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A history of stress produces increases in rodent relapse-like alcohol self-administration behavior and regional brain gene expression

of phosphodiesterase 10A (PDE10A), a dual-specificity cyclic adenosine monophosphate/cyclic guanosine monophosphate-

inhibiting enzyme. Here, we tested the hypothesis that administration of TP-10, a specific PDE10A inhibitor, would reduce

alcohol self-administration in conditions predisposing to elevated self-administration. TP-10 administration dose-dependently (0.562,

1.0mg/kg; subcutaneously) reduced relapse-like alcohol self-administration regardless of stress history enhancement of relapse-like

behavior. TP-10 also reduced alcohol self-administration in genetically alcohol-preferring rats, as well as in alcohol-non-dependent

and -dependent rats. Effective systemic TP-10 doses did not alter alcohol pharmacokinetics, significantly reduce motor activity or

intrabout operant response speed, or promote a conditioned place aversion. TP-10 also reduced saccharin self-administration, suggesting

a general role for PDE10A in the self-administration of reinforcing substances. PDE10A inhibition in the dorsolateral striatum, but not

the nucleus accumbens, reduced alcohol self-administration. Taken together, the results implicate dorsolateral striatum PDE10A in

facilitating alcohol intake and support further investigation of PDE10A systems in the pathophysiology and potential treatment of

substance use disorders.
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INTRODUCTION

Alcohol use disorders, health problems with high recidi-
vism, afflict B10% of the American population (Stinson
et al, 2005). Relapse rates are particularly heightened
in people with post-traumatic stress symptomatology
(Driessen et al, 2008; McCarthy and Petrakis, 2010).
Therefore, treatments effective in individuals with a history
of traumatic stress are of great interest.
Phosphodiesterase 10A (PDE10A), a dual-specificity

phosphodiesterase that inhibits cyclic adenosine monopho-
sphate (cAMP) and cyclic guanosine monophosphate
(cGMP) signaling (Fujishige et al, 1999; Loughney et al,
1999; Soderling et al, 1999), may mediate the relation
between stress history and elevated relapse risk (Logrip and
Zorrilla, 2012). PDE10A expression is enriched throughout
the striatum, with lower expression in the cortex, hippo-
campus, and cerebellum (Seeger et al, 2003). Most studies
into the biological role of PDE10A have used papaverine, an

inhibitor with only B9-fold preference for PDE10A vs
PDE4D (Siuciak et al, 2006a), complicating the clarification
of either enzyme’s behavioral significance.
The recent development of highly selective PDE10A

inhibitors, such as TP-10 (Schmidt et al, 2008), has enabled
discrete manipulation of PDE10A function. Consistent with
the striatal distribution and cAMP/cGMP-inhibiting action
of PDE10A, systemic or local administration of TP-10, like
papaverine, increased the striatal neuronal response to
cortical stimulation (Threlfell et al, 2009). Both PDE10A
inhibitors reduced conditioned avoidance of shock and
dampened phencyclidine- or amphetamine-induced hyper-
locomotion (Schmidt et al, 2008; Siuciak et al, 2006a).
Furthermore, papaverine reduced anxiety-like behavior
(Grauer et al, 2009), and TP-10 ameliorated amphetamine-
induced deficits in auditory gating (Schmidt et al, 2008).
Previously, this behavioral profile was suggested to indicate
potential antipsychotic properties of PDE10A inhibitors
(Miyamoto et al, 2005). However, the symptoms reduced by
PDE10A inhibition also resemble several hallmarks of post-
traumatic stress, including elevated anxiety-like behavior,
impaired sensorimotor gating, heightened arousal, and
hypervigilance (Bakshi et al, 2012; Stam, 2007; Stewart
and White, 2008). Rats with a history of repeated footshock
show increased Pde10a mRNA expression in the basolateral
amygdala, correlated with alcohol preference during acqui-
sition, and the prelimbic subdivision of the prefrontal
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cortex, correlated with ‘relapse’ alcohol self-administration
(Logrip and Zorrilla, 2012). Here, we hypothesized that
systemic treatment with the specific PDE10A inhibitor
TP-10 would reduce alcohol self-administration, including:
(1) in rats with elevated drinking subsequent to a history
of stress, (2) in alcohol-preferring rats with high baseline
anxiety-like behavior (Colombo et al, 1995) and (3) in
alcohol-dependent rats allowed to self-administer during
acute withdrawal, a period marked by anxiogenic-like
behavior (Valdez et al, 2002). Because the striatum has a
key role in instrumental conditioning (Belin et al, 2009) and
displays the most prominent PDE10A expression (Seeger
et al, 2003), we also hypothesized that a subdivision of the
striatum might subserve PDE10A regulation of alcohol
self-administration.

