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Ingesting ethanol (EtOH) at low doses during social drinking is a common human behavior for its facilitating effects on social interactions.

However, low-dose EtOH may have also detrimental effects that so far are underexplored. Here we sought to test the effects of low-

dose EtOH on long-term potentiation (LTP)-like plasticity in human motor cortex. Previous cellular experiments showed that low-dose

EtOH potentiates extrasynaptic GABAAR and reduces NMDAR-mediated currents, processes that would limit the expression of LTP.

Paired associative transcranial magnetic stimulation (PASLTP) was employed in nine healthy subjects for induction of LTP-like plasticity,

indexed by a long-term increase in motor-evoked potential input–output curves. Synaptic a1-GABAAR function was measured by

saccadic peak velocity (SPV). Very low doses of EtOH (resulting in blood concentrations of o5mM) suppressed LTP-like plasticity but

did not affect SPV when compared with a placebo condition. In contrast, 1mg of alprazolam, a classical benzodiazepine, or 10mg of

zolpidem, a non-benzodiazepine hypnotic, decreased SPV but did not significantly affect LTP-like plasticity when compared with placebo.

This double dissociation of low-dose EtOH vs alprazolam/zolpidem effects is best explained by the putatively high affinity of EtOH but

not alprazolam/zolpidem to extrasynaptic GABAARs and to NMDARs. Findings suggest that enhancement of extrasynaptic GABAAR-

mediated tonic inhibition and/or reduction of NMDAR-mediated neurotransmission by EtOH blocks LTP-like plasticity in human cortex

at very low doses that are easily reached during social drinking. Therefore, low-dose EtOH may jeopardize LTP-dependent processes,

such as learning and memory formation.

Neuropsychopharmacology (2014) 39, 1508–1518; doi:10.1038/npp.2013.350; published online 22 January 2014

Keywords: GABAA receptor; tonic inhibition; human motor cortex; LTP-like plasticity; paired associative stimulation; transcranial
magnetic stimulation

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

INTRODUCTION

Although ingestion of ethanol (EtOH) at low doses during
social drinking is a common human behavior for its
facilitating effects on social interactions, possible detri-
mental effects of low-dose EtOH remain underexplored.
Cellular studies showed that low-dose EtOH (p30mM)
produces mainly two effects: potentiation of extrasynaptic
gamma-aminobutyric acid type A receptor (GABAAR)-
mediated tonic inhibition (Sundstrom-Poromaa et al, 2002;
Wallner et al, 2003; Wei et al, 2004) (for review, (Olsen et al,
2007)), although this has not been unanimously supported

(Borghese et al, 2006; Yamashita et al, 2006), and N-methyl-
D-aspartate receptor (NMDAR) inhibition (Lovinger et al,
1989, 1990; Weitlauf and Woodward, 2008).
These effects may disrupt long-term potentiation (LTP)

of synapses and LTP-dependent processes such as learning
and memory formation. In slice preparations of rat motor
cortex (M1), LTP induction depends on disinhibition by
application of a synaptic GABAAR antagonist and can be
disrupted by NMDAR blockade (Aroniadou and Keller,
1995; Castro-Alamancos et al, 1995; Fritsch et al, 2010; Hess
et al, 1996). At the systems level of human M1, LTP-like
plasticity, indexed by a long-term increase in motor-evoked
potential (MEP) amplitude, can be induced by paired
associative stimulation (PASLTP) (Cooke and Bliss, 2006;
Müller-Dahlhaus et al, 2010; Stefan et al, 2002; Stefan et al,
2000; Ziemann et al, 2004). This LTP-like increase in MEP
amplitude shows tight similarities to cellular LTP because it
is associative, input specific, and blocked by dextromethor-
phan, a non-competitive NMDAR antagonist (Stefan et al,
2002; Stefan et al, 2000; Wolters et al, 2003). Furthermore,
PASLTP-induced LTP-like plasticity interacts homeostati-
cally with prior or subsequent motor learning (Elahi et al,
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2013; Jung and Ziemann, 2009; Kang et al, 2011; Rosenkranz
et al, 2007; Stefan et al, 2006; Ziemann et al, 2004),
indicating its mechanistic importance in learning processes.
Here we sought to investigate the effects of two very low

doses of EtOH (resulting in blood concentrations of o5 and
o20mM, respectively) on PASLTP-induced LTP-like plasti-
city in healthy volunteers, and to contrast them with those
of two specific positive modulators of synaptic GABAAR-
mediated inhibition (alprazolam, a classical benzo-
diazepine, and zolpidem, a non-benzodiazepine hypnotic
with preferential a1-GABAAR affinity) (Möhler et al, 2002).
We measured increases in GABAAR-mediated inhibition
by slowing of saccadic peak velocity (SPV) (de Visser et al,
2003), rather than by other available techniques such as
pharmacoelectroencephalography (Valle et al, 2002) or
pharmacotranscranial magnetic stimulation (Paulus et al,
2008) because changes in SPV reflect changes specifically in
synaptic a1-GABAAR- rather than a2- and a3-GABAAR-
mediated inhibition (de Haas et al, 2009; de Haas et al,
2010) and, therefore, are expected to capture the sedative
effects of alprazolam and zolpidem.
We show that low-dose EtOH abolished the PASLTP-

