conditions.
A common cellular mechanism for mGluR-LTD and

AMPAR endocytosis in many brain regions, including the
striatum, is a reliance on protein synthesis that can occur
rapidly in the dendrites (Huber et al, 2000; Yin et al, 2006).
For example, activity-regulated cytoskeletal associated (Arc)
protein is synthesized within dendrites in an activity- and
group I mGluR-dependent manner where it associates with
components of AMPAR endocytosis machinery and has
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been shown to actively maintain LTD (Park et al, 2008;
Waung et al, 2008). Within striatal regions, Arc protein
expression is robustly induced following re-exposure to
cocaine-paired stimuli and modulates extinction of drug-
seeking behavior (Hearing et al, 2011; Hearing et al, 2008). In
addition, mGluR activation has been shown to induce rapid
translation of striatal-enriched protein tyrosine phosphatase
(STEP), which also downregulates AMPAR surface expres-
sion and may actively maintain endocytosis rates (Luscher
and Huber, 2010; Zhang et al, 2008). Acute exposure to both
amphetamine and cocaine alters phosphorylation of STEP in
striatal regions and inactivation of STEP prevents cocaine-
induced reductions in AMPAR-mediated currents in MSNs
(Chiodi et al, 2014; Sun et al, 2007; Tashev et al, 2009;
Valjent et al, 2005). However, the degree to which alterations
in STEP activity may occur in response to psychostimulant
re-exposure is unknown. In summary, although further
studies will be required to identify the critical ‘LTD proteins’
responsible for the cocaine-induced depotentiation, the
requirement for local protein translation helps identify
Arc and STEP as potential candidates—a possibility that
can be explored using the novel ‘challenge in the bath’
approach.

CONCLUSION

Beyond cocaine, little is known about the ability of psycho-
stimulant drugs to alter excitatory neurotransmission in the
NAc. We report that repeated amphetamine and cocaine
exposure differentially alters glutamatergic neurotransmis-
sion in NAc shell and core. To investigate the amphetamine
core-shell dichotomy, we employed cross-sensitization and
‘challenge-in-a-dish’ paradigms that further demonstrated
the core’s insensitivity to enduring changes following
repeated amphetamine. Use of the novel ex vivo method
also allowed the identification of mGluR5 activation and
protein synthesis as necessary for cocaine-induced depoten-
tiation, suggesting a means by which mGluR antagonists
might modulate drug-related behaviors.
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