MATERIALS AND METHODS

Subjects

Adult male Wistar rats (Charles River Laboratories, Bar
Harbor, ME; 175–250 g upon arrival) were individually
housed for stress history studies (n¼ 28) or group-housed
for alcohol pharmacokinetics (n¼ 10), brain site-specific
PDE10A inhibition (n¼ 16), alcohol dependence (n¼ 19),
reinforcer comparison (n¼ 24), and place conditioning
(n¼ 16) studies. In addition, Sardinian alcohol-preferring
sP rats of The Scripps Research Institute subline (Scr:sP;
n¼ 7) (Sabino et al, 2006) were bred in-house, group-
housed until the start of experiments, and then individually
housed. Rats were housed in temperature- and humidity-
controlled rooms (reversed 12:12 h light:dark cycle), with
chow (Harlan Teklad LM-485, Indianapolis, IN) and water
available ad libitum. Procedures were approved by the
Institutional Animal Care and Use Committee of The
Scripps Research Institute and conformed to the National
Institutes of Health Guide for the Care and Use of Animals.

Materials

TP-10 was generously provided by Pfizer (Groton, CT).
Saccharin sodium salt, dimethyl sulfoxide (DMSO),
and Cremophor EL were obtained from Sigma-Aldrich
(St Louis, MO). (2-hydroxypropyl)-b-Cyclodextrin (HBC)
was obtained from Sigma-Aldrich and Fischer Scientific
(Pittsburgh, PA). Cannulas were purchased from Plastics
One (Roanoke, VA).

Operant Self-Administration Training

Rats learned to self-administer alcohol as per a previously
described protocol (Logrip and Zorrilla, 2012; Vendruscolo
et al, 2012). Briefly, rats received two-bottle choice, limited
access to alcohol (concentration matched to operant
experiment, see below) and water in their home cages,
and then acquired operant self-administration behavior
during a single, 12-h session in which responses at one lever
delivered 0.1ml water (fixed-ratio 1 (FR1)), and responses
at another lever had no scheduled consequences. Rats then
commenced operant self-administration with 0.1ml rein-
forcers of 10% (v/v) (stress history, site-specific infusion,
reinforcer comparison; 1-h session vs inactive lever), 10%

(w/v) (dependent/non-dependent; 30-min session vs water-
reinforced leverB6 h into withdrawal) or 20% (v/v) (Scr:sP;
1-h session vs water-reinforced lever) alcohol or 0.004%
or 0.005% (w/v) saccharin (stress history or reinforcer
comparison, respectively; 1-h session vs inactive lever).
Operant sessions were reinforced on an FR1 schedule (each
lever press elicited the reinforcer), or increased to FR3
(every third lever press elicited the reinforcer) after five FR1
sessions (stress history, brain site-specific infusion, re-
inforcer comparison). Sessions were run every 2–5 days.
Stress history involved 3 days of footshock pre-exposure (60
0.4-mA shocks, 30-s variable intertrial interval, coterminat-
ing with 5-s light cue) as described previously (Logrip and
Zorrilla, 2012). Alcohol vapor dependence was performed as
reported previously (Vendruscolo et al, 2012). Saccharin
self-administration in stress history rats and progressive
ratio (PR) responding in Scr:sP and dependent/non-
dependent rats were assessed after completing FR alcohol
self-administration testing. PR session reinforcement esca-
latated as per the equation (4e(reinforcers earned)� 0.75–3.8),
after completing three lever presses to obtain the first
reinforcer. PR sessions ended after the rat had not earned
a reinforcer for 30min, up to 3 h (Scr:sP), or after a fixed
30-min duration (dependence). Behavioral conditioning
details are provided in Supplementary Methods.

TP-10 Treatment

TP-10 (0, 0.1, 0.32, 0.562, and 1.0mg/kg free base, dissolved
in 33% (w/v) HBC in saline) was injected subcutaneously
(1ml/kg) with a 30-min pretreatment interval. For intra-
cerebral infusion, TP-10 was dissolved in 5% DMSO/5%
Cremophor/90% saline and infused at doses of 0, 1 and
3 nmol/0.5 ml per side. Studies used within-subject, modified
Latin square designs.

Intracerebral Cannula Implantation and Site-Specific
Infusion

Under isoflurane anesthesia, rats were implanted with
chronic bilateral 22-gauge guide cannulas slightly dorsal
to the dorsolateral striatum (DLS: AP � 0.2, ML±3.5, DV
� 3.8mm relative to bregma) or the nucleus accumbens
(NAc: AP þ 1.2, ML±1.0, DV � 5.5mm) (Paxinos and
Watson, 1998). Rats were given 1-week recovery before
operant training. TP-10 infusions began once rats demon-
strated stable baseline alcohol-reinforced responding
(o20% variation/5 FR3 sessions). Twenty-eight-gauge infu-
sers projecting 1.0mm (DLS) or 1.5mm (NAc) past the tip
of the guide cannula were inserted, and rats were infused
bilaterally at a rate of 0.25 ml/min. Infusers remained in
place for 2min to allow diffusion. Operant sessions began
5min later. Infusion sites were confirmed by histological
analysis.