induced LTP-like plasticity obtained in a placebo session,
but had no effect on SPV. In contrast, alprazolam and
zolpidem decreased SPV but exerted no significant effect on
PASLTP-induced LTP-like plasticity. This provides strong
evidence that LTP-like plasticity in human cortex is highly
efficiently blocked by very low doses of EtOH that are easily
reached during social drinking. The cellular mechanisms
of this detrimental low-dose EtOH effect cannot be
disentangled at the systems level but likely relate to the
potentiation of tonic inhibition mediated by extrasynaptic
GABAARs and/or blockade of glutamatergic neurotrans-
mission through NMDARs. Findings have potentially
significant impact at the behavioral level, as acute EtOH
ingestion impairs LTP-dependent processes such as learn-
ing and memory formation (Lister et al, 1991; Lowy, 1970;
Mattila et al, 1998).

METHODS

Subjects

Written informed consent was obtained prior to participa-
tion. The experiments conformed to the Declaration of
Helsinki and were approved by the ethics committee of the
hospital of the Goethe-University of Frankfurt am Main,
Germany. All subjects completed the adult safety screen
questionnaire (Keel et al, 2001). Nine healthy right-handed
(Oldfield, 1971) subjects (mean (±SD) age, 26.2±4.3 years;
mean (±SD) body length, 180.3±7.6 cm; mean (±SD)
body weight, 80.9±15.1 kg; 6 males) were enrolled. None of
the subjects had a history of neurological or psychiatric
disease or was on CNS-active drugs at the time of the
experiments as confirmed by comprehensive urine analysis.
None of the subjects ever took alprazolam or zolpidem
before, or consumed EtOH regularly. All subjects were non-
smokers, as nicotine may alter PASLTP-induced plasticity
(Thirugnanasambandam et al, 2011). The participating
women used a hormonal contraception to avoid possible
menstrual cycle-related alteration of M1 excitability and
plasticity (Smith et al, 2002). Thirty subjects were screened.

In a first screening step, resting motor threshold (RMT) was
determined. Only those subjects with RMTp50% of maxi-
mum stimulator output (n¼ 22) were retained for a second
screening step (PASLTP screening) because RMT450% of
maximum stimulator output is associated with a low
probability for a LTP-like response after PASLTP (Müller-
Dahlhaus et al, 2008). After a second screening step, nine
subjects were retained and enrolled into this study that
exhibited a significant PASLTP-induced increase in MEP
amplitudeX1.2 (ratio of MEP amplitude post-PAS/pre-PAS)
(Heidegger et al, 2010; Korchounov and Ziemann, 2011).
Therefore, this selection excluded subjects with a long-term
depression-like MEP decrease or no MEP change following
PASLTP (Müller-Dahlhaus et al, 2008), as the explicit aim of
this study was to study drug effects on LTP-like plasticity, a
process with significant relation to motor learning (Jung
and Ziemann, 2009; Kang et al, 2011; Rosenkranz et al,
2007; Ziemann et al, 2004), rather than exploring drug
effects on a great variety of magnitudes and directions of
PASLTP-induced plasticity in the general population.

EMG Recordings

Subjects were seated in a comfortable reclining chair with
their arms and hands lying relaxed on the armrests. All
transcranial magnetic stimulation (TMS) measurements
were obtained by surface electromyography (EMG) from
the resting abductor pollicis brevis (APB) muscle of the
dominant right hand by using wafer electrodes attached to
the muscle belly (active electrode) and the proximal phalanx
of the index finger (reference electrode). Reproducibility
of exact electrode placement within each visit was assured
by marking the electrode spots after baseline measurement
with a waterproof marker. The EMG raw signal was
amplified and band-pass filtered (20Hz to 2 kHz; Digitimer
D360 8-channel amplifier, Digitimer, Welwyn Garden City,
UK), digitized at an A/D rate of 5 kHz per channel (CED
Micro 1401; Cambridge Electronic Design, Cambridge, UK)
and stored in a laboratory computer for online visual
display and later offline analysis using customized data
collection and conditional averaging software (Spike 2 for
Windows, Version 3.05, CED). All measurements were
conducted during complete voluntary muscle relaxa-
tion, which was monitored audio-visually by high-gain
(50 mV/Div) EMG.

Stimulation Procedures

Focal TMS of the hand area of the left primary motor cortex
(M1) was performed with a figure-of-eight coil (diameter of
each wing, 70mm) and a Magstim 200 magnetic stimulator
(Magstim Company, Carmarthenshire, Wales, UK) with
monophasic current waveform. The optimal coil position
over the hand area of the left M1 for eliciting MEPs in the
right APB was determined as the site where TMS at a
slightly suprathreshold intensity consistently produced the
largest MEPs. This site was marked with a soft-tipped pen
on the scalp in order to assure a constant placement of the
coil throughout the experiment. The coil was held tangential
to the scalp with the handle pointing backwards and 45
degrees away from the midline. This orientation induced a
lateral-posterior to medial-anterior current in the brain,
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activating the corticospinal system preferentially trans-
synaptically via horizontal corticocortical connections
(Di Lazzaro et al, 2008).
RMT was defined to the nearest 1% of maximum

stimulator output (MSO) as the lowest stimulus intensity
that elicited small MEPs (X50 mV) in at least five out of ten
consecutive trials in the relaxed APB, starting determination
from a slightly suprathreshold intensity (Groppa et al,
2012).
MEP input–output (IO)-curves were centered on a

stimulus intensity that evoked an MEP of 1mV peak-to-
peak amplitude (SI1mV). Eight MEPs each were recorded
in randomized order with stimulus intensities of 0.5, 0.7,
0.8, 0.9, 1.0 (¼ SI1mV), 1.1, 1.2, 1.3, and 1.5 times SI1mV

(Rosenkranz et al, 2007). The peak-to-peak MEP amplitude
was analyzed in the single trials and then conditional
averages were calculated. MEP IO-curves were determined
at baseline (time point B0, before drug intake), at B1
(90min after tablet and 60min after drink intake, imme-
diately prior to PASLTP, time point B1) and 5 and 30min
after PASLTP (time points P1 and P2) (cf. time line of the
experiment in Figure 1). Stimulus intensities were kept
constant throughout a given experimental session.

Paired Associative Stimulation (PASLTP)

PASLTP was performed according to a protocol originally
described by (Stefan et al, (2000)) and later on slightly
modified by our group (Müller et al, 2007; Müller-Dahlhaus
et al, 2008). It consisted of 225 pairs of electrical stimulation
of the right median nerve at the wrist followed by TMS
delivered at a rate of 0.25Hz (duration: 15min). Electrical
stimulation was applied through a bipolar electrode
(cathode proximal) at an intensity of three times the
perceptual threshold. The intensity of TMS was adjusted to
SI1mV in the resting APB when given without the preceding
median nerve stimulus. To produce a long lasting LTP-like
increase in MEP amplitude the interstimulus interval was
equal to the individual N20-latency of the median nerve
somatosensory-evoked cortical potential plus 2ms (N20þ 2
ms) (Müller et al, 2007). The mean (±SD) interstimulus
interval was 21.9±0.6ms. Attention may have considerable
effects on the magnitude of the PASLTP effect (Kamke et al,
2012; Stefan et al, 2004). Therefore, to control the level of
attention, a randomly flashing light emitting electrode was
attached to the back of the stimulated hand. Subjects were

instructed to count the flashes and to report the number at
the end of the PAS intervention.

Saccadic Peak Velocity Measurements

Visually guided SPV is a biomarker of sedation mediated
through the a1-GABAAR (de Haas et al, 2009; de Haas et al,
2010; de Visser et al, 2003). We were interested in obtaining
this marker at baseline (time point B0) and after drug intake
(time point B1, cf. time line in Figure 1) to estimate the
contribution of GABAAergic sedation to drug effects on
LTP-like plasticity. Subjects sat in front of a screen (eyes-
to-screen distance, 90 cm) and were instructed to make
visually guided saccades in response to a white dot
subtending an angle of view of 11 on a black screen while
the head was maintained in straight position. The dot
jumped at randomized intertrial intervals of 2–3 s (to
prevent anticipation of the next event) horizontally from
one lateral edge to the opposite edge of the screen,
subtending an angle of view of 401. Per time point 90 s
were recorded, resulting on average in 36 trials. Saccade
recordings were obtained by electronystagmography using
surface wafer electrodes placed at the outer canthus of each
eye. The electronystagmography raw signals were amplified
and band-pass filtered (20Hz to 2 kHz; Digitimer D360),
digitized at an A/D rate of 5 kHz per channel (CED Micro
1401) and stored in a laboratory computer for online visual
display and later offline analysis using customized data
collection and conditional averaging software (Spike 2 for
Windows, Version 3.05). The raw data were exported into
MATLAB (version 6.1; Natick, MA). Software written in-
house was used for manually setting markers of saccade
onsets and offsets. SPV (in 1/s) was determined by
automatic identification of the maximum value between a
pair of markers of saccade onset and offset using a third-
order polynomial fit of the raw signal (Velazquez-Perez
et al, 2004). Conditional SPV averages were calculated for
left- and rightward saccades and a grand mean was finally
calculated for each individual, session, and time point.

Pharmacokinetic Measurements

Pharmacokinetic measurements were performed in the
Institute for Forensic Toxicology, Goethe-University Frank-
furt/Main using well-established chromatographic-mass
spectrometric screening and target compound analyses. At
each visit, a urine sample before drug intake was screened

SPV

IO-curve

Drink
intake

SPV

IO-curve

PASLTP

IO-curve

Blood
sample

B0 B1 P160 min30 min 5 min

Tablet
intake

15 min

IO-curve

P220 min

Figure 1 Time line of experimental sessions. Saccadic peak velocity ((SPV), marker of sedation and a1-(gamma-aminobutyric acid type A receptor)
GABAAR-mediated inhibition) and motor-evoked potential input–output curves (IO-curves), marker of corticospinal excitability) were measured at baseline
(B0). Then the study drug (alprazolam tablet, zolpidem tablet, ethanol low- or high-dose drink, placebo) was administered in a double blind, double dummy
design (first tablet, 30min later drink, see also Table 1). After 60min waiting (to reach peak plasma concentrations of study drug), SPV and IO-curve were re-
tested (B1) to measure the effects of the study drug on these markers. Then, PASLTP was applied and IO-curve was re-tested 5min later (P1) and 30min
later (P2) to investigate the long-term potentiation (LTP)-like increase in corticospinal excitability. In addition, a blood sample was taken at P1 to measure the
blood concentration of the study drug.
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for medical drugs and drugs of abuse to ensure that subjects
were free of the study drugs or any other psychoactive
substance at baseline. Blood samples were taken at time
point P1 to measure the plasma levels of the study
medications.