Alcohol Pharmacokinetics

Alcohol-naive rats were administered 1.0mg/kg TP-10 or
vehicle 30min before intraperitoneal injection of 1 g/kg
alcohol (20% (v/v) in saline). Tail blood was collected 10,
60, and 120min after alcohol injection. Serum alcohol
content was determined using the Analox AM1 Alcohol
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Analyzer (Analox Instruments USA, Lunenberg, MA).
Subjects received both treatments 5 days apart in a
counterbalanced manner.

Locomotor Activity

Locomotor activity was tested in photocell-equipped wire
mesh cages (Valdez et al, 2003). Two days of environmental
habituation (3 h per day) preceded the test day, on which
rats received vehicle or 1.0mg/kg TP-10 immediately before
placement in the locomotor chambers. Locomotor activity
was assessed 30–90min after injection. Details are provided
in Supplementary Methods.

Place Conditioning

To determine whether TP-10 produced aversive effects that
might account for inhibition of operant responding,
conditioned place aversion testing was conducted using a
free choice, unbiased design in a three-chambered appara-
tus (Stinus et al, 2005). Pretest, conditioning, and test
sessions were 20min long, with saline and TP-10 (0 or 1mg/
kg) administered 30min before confinement in the appro-
priate chamber. Details are provided in Supplementary
Methods.

Operant Microstructure Analysis

To address the alternative explanation that TP-10 altered
alcohol self-administration by nonspecifically impairing
rats’ ability to perform operant responses, the bout
microstructure of active lever pressing by rats from the
stress history study was analyzed. A bout was defined as a
sequence of at least two reinforcers in which the maximum
inter-response interval was 120 s, a cutoff determined by
frequency histogram analysis of log10-transformed dura-
tions of vehicle treatment day inter-response intervals
(n¼ 8057) (Cottone et al, 2007; Tolkamp and Kyriazakis,
1999). A minority of inter-response interval durations were
imputed by the general linear model for rats that did not
produce alcohol self-administration bouts at the 1.0mg/kg
dose (n¼ 3 Control, n¼ 7 Stress History—Normal Relapse,
n¼ 1 Stress History—High Relapse). Details of microstruc-
ture analyses are provided in Supplementary Methods.

Data Analysis

Stress History rats with ‘relapse’ self-administration 495%
of the Control distribution (meanþ 1.65 SDs) were classi-
fied as ‘High Relapse’ (n¼ 6); the remainder were catego-
rized ‘Normal Relapse’ (n¼ 12). TP-10 treatment data were
analyzed using one- or two-way analyses of variance
(ANOVA) with repeated measures. Factors for systemic
treatment included the repeated measures Dose and pre-
treatment Group, when applicable (Stress History, Depen-
dence). Site-specific infusion analysis utilized ANOVA
for between-subjects effects (Region, Treatment Order)
and linear contrasts for the within-subjects comparisons.
Alcohol pharmacokinetics data were analyzed using three-
way repeated-measures ANOVA (within-subjects factors:
Dose, Time; between-subjects factor: Day), as were place
conditioning data (within-subjects factors: Day, Time;

between-subjects factor: Dose). Post hoc comparisons were
performed with Holm–Sidak tests. Statistical analyses were
performed with Systat 12.0 and SigmaPlot 11.0 (Systat,
Chicago, IL). Data are expressed as mean or least squares
mean±SE. Details of statistical analyses are provided in
Supplementary Methods.

RESULTS

TP-10 Reduces Self-Administration in Rats with High
Relapse-Like Alcohol Self-Administration

To determine whether PDE10A has a functional role in
relapse-like behaviors, rats without (Control) and with a
history of stress (Stress History) were tested for the effects
of PDE10A inhibition by TP-10 on relapse-like operant self-
administration. A subset of Stress History rats showed
elevated ‘relapse’ alcohol self-administration levels (495%
control distribution), despite comparable baseline self-
administration behavior (Supplementary Table S1), and
were classified as High Relapse (alcohol-paired lever:
F2,25¼ 4.05, po0.05; alcohol intake: F2,25¼ 3.68, po0.05,
vs Control). As shown in Figure 1, TP-10 dose-dependently
reduced operant alcohol self-administration in all groups,
including High Relapse rats. Main effects of Dose and trends
toward Stress History effects were observed for alcohol-
reinforced lever presses (Dose: F4,100¼ 19.32, po0.001;
Stress History: F2,25¼ 3.05, po0.07; Figure 1a) and alcohol
intake (Dose: F4,100¼ 18.70, po0.001; Stress History:
F2,25¼ 2.73, po0.09; Figure 1b), without Dose� Stress
interaction. Post hoc analyses demonstrated that the 0.562
and 1.0mg/kg TP-10 doses significantly reduced alcohol-
reinforced lever pressing and intake vs vehicle conditions.
TP-10 did not significantly alter non-reinforced lever
pressing (Figure 1c; F’so1.58, p’s40.18) or alter alcohol
pharmacokinetics, as the rate of serum alcohol clearance
was unchanged by 1.0mg/kg TP-10 (Figure 1d; main effect
of Time: F2,16¼ 228.81, po0.001; no effect of Dose or
interaction). Because doses lower than 0.562mg/kg did
not alter alcohol self-administration, subsequent studies
focused on the effective 0.562 and 1.0mg/kg TP-10 doses.