Experimental Design

We performed a randomized double blind, double dummy,
placebo (PBO)-controlled five-period crossover study
(Table 1). Study visits always started at 8:00 a.m. to exclude
diurnal variability of PASLTP effects (Sale et al, 2007), and
were separated by at least 1 week to prevent carry-over
effects between sessions. Subjects were in a fastening state
and received during each visit one tablet immediately after
the MEP IO-curve and SPV measurements at time point B0
and one drink 30min later (cf. Table 1 and time line in
Figure 1). Study medications were: alprazolam (APZ, 1mg),
zolpidem (ZLP, 10mg), 96% ethanol in two different
dosages (resulting in blood concentrations of o5mM and
o20mM, respectively, and hence termed EtOHo5mM, and
EtOHo20mM), and PBO tablet and PBO drink (mixture of
orange juice and bitter syrup to imitate ethanol content).
EtOHo5mM and EtOHo20mM doses were individually
calculated according to the Widmark formula to reach a
peak blood ethanol concentration of 0.35% and 0.65%,
respectively. Male subjects received ethanol doses of 0.29
and 0.55 g/kg, and female subjects 0.25 and 0.47 g/kg in the
EtOHo5mM and EtOHo20mM conditions, respectively. Due
to the fast metabolism of alcohol, we expected plasma levels
of B0.2% (E4.6mM) and 0.5% (E11.6mM) at the time of
determination (time point P1, Figure 1). One blood sample
in the EtOHo5mM condition could not be retrieved for
analysis. Dosages of APZ and ZLP were selected according
to previously shown sedative effects indexed by significant
slowing of SPV (Blom et al, 1990; de Haas et al, 2010), while
selection of dosages of EtOHo5mM and EtOHo20mM was
based on their specific action on recombinant a4�3d- and
a6�3d-GABAARs (Wallner et al, 2003). Timing of B1 and
PASLTP after tablet and drink intake (cf. Figure 1) was
planned according to the expected times of peak plasma
concentration of APZ, ZLP, and EtOH in healthy young
adults (de Haas et al, 2010; Greenblatt and Wright, 1993;
Welling et al, 1977).

Statistics

Statistical testing was performed with IBM SPSS Statistics
(Version 20.0.0). Drug effects on SPV were analyzed with a
mixed repeated measures analysis of variance (rmANOVA)
with DRUG as between-subject effect (5 levels: PBO, APZ,
ZLP, EtOHo5mM, EtOHo20mM) and TIME (2 levels: B0, B1)
as within-subject effect. Post hoc rmANOVAs compared the
effects of each drug (APZ, ZLP, EtOHo5mM, EtOHo20mM)
pairwise with the effects of PBO on SPV with DRUG as
between-subject effect (2 levels: drug vs PBO) and TIME
(2 levels: B0, B1) as within-subject effect. Post hoc two-tailed
t-tests were performed in case of significant DRUG * TIME
interactions.
The MEP data were not normally distributed according to

Wilk–Shapiro testing. Therefore, a logarithmic transforma-
tion was applied to obtain a normal distribution of the MEP
data (Bland and Altman, 1996). All statistical tests were
performed on these transformed MEP data. The effects of
DRUG on MEP IO-curve were tested in a mixed rmANOVA
with DRUG as between-subject effect (5 levels: PBO, APZ,
ZLP, EtOHo5mM, EtOHo20mM) and TIME (2 levels: B0, B1)
and Stimulus Intensity (SI, 9 levels: 0.5� SI1mV, 0.7� SI1mV,
0.8� SI1mV, 0.9� SI1mV, 1.0� SI1mV, 1.1� SI1mV, 1.2�
SI1mV, 1.3� SI1mV, 1.5� SI1mV) as within-subject effects.
Similarly, the effects of DRUG on PASLTP-induced changes
in MEP IO-curve were tested by a mixed rmANOVA with
DRUG (5 levels) as between-subject effect, and TIME
(3 levels: B1, P1, P2) and SI (9 levels) as within-subject
effects. Post hoc rmANOVAs compared the effects of
each drug (APZ, ZLP, EtOHo5mM, EtOHo20mM) pairwise
with the effects of PBO on PASLTP-induced changes in MEP
IO-curve.
In order to obtain a single measure of the drug and

PASLTP-induced changes in the MEP IO-curves, the area
under logarithmically transformed MEP IO-curves (AUIOC)
was calculated for each subject, time point, and experi-
mental session. The AUIOC is a highly reliable and valid
measure to characterize the excitability state of the
corticospinal projection to hand muscles (Carson et al,
2013). To correlate drug blood concentrations (deter-
mined at time point P1, cf. Figure 1) and changes in
SPV with drug effects on the PASLTP-induced changes in
AUIOC, the following index was calculated: (AUIOC(P1)-
AUIOC(B1))DRUG—(AUIOC(P1)-AUIOC(B1))PBO. This way,
the PASLTP-induced change in AUIOC in any of the DRUG
conditions is related to the PASLTP-induced AUIOC increase
in the PBO condition. This index is referred to as
normalized DAUIOC in this paper. Correlation analyses of
the normalized DAUIOC with drug blood concentrations
and changes in SPV (difference between time points B1–B0)
were performed by linear regression.
For all rmANOVAs, Mauchly’s test was applied to test for

sphericity and in case of violation of sphericity, the degrees
of freedom were corrected by the Greenhouse–Geisser test.
Significance was assumed when po0.05. All data are
reported as means±SEM, unless stated otherwise.

RESULTS

Experimental procedures and study drugs were generally
well tolerated except for ZLP, which caused nausea and

Table 1 Summary of Conditions in the Randomized, Double
Blind, Double Dummy (PBO Controlled Tablet and Drink)
Experimental Crossover Design

Condition Tablet Drink

1 APZ (1mg) PBO

2 ZLP (10mg) PBO

3 PBO EtOHo5mM

4 PBO EtOHo20mM

5 PBO PBO

Abbreviations: APZ, alprazolam; EtOHo5mM and EtOHo20mM, ethanol resulting
in blood concentrations of o5mM and o20mM, respectively; PBO, placebo;
ZLP, zolpidem.
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vomiting in one subject. Other common adverse events were
mild to moderate sedation or dizziness, and did not limit
full compliance of the subjects with the requirements of this
study.

Baseline Excitability Data (RMT, SI1mV at Time
Point B0)

ANOVAs did not show differences between DRUG condi-
tions for RMT or SI1mV at time point B0 (all p40.75,
Table 2).

Plasma Concentrations of Drugs at Time Point P1

The following plasma concentrations were measured in
the respective drug conditions: APZ: 9.61±0.48 ng/ml;
ZLP: 98.2±37.1 ng/ml; EtOHo5mM: 0.13±0.02% (E3.01±
0.46mM; range: 0.46–4.40mM); EtOHo20mM: 0.55±0.05%
(E12.74±1.16mM; range, 5.79–18.30mM). The EtOHo5mM

vs EtOHo20mM concentrations were significantly different
(unpaired two-tailed t-test, t15¼ 6.15, po0.001).

Drug Effects on Saccadic Peak Velocity (Comparison of
SPV at Time Points B1 vs B0)

In the PBO condition, there was no effect of TIME on SPV
(two-tailed paired t-test, t8¼ 0.26, p¼ 0.80, Figure 2).
The mixed rmANOVA for all drug conditions revealed

significant effects of TIME (F1,40¼ 25.62, po0.001) and the
DRUG * TIME interaction (F4,40¼ 3.08, p¼ 0.027) but not
DRUG (F4,40¼ 1.70, p¼ 0.17) (Figure 2a–d). Post hoc pair-
wise rmANOVAs demonstrated significant DRUG * TIME
interactions for APZ vs PBO (F1,16¼ 7.40, p¼ 0.015,
Figure 2a) and ZLP vs PBO (F1,16¼ 12.08, p¼ 0.003,
Figure 2b), but not for EtOHo5mM vs PBO (F1,16¼ 0.21,
p¼ 0.65, Figure 2c) or EtOHo20mM vs PBO (F1,16¼ 3.11,
p¼ 0.10, Figure 2d). The significant DRUG * TIME inter-
actions were explained by a reduction in SPV post-drug
compared with PBO (all po0.05 in two-tailed unpaired
t-tests, indicated by asterisks in Figure 2a and b). These data
demonstrate that only APZ and ZLP, but not EtOHo5mM or
EtOHo20mM resulted in significant SPV reduction, indi-
cative of a sedative effect mediated by positive modulation
at the a1-GABAAR by APZ and ZLP, but not by EtOHo5mM

or EtOHo20mM.

Drug Effects on MEP IO-Curve (Comparison of Time
Points B1 vs B0)

The rmANOVA revealed no effects of DRUG (F4,40¼ 0.98,
p¼ 0.43), or the DRUG * TIME (F4,40¼ 0.61, p¼ 0.66) or
DRUG * TIME * SI interactions (F14.77,147.68¼ 1.19, p¼ 0.28)
(Figure 3a–d). This is an important nil finding because it
indicates that there were no significant drug effects on MEP
IO-curve at time point B1 (immediately prior to PASLTP)
that could have potentially confounded interpretation of the
PASLTP data.