TP-10 does not Significantly Change Motor Behavior at
Effective Doses

To determine how TP-10 altered alcohol self-administration
and to address the alternative explanation that TP-10 might
nonspecifically impair lever-pressing behavior, the effects of
TP-10 on the microstructure of alcohol self-administration
behavior and locomotor activity were analyzed. TP-10 could
reduce alcohol self-administration without impairing re-
sponse speed, because the interval between successive
reinforced lever presses during self-administration bouts
was not altered at the minimum effective dose (0.562mg/kg;
Figure 2a). A significant Dose effect (F3,64¼ 7.75, po0.001)
reflected slightly slower within-bout response rates in the
1.0mg/kg TP-10 treatment group vs all other groups;
however, the 1.0mg/kg dose group still could maintain
rapid mean inter-response intervals of B3 s within bouts
for Controls and Normal Relapse rats and of B1.5 s in High
Relapse rats during the 1-h session. Lack of a global
inhibition of motor activity by the 1.0mg/kg dose also was
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supported by lack of a comparably significant effect of
TP-10 (1.0mg/kg) on locomotor activity in familiar photo-
cell cages (Table 1; F1,10¼ 3.43, p¼ 0.09).

TP-10 Modifies the Microstructure of Operant
Responding for Alcohol

Rather than globally suppressing behavior, the microstruc-
ture analysis (Figure 2) showed that 1.0mg/kg, but not 0.32
or 0.562mg/kg, TP-10 increased the latency to obtain
the first alcohol reinforcer (Figure 2b; Dose: F3,75¼ 11.97,
po0.001) and delayed the onset of lever pressing
(Supplementary Figure S1A; Dose: F3,75¼ 3.18, po0.05).
TP-10 decreased alcohol self-administration via dose-
dependent reductions in the number of bouts of alcohol
self-administration (Figure 2c; F3,75¼ 16.17, po0.001), as
well as the number of reinforcers earned in (Figure 2d;
F3,75¼ 9.49, po0.001) and duration of (Supplementary
Figure S1B; F3,75¼ 5.15, po0.005) the load bout. Group
effects indicated longer (F2,25¼ 4.31, po0.05) and larger
(F2,25¼ 6.45, po0.01) load bouts in High Relapse vs all
other rats, without a Group�Dose interaction (F’so1.53,
p’s40.18). TP-10 also reduced the size of later bouts of
alcohol self-administration within the session (Supple-
mentary Figure S1C; F3,43¼ 4.70, po0.01).

TP-10 Reduces Alcohol’s Reinforcing Efficacy in
Alcohol-Preferring and Alcohol-Dependent Rats

The ability of TP-10 to reduce alcohol self-administration
even in stress history rats with increased ‘relapse’ self-
administration suggested the hypothesis that PDE10A

inhibition might similarly dampen elevated alcohol self-
administration in other rat models of heightened alcohol
intake comorbid with anxiogenic-like behavior. Thus, we
tested the effectiveness of TP-10 in alcohol-preferring Scr:sP
rats (Sabino et al, 2006) and in acutely withdrawn alcohol-
dependent rats (Valdez et al, 2002; Zhao et al, 2007). TP-10
significantly reduced alcohol-reinforced lever pressing
(Figures 3a and b) and alcohol intake (Figures 3c and d)
in Scr:sP rats (Dose effects: F2,12¼ 12.37, po0.005,
Figure 3a; F2,12¼ 11.60, po0.005, Figure 3c), as well
as in alcohol-dependent and -non-dependent Wistar rats
(Dose effects: F2,34¼ 4.61, po0.05, Figure 3b; F2,34¼ 4.45,
po0.05, Figure 3d). Lack of significant Dose�Group
interactions indicated that TP-10 was similarly effective in
reducing the heightened responding (Group, F1,17¼ 12.71,
po0.005) and alcohol intake (Group, F1,17¼ 8.70, po0.01)
of dependent vs non-dependent rats. Although TP-10
decreased water-reinforced lever pressing in Scr:sP rats
(Figure 3e; Dose: F2,12¼ 7.24, po0.01), it did not do so in
either dependent or non-dependent Wistar rats (Figure 3f;
Dose: F2,34¼ 0.89, p¼ 0.42).
A PR schedule of reinforcement was used to test the

hypothesis that PDE10A inhibition reduced the reinforcing
efficacy of alcohol. TP-10 significantly decreased PR respon-
ding for alcohol in Scr:sP (Figure 3g; Dose: F2,12¼ 5.26,
po0.05) and dependent/non-dependent rats (Figure 3h;
main effects of Group: F1,17¼ 4.51, po0.05; and Dose:
F1,17¼ 18.57, po0.001). Time-course analysis revealed
dose-dependent reductions in alcohol-reinforced lever
presses within the first 5min of self-administration in both
Scr:sP (Supplementary Figure S2A; Dose�Time interac-
tion: F10,60¼ 2.90, po0.01) and dependent/non-dependent

Figure 1 TP-10 dose-dependently reduces operant alcohol self-administration without altering alcohol pharmacokinetics. (a–c) Rats self-administering
10% (v/v) alcohol on a fixed-ratio (FR) 3 schedule without (Control) or with past stress exposure (Stress History) were subcutaneously administered TP-10
(0.1, 0.32, 0.562, or 1.0mg/kg) or its vehicle 30min before the start of a 1-h self-administration session. Responding on the alcohol-paired lever (a), weight-
normalized alcohol intake (b), and responding on the non-reinforced lever (c) were measured. Data are expressed as mean±SE. *po0.05 vs Vehicle,
xpo0.05 vs all lower TP-10 doses; n¼ 10 Control, n¼ 12 Stress History—Normal Relapse, n¼ 6 Stress History—High Relapse. (d) Alcohol-naive rats were
subcutaneously injected with 1.0mg/kg TP-10 or its vehicle 30min before intraperitoneal administration of 1 g/kg of a 20% (v/v) alcohol solution. Tail blood
was collected 10, 60, and 120min after alcohol injection and serum alcohol content was determined. *po0.05 vs 10-min time point; n¼ 10.
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rats (Supplementary Figure S2B; Dose�Time interaction:
F5,85¼ 3.84, po0.005).

TP-10 Reduces Saccharin and Alcohol
Self-Administration Equivalently

To determine whether TP-10 generally reduced seeking
of appetitive substances or specifically inhibited alcohol
self-administration, rats were tested in parallel for TP-10

effects on operant responding for 0.005% (w/v) saccharin or
10% (v/v) alcohol. As shown in Figure 4a, TP-10 dose-
dependently reduced alcohol and saccharin self-adminis-
tration similarly (Dose: F2,32¼ 10.41, po0.001). Post hoc
analyses showed significant reduction in self-administration
at both 0.562 and 1.0mg/kg doses, whereas inactive lever
presses were not significantly altered (Figure 4b; Dose:
F2,32¼ 2.87, p40.07). TP-10 also dose-dependently reduced
0.004% (w/v) saccharin reinforced-lever presses in Control
and Stress History rats (Supplementary Figure S3;
F2,50¼ 10.75, po0.001), an effect restricted to the higher
1.0mg/kg dose (po0.001 vs Vehicle). No effects of Stress
History or interactions with Dose were observed.

TP-10 does not Produce a Conditioned Place Aversion

Because TP-10 reduced both alcohol and saccharin self-
administration, potential aversive effects of TP-10 were
assessed using place conditioning. TP-10 did not generate
significant place aversion or preference vs vehicle (Table 1).
Vehicle- and TP-10-treated rats spent equivalent percent
time in the conditioned chamber during both pretest and
test sessions (Dose: F1,14¼ 0.03, p¼ 0.86, Dose�Test
Session: F1,14¼ 0.03, p¼ 0.87).

PDE10A in the Dorsolateral Striatum Modulates Alcohol
Self-Administration

Because TP-10 reduced alcohol self-administration across
all groups, investigation of site-specific efficacy focused on
regions of the striatum, where expression of PDE10A is

Figure 2 TP-10 modulates the microstructure of alcohol self-administration behavior. The pattern of responses within the 1-h alcohol self-administration
session was assessed in rats pretreated with the two effective doses, as well as one subthreshold dose, of TP-10 (0.32, 0.562, or 1.0mg/kg) or its vehicle.
Bouts of self-administration within the 1-h session were defined as sequences of responding in which at least two reinforcers were obtained and successive
alcohol-paired lever presses were separated by no more than 2min. Panels depict (a) average duration of intervals between successive depressions of the
alcohol-paired lever within bouts of alcohol self-administration; (b) latency from the start of the session until attainment of the first alcohol reinforcer;
(c) number of bouts within the session; and (d) number of reinforcers earned during the load, or first, bout. Note the logarithmic10 scale of inter-response
interval durations, reflecting the approximately log normal distribution. Data are expressed as least squares mean (LSM)±SE (a, imputing values as needed
for the 1.0mg/kg dose) or mean±SE (b–d). *po0.05 vs Vehicle, #po0.05 vs 0.32mg/kg TP-10, xpo0.05 vs all lower TP-10 doses; &po0.05 vs Stress
History—High (Group Effect); n¼ 10 Control, n¼ 12 Stress History—Normal Relapse, n¼ 6 Stress History—High Relapse.