Drug Effects on PASLTP-Induced Changes of MEP
IO-Curve (Comparison of Time Points P1 and P2 vs B1)

At time point B1 (immediately before PASLTP, cf. Figure 1),
there was no difference in MEP IO-curves between
drugs, ie there were no significant effects of DRUG (F4,40¼
0.57, p¼ 0.69) or DRUG * SI (F9.48,94.78¼ 0.66, p¼ 0.75)
(Figure 4). This is an important nil finding as there were no
differences in corticospinal excitability prior to intervention
(PASLTP) that could have accounted for the differential
drug effects (see below) on the PASLTP-induced changes in
MEP IO-curves.
In the PBO condition, the effects of TIME (F2,16¼ 4.92,

p¼ 0.022) and the TIME * SI interaction (F5.42,43.35¼ 2.91,
p¼ 0.021) were significant (Figure 4). Post hoc testing

Table 2 Baseline Motor Cortical Excitability in the Five
Experimental Drug Conditions

Drug RMT (%MSO) F4,40 p SI1mV (%MSO) F4,40 p

PBO 38.0±1.6 46.7±1.9

APZ 36.0±1.8 46.7±2.1

ZLP 35.6±2.3 0.33 0.86 44.5±3.0 0.45 0.77

EtOHo5mM 36.7±1.4 45.0±1.8

EtOHo20mM 35.4±2.0 43.1±2.5

Abbreviations: APZ, alprazolam; EtOHo5mM and EtOHo20mM, ethanol resulting
in blood concentrations of o5mM and o20mM, respectively; MSO, maximum
stimulator output; PBO, placebo; RMT, resting motor threshold; SI1mV, stimulus
intensity needed to induce a motor-evoked potential of 1mV in peak-to-peak
amplitude, ZLP, zolpidem.
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revealed that PASLTP resulted in increased MEP IO-curves at
P1 (TIME: F1,8¼ 6.70, p¼ 0.032, TIME * SI interaction:
F2.75,22.00¼ 4.91, p¼ 0.011) and P2 (TIME * SI interaction:
F2.89,23.11¼ 3.83, p¼ 0.024).
The rmANOVA for all drug conditions revealed a signi-

ficant DRUG * TIME interaction (F8,80¼ 2.20, p¼ 0.036),
while the effects of TIME (F2,80¼ 2.29, p¼ 0.06), DRUG
(F4,40¼ 1.81, p¼ 0.15), and the DRUG * TIME * SI inter-
action (F25.04,250.37¼ 0.86, p¼ 0.66) were not significant.
Post hoc pairwise rmANOVAs revealed significant DRUG *
TIME interactions for EtOHo5mM vs PBO (F2,32¼ 4.25,
p¼ 0.023, Figure 4c) and EtOHo20mM vs PBO (F2,32¼ 4.95,
p¼ 0.013, Figure 4d) but not for APZ vs PBO (F2,32¼ 2.11,
p¼ 0.14, Figure 4a) and ZLP vs PBO (F2,32¼ 0.59, p¼ 0.56,
Figure 4b).
These effects are explained by abolition of LTP-like effects

in the EtOHo5mM and EtOHo20mM conditions but signi-
ficant, although weak LTP-like effects in the APZ (at time
point P2) and ZLP (at time point P1) conditions (see also
Figure 5a).
The selection of PASLTP LTP-responders (see methods)

may have biased the drug effects toward suppression
of the LTP-like increase in MEP IO-curve obtained in
the PBO condition. However, this was unlikely in the
present study, as linear regression analyses of (AUIOC(P1)-
AUIOC(B1))PBO vs (AUIOC(P1)-AUIOC(B1))Drug did not
reveal negative correlations (all p40.10). Only the linear
regression of (AUIOC(P1)-AUIOC(B1))PBO vs (AUIOC(P1)-
AUIOC(B1))EtOHo5mM revealed a non-significant trend,
but toward a positive correlation (r¼ 0.54, p¼ 0.13), ie the

strongest PASLTP LTP-responders in the PBO condition had
the weakest suppressive effect in the EtOHo5mM condition.
Therefore, preselection of PASLTP LTP-responders did not
set a bias toward drug suppression of LTP-like plasticity in
this study.

Relation of Sedation and Drug Levels to PASLTP-Induced
Changes of AUIOC (Comparison of Time Points P1
vs B1)

The AUIOC group data are displayed in Figure 5a. Linear
regression analyses showed that the blood concentrations
of EtOHo5mM correlated negatively with the normalized
DAUIOC (EtOHo5mM: r¼ � 0.71, p¼ 0.048, Figure 5b).
This means that higher ethanol concentrations were associ-
ated with a stronger suppression of the LTP-like plasticity
obtained in the PBO condition. In contrast, the blood
concentrations of APZ, ZLP and EtOHo20mM did not
correlate with the normalized DAUIOC (all p40.25).
Finally, changes in SPV as a biomarker of sedation mediated
through the a1-GABAAR did not correlate with the norma-
lized DAUIOC in any of the drug conditions (all p40.1).

DISCUSSION

The pharmacological effects of this study showed double
dissociation: enhancement of synaptic GABAAR-mediated
inhibition by APZ and ZLP resulted in sedation indexed
by a decrease of SPV but no significant effect on
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Figure 3 Logarithmically transformed motor-evoked potential (MEP) input–output (IO)-curves at time points B0 (before drug intake, filled symbols) and
B1 (after drug intake, open symbols) as a function of stimulus intensity (in multiples of SI1mV) in the alprazolam (APZ) (a), zolpidem (ZLP) (b), ethanol-low
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PASLTP-induced LTP-like plasticity when compared with the
PBO condition. Conversely, rather low doses of EtOH led to
abolition of LTP-like plasticity but not to sedation, ie SPV
remained unchanged. We argue that these findings suggest
detrimental effects of low doses of EtOH on mechanisms of
learning and memory and support the importance of extra-
synaptic GABAAR-mediated tonic inhibition and/or glutama-

tergic neurotransmission through NMDARs in regulating
plasticity in neuronal networks of human cortex.