Table 1 TP-10 does not Produce a Conditioned Place Aversion
or Significantly Alter Locomotor Activity

Pretest Test Time difference

Place conditioninga

Chamber time (s)

Vehicle 343±23 288±26 � 55±25

TP-10 345±7 291±23 � 54±22

Percent total chamber time

Vehicle 34.3±1.9 31.1±2.3

TP-10 34.4±1.0 31.7±2.2

Locomotor activity (beam breaks)b

Vehicle 339±71

TP-10 188±40

Data are presented as mean±SE. Vehicle: 33% HBC; TP-10: 1.0mg/kg.
aN¼ 8 per group.
bN¼ 6 per group.
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highest (Seeger et al, 2003) and which has been implicated
in alcohol self-administration (Nestby et al, 1999). We
assessed involvement of PDE10A in the NAc, a region key
to dopaminergic modulation of goal-directed behavior
(Carelli, 2002), and the DLS, where acute manipulations
have reduced alcohol self-administration in a motor-
independent manner (Jeanblanc et al, 2009). Analysis of

self-administration following TP-10 infusion into the DLS
(Figure 5a) and NAc (Figure 5b) revealed that 3 nmol TP-10
infusion into the DLS, but not NAc (Figure 5c; time course
Supplementary Figure S4), significantly reduced alcohol-
reinforced lever presses (Dose: DLS, F1,5¼ 6.84, po0.05;
NAc, F1,5¼ 0.33, p¼ 0.59). On the other hand, perhaps
owing to high variability among the data, inadequate power,

Figure 3 TP-10 reduces alcohol self-administration and alcohol-seeking behavior in alcohol-preferring and -dependent rats. Sardinian alcohol-preferring
rats of The Scripps Research Institute subline (Scr:sP) self-administering 20% (v/v) alcohol vs water (a, c, and e) and alcohol-dependent and -non-dependent
Wistar rats (Alcohol Dependence) self-administering 10% (w/v) alcohol vs water (b, d, and f) on fixed-ratio (FR) 1 schedules were subcutaneously
administered TP-10 (0.562 or 1.0mg/kg) or its vehicle 30min before the start of a 1-h (a, c, and e) or 30-min (b, d, and f) self-administration session.
Responding on the alcohol-paired lever (a and b), weight-normalized intake (c and d) and water-reinforced lever presses (e and f) were measured. (g and h)
Rats self-administering alcohol under progressive ratio (PR) reinforcement by 20% (v/v) alcohol (Scr:sP, g) or 10% (w/v) alcohol (Alcohol Dependence, h)
were treated with TP-10 (0.562 (Scr:sP only) or 1.0mg/kg) or its vehicle 30min before the start of the operant session. Data are expressed as mean±SE.
*po0.05 vs Vehicle, xpo0.05 vs 0.562mg/kg TP-10; &po0.05 vs Non-dependent; n¼ 7 Scr:sP, n¼ 10 Dependent, n¼ 9 Non-dependent.
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or lack of efficacy of the lower dose in either brain region,
no significant Dose�Region effect was observed if DLS and
NAc were analyzed within the same model (Dose�Region:
F2,20¼ 0.14, p¼ 0.87). Thus, we cannot rule out the null
hypothesis that TP-10 exerts similar effects in the DLS and
NAc. No significant reduction in non-reinforced lever
presses was observed (Figure 5d, Dose: DLS, F1,5¼ 5.80,
p40.06; NAc, F1,5¼ 2.27, p40.19).