Drug Effects on Saccadic Peak Velocity (SPV)

SPV is an established biomarker of sedation mediated through
the a1-GABAAR (de Visser et al, 2003). Accordingly, classical
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blood concentration (r¼ � 0.71, po0.05), ie, higher EtOH concentrations were associated with a stronger suppression of the LTP-like plasticity obtained in
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benzodiazepines and also ZLP decrease SPV in a sigmoid
dose-dependent manner (de Haas et al, 2009; de Haas et al,
2010) while a specific agonist at the a2- and a3-GABAAR
did not induce sedation or a decrease in SPV (de Haas et al,
2009). This is consistent with a wealth of data in support of
the notion that the different synaptic GABAAR sub-
types mediate different functions: a1-GABAAR activation
results in sedative and anticonvulsant effects, a2-GABAAR
activation leads to anxiolytic and muscle relaxant effects,
while the biological functions of the a3-GABAAR are as of
yet unclear (Möhler, 2007; Möhler et al, 2002). EtOH at the
low doses tested here had no effect on a1-GABAAR-
mediated currents in acutely dissociated cells (Criswell
et al, 2003) and did not affect SPV in monkeys (Fuster et al,
1985) while higher dosesX0.6% (E13.9mM) resulted
in SPV slowing (Fransson et al, 2010). Therefore, the
lack of any SPV slowing in the EtOHo5mM (Figure 2c)
condition provides further evidence that EtOH at very
low doses has no significant action at the synaptic
a1-GABAAR.

Drug Effects on MEP IO-Curve

The nil findings of this study on corticospinal excitability as
tested by MEP IO-curve are largely consistent with previous
studies. While the effects of APZ and ZLP on MEP IO-curve
have not been tested previously, other benzodiazepines such
as lorazepam or diazepam had either no effect (Ilic et al,
2002; Ziemann et al, 1996) or they produced a moderate
MEP IO-curve depression (Boroojerdi et al, 2001). EtOH
at a higher blood concentration (16.5±2.3mM) than in
the present study had no effect (Ziemann et al, 1995).
Therefore, MEP IO-curve used for testing the PASLTP effects
on corticospinal excitability was not affected per se by
any of the drugs at the dosages tested in the present
experiments.

Drug Effects on PASLTP-Induced LTP-Like Increase of
MEP IO-Curve

EtOH but not APZ or ZLP significantly suppressed the
PASLTP-induced LTP-like increase in MEP IO-curve seen
in the PBO condition. This effect was obtained already at the
lowest EtOH dose (the EtOHo5mM condition; blood
concentration, 3.01±0.46mM), and in this condition the
suppressive effect on LTP-like plasticity correlated with the
individual EtOH blood concentration. The non-significant
trends toward suppression of LTP-like plasticity by APZ
and ZLP are consistent with a similarly non-significant
trend toward a suppressive effect of diazepam in one
previous study (Heidegger et al, 2010). Of note, others
have demonstrated in animal studies that diazepam can
suppress neocortical LTP, but this may require high dosages
X5mg/kg (Komaki et al, 2007; Trepel and Racine, 2000).
Therefore, the present findings should not be interpreted as
an all-or-none dissociation of suppression of LTP-like
plasticity in human cortex by benzodiazepines vs EtOH,
but they point to a mechanism particularly sensitive to
EtOH. The present findings are not in disagreement with the
lack of an effect of acute EtOH exposure on MEP increase
during a 5Hz-train of 10 TMS pulses in one previous study
(Conte et al, 2008), as this MEP increase is very short-

lasting (o1 s), thus reflecting short-term synaptic enhance-
ment rather than LTP (Ziemann et al, 2008).
What are the mechanisms through which low-dose EtOH

exerted its suppressive effects on LTP-like plasticity in the
present study? The d-subunit containing extrasynaptic
a4�3d and a6�3d GABAARs are uniquely sensitive to EtOH
and show significant increases in GABA-related currents at
EtOH concentrations of 3mM or less (Sundstrom-Poromaa
et al, 2002; Wallner et al, 2003). As this was the mean blood
concentration in the EtOHo5mM condition, the suppressive
effects on LTP-like plasticity could have been mediated
through these GABAARs. The a6�3d GABAAR is exclusively
located on granule cells in the cerebellum (McKernan and
Whiting, 1996; Nusser et al, 1998), while the a4�3d
GABAAR is expressed with decreasing abundance in
thalamus, the dentate gyrus, the striatum, and the outer
layers of neocortex (Pirker et al, 2000). We cannot tell with
certainty if any of these two receptor subtypes was more
likely to mediate the observed EtOH effects on LTP-like
plasticity. However, it was recently shown that increasing
cerebellar excitability by anodal transcranial direct current
stimulation or intermittent theta-burst stimulation abol-
ished PAS-induced LTP-like plasticity (Hamada et al, 2012;
Popa et al, 2013), but this suppressive effect was seen only
with PAS25ms (ie with the interval between the electrical
stimulus to the median nerve and TMS of the contralateral
M1 equaling 25ms) and not with PAS21.5ms (Hamada et al,
2012). The mean PAS interstimulus interval in our study
was 21.9ms. Therefore, it is very likely that we have
investigated PASLTP-induced LTP-like plasticity that is not
influenced by processing of sensory afferent information in
the cerebellum. This indirectly supports the notion that the
effect of low-dose EtOH was mediated by enhancement of
tonic inhibition through the a4�3d GABAAR. In summary,
this would be first indirect evidence that extrasynaptic
GABAAR-mediated tonic inhibition has an exquisite role
in regulating LTP-like plasticity in human cortex. However,
these statements deserve caution, given that the systems
level approach of our experiments does not permit direct
insights into the cellular mechanisms. Furthermore, the
high sensitivity of extrasynaptic GABAARs to low doses of
EtOH has not been unanimously replicated (Borghese et al,
2006; Yamashita et al, 2006).
Of particular note are possible alterations of neurotrans-