DISCUSSION

The current studies demonstrate a role for the cAMP/
cGMP-hydrolyzing enzyme PDE10A in maintaining alcohol
self-administration, possibly via activity in the DLS.
Inhibition of PDE10A activity by systemic administration
of TP-10 dose-dependently reduced alcohol self-adminis-
tration (Supplementary Figure S5). TP-10 was effective in
rats with high levels of relapse-like self-administration
subsequent to a history of stress, as well as in alcohol-
preferring and alcohol-dependent rats. Decreased alcohol
intake did not result from altered alcohol pharmacokinetics,
aversive effects, or global motor inhibition. Specifically, the
highest dose of TP-10 tested (1.0mg/kg) did not alter serum
ethanol clearance, produce a conditioned place aversion, or
reduce locomotor activity. Furthermore, the minimum
effective dose (0.562mg/kg) did not slow operant response
speed within bouts of alcohol self-administration or reduce
concurrent rates of non-reinforced or water-reinforced lever

pressing. Rather, the efficacy of TP-10 to decrease PR
alcohol self-administration, which is less prone to rate-
sensitive confounds, suggests that TP-10 decreased alcohol
self-administration by reducing alcohol’s reinforcing effi-
cacy. Accordingly, in FR self-administration, TP-10 most
potently (0.562mg/kg) reduced alcohol intake by promoting
earlier cessation of operant self-administration behavior,
decreasing the number of reinforcers earned in later bouts
in the session. At the higher dose (1.0mg/kg), TP-10 also
increased the latency to initiate alcohol self-administration
and reduced the number of alcohol self-administration
bouts, the load bout size and the within-bout rate of
alcohol-directed responding. Because TP-10 reduced sac-
charin and alcohol self-administration with similar potency,
the results suggest a broad role for PDE10A in regulating
the motivation to self-administer appetitive substances.

PDE10A Activity Supports Motivated Responding for
Reinforcers

Previously we reported a direct relationship between Pde10a
mRNA expression and alcohol self-administration, particu-
larly in rats with a stress history (Logrip and Zorrilla, 2012).
Here, we show that systemic treatment with TP-10 dose-
dependently reduced alcohol self-administration in rats
with stress history, alcohol dependence, or genetic predis-
position to high levels of alcohol intake. Interestingly, the
cAMP-selective PDE4 inhibitor rolipram also reduced home
cage alcohol intake in mice and rats (Hu et al, 2011; Wen
et al, 2012) and operant alcohol self-administration in rats
(Wen et al, 2012), without effect on sucrose consumption
(Hu et al, 2011; Wen et al, 2012). Although some effects of
PDE10A and PDE4 inhibition are similar, PDE10A inhibi-
tion displays more general efficacy to decrease operant self-
administration of both natural and drug reinforcers,
suggesting a possible divergence in mechanism between
the two phosphodiesterases, perhaps via different regional
expression (Perez-Torres et al, 2000; Seeger et al, 2003),
subcellular distribution (Nishi et al, 2008), or effects on
striatal signaling pathways (Nishi et al, 2008). Consistent
with the present results, inhibition of PDE10A by genetic
deletion or chronic antagonist treatment reduced intake of
highly palatable high-fat diets in mice, without altering
standard chow intake (Nawrocki et al, 2013), supporting
PDE10A regulation of motivation for highly reinforcing
substances. Conversely, inhibition of PDE4 did not reduce
high-fat diet intake (Park et al, 2012), indicating differential
roles for PDE10A vs PDE4 in regulating motivated
behaviors. Nonetheless, understanding the comparability
of these two PDE inhibitor families remains incomplete,
because effects of PDE4 inhibitors on alcohol self-admin-
istration under higher work requirements (eg, FR3, PR) or
in models of excessive alcohol drinking have not been
reported.
Most studies addressing the behavioral impact of PDE10A

inhibition or genetic deletion have focused on antipsychotic
(Grauer et al, 2009; Schmidt et al, 2008; Siuciak et al,
2006a, b; Smith et al, 2012; Weber et al, 2009) or memory-
enhancing (Grauer et al, 2009; Liddie et al, 2012; Piccart
et al, 2011; Rodefer et al, 2012; Smith et al, 2012) effects.
However, tests with putative predictive validity for anti-
psychotic pharmacological potential also involve reward-

Figure 4 Saccharin and alcohol self-administration are comparably
reduced by TP-10. Rats self-administering 10% (v/v) alcohol or 0.005%
(w/v) saccharin on a fixed-ratio 3 schedule were pretreated subcutaneously
with TP-10 (0.562 or 1.0mg/kg) or its vehicle 30min before the start
of a 1-h self-administration session. Presses on the reinforced (a) and
non-reinforced (b) levers are depicted. Data are expressed as
mean±SE. *po0.05 vs Vehicle, xpo0.05 vs 0.562mg/kg TP-10; n¼ 9
per group.
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related behavior, such as locomotor activation upon acute
administration of a drug of abuse. Pharmacological inhibi-
tion or genetic deletion of PDE10A blunts the ability of
amphetamine (Schmidt et al, 2008; Siuciak et al, 2006a, b;
Sotty et al, 2009) and the NMDA antagonists phencyclidine
(Schmidt et al, 2008; Siuciak et al, 2006a) and MK-801
(Smith et al, 2012) to elicit locomotor activity in rodents.
Taken together with the present results, these findings
support a role for PDE10A in reinforcement or reward
processes, but this function may be more complex than
direct inhibition of reward, because TP-10 did not produce
a conditioned place aversion (or preference). Furthermore,
the PDE10A-preferring inhibitor papaverine did not alter
extinction of cocaine conditioned place preference (Liddie
et al, 2012), as might be expected if PDE10A served as a
general regulator of reward system function. Still, papaver-
ine modestly increased intracranial self-stimulation current
thresholds in rats (Mumford and Holtzman, 1990), suggest-
ing that PDE10A may modulate the reinforcing effects of
other appetitive stimuli. This hypothesis is consistent with
the prominent expression of PDE10A in the striatum
(Seeger et al, 2003) and the ability of intra-DLS TP-10 to
reduce alcohol self-administration. The mechanisms and
behavioral constructs that contribute to the potent effects of
PDE10A inhibition on alcohol and saccharin self-adminis-
tration remain to be determined.

Dorsolateral Striatum PDE10A and Modulation of
Operant Self-Administration

The present results implicate DLS PDE10A in supporting
operant responding for alcohol (and perhaps also sacchar-
in) reinforcers. At the molecular level, PDE10A may
modulate striatal activity via inhibition of cAMP- and
cGMP-dependent signaling pathways. Both cAMP and
cGMP regulate striatal neuronal activity, as both participate
in the generation of long-term depression (LTD) (Calabresi
et al, 1999, 2000). Broad-spectrum inhibition of cGMP-
dependent phosphodiesterases increased resting membrane
potential and spontaneous spike frequency in the central
dorsal striatum in vivo (West and Grace, 2004). In a DLS
slice preparation, greatly elevated intracellular cAMP levels
switched the response to high-frequency stimulation from
LTD to potentiation (Kheirbek et al, 2009). TP-10 similarly
increased cortically evoked neuronal activation in the
central dorsal striatum, particularly in striatopallidal
(dopamine D2 receptor-expressing) neurons (Threlfell
et al, 2009). Furthermore, systemic TP-10 administration
significantly increased dopamine turnover in the DLS and
NAc, with greater potency in the DLS (Schmidt et al, 2008).
Application of either TP-10 or papaverine produced
molecular and electrophysiological response profiles similar
to the application of D2 receptor antagonists (Nishi et al,

Figure 5 TP-10 infusion into the dorsolateral striatum, but not into the nucleus accumbens, significantly reduces alcohol self-administration. Rats self-
administering 10% (v/v) alcohol on a fixed-ratio 3 schedule were bilaterally infused with TP-10 (1 or 3 nmol per side) or its vehicle into the dorsolateral
striatum (DLS) or nucleus accumbens (NAc) 5min before the start of a 1-h self-administration session. (a) and (b) depict infusion locations for DLS (a) and
NAc (b), adapted with permission from Paxinos and Watson (1998). Responding on the alcohol-reinforced lever (c) and on the non-reinforced lever (d)
was measured. Data are expressed as mean±SE. *po0.05 vs vehicle infusion, main effect of Dose, n¼ 8 DLS, n¼ 8 NAc.
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2008; Threlfell et al, 2009), likely via a postsynaptic
mechanism of action (Nishi et al, 2008). Papaverine
modulation of cAMP signaling suggests a more prominent,
although non-exclusive, role for PDE10A in D2-expressing
medium spiny neurons (Nishi et al, 2008); whether such a
pattern exists for cGMP is as yet unknown. Interestingly,
phosphorylation of extracellular signal-regulated kinase
(Siuciak et al, 2006a), which is a downstream consequence
of PDE10A inhibition, is required for intra-DLS infusion
of brain-derived neurotrophic factor to decrease alcohol
self-administration (Jeanblanc et al, 2013). Investiga-
ting this and other downstream signaling partners in
the DLS that may mediate PDE10A reduction of alcohol
and saccharin self-administration presents an interesting
line of future study. Because poor solubility limited the
doses of TP-10 that could be administered and because
we did not observe a significant Dose�Region interaction
on TP-10 effects between the DLS and NAc, we cannot
exclude a role also for NAc PDE10A in modulating
reinforcement processes. Nonetheless, the present results
raise the hypothesis that DLS PDE10A may participate
in the generation or maintenance of compulsive alcohol-
seeking.

CONCLUSION

We report that a selective PDE10A inhibitor potently
reduced alcohol and saccharin self-administration, even in
previously stressed rats with high ‘relapse’ alcohol self-
administration, as well as in alcohol-dependent and
genetically alcohol-preferring rat models of excessive
drinking. This action may result, at least in part, from
modulation of PDE10A activity in the DLS. In combination
with our earlier work (Logrip and Zorrilla, 2012), the data
implicate PDE10A inhibitors for further study in reward-
related disorders, given their general ability to reduce
alcohol and saccharin self-administration.
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