mission through the NMDAR by EtOH because the NMDAR
is a major target of EtOH (Kumari and Ticku, 2000). EtOH
at low concentrations of p25mM resulted in NMDAR
inhibition in various experimental preparations (Lovinger
et al, 1989, 1990; Weitlauf and Woodward, 2008), and in
significant suppression of LTP (Blitzer et al, 1990; Morrisett
and Swartzwelder, 1993), although other studies failed to
reported significant LTP suppression by low concentrations
of EtOH (Pyapali et al, 1999; Schummers et al, 1997). Taken
together, NMDAR inhibition may have contributed to the
suppressive effect of low-dose EtOH on LTP-like plasticity
in our study, in agreement with previous studies that have
demonstrated suppression of LTP-like plasticity by specific
pharmacological NMDAR blockade (Stefan et al, 2002;
Wankerl et al, 2010).
Finally, EtOH may exert excitability-depressant actions

through a variety of other receptors such as non-NMDA
glutamate receptors (Badanich et al, 2013; Frye and Fincher,
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2000) or G protein-coupled inwardly rectifying potassium
channels (Lewohl et al, 1999), but these effects were
consistently observed only at high, intoxicating EtOH
concentrations 450mM and, therefore, are unlikely to
have contributed to our findings.
Together, our findings are consistent with the notion that

enhancement of tonic inhibition through the extrasynaptic
a4�3d GABAAR has contributed to the acute suppressive
effect of low-dose EtOH on LTP-like plasticity. Of note,
others have shown that NMDAR-dependent hippocampal
LTP can be attenuated by tonic inhibition through the
a4�3d GABAAR (Shen et al, 2010). Tonic inhibition is
mediated through extrasynaptic GABAARs that are exqui-
sitely sensitive to low concentrations of ambient GABA
(Farrant and Nusser, 2005). Increase of tonic inhibition
shifts the input–output relationship of cells to the right, ie
the probability of action potential generation to a given
excitatory input is decreased (Mitchell and Silver, 2003).
The input–output relationship of corticospinal cells in
human motor cortex can be shifted to the right or left by
cortex polarization through cathodal or anodal transcranial
direct current stimulation, respectively (Nitsche and Paulus,
2000). A shift to the right by cathodal stimulation abolished
PASLTP-induced LTP-like plasticity, while a shift to the left
by anodal stimulation enhanced it (Nitsche et al, 2007).
Similarly, cathodal vs anodal stimulation of rat hippocam-
pal slices respectively suppressed or enhanced subsequent
LTP induction (Ranieri et al, 2012).
PASLTP-induced LTP-like plasticity shares common

mechanisms with motor skill learning (Elahi et al, 2013;
Jung and Ziemann, 2009; Kang et al, 2011; Rosenkranz et al,
2007; Stefan et al, 2006; Ziemann et al, 2004) and acute
EtOH ingestion has deleterious effects on memory forma-
tion and learning (Lister et al, 1991; Lowy, 1970; Mattila
et al, 1998). Therefore, the present findings suggest a
negative impact of EtOH on memory formation and
learning at doses as low as reached by a single drink, but
this will need to be tested in further experiments.
On the other hand, NMDAR-dependent LTP has also been

implicated in the induction and maintenance of alcohol
addiction (for reviews, (Krystal et al, 2003; Ron and Wang,
2009)). Basic experiments suggested that this is caused by
facilitation rather than inhibition of LTP in the presence
of high concentrations of EtOH (100mM) and that blockade
of this aberrant LTP facilitation can attenuate operant
self-administration of EtOH in rats (Wang et al, 2007). TMS
can be used to investigate and therapeutically interfere with
this aberrant plasticity in alcohol addicts (Barr et al, 2011;
Naim-Feil and Zangen, 2013).
In conclusion, very low, non-sedating doses of EtOH

show deleterious effects on LTP-like plasticity at the
systems level of human motor cortex, contrasting with
non-significant effects on LTP-like plasticity by sedating
doses of alprazolam and zolpidem. We argued that one
possibility to explain this double dissociation is enhanced
tonic inhibition through the extrasynaptic a4�3d GABAAR
by low-dose EtOH. Findings may stimulate more extensive
research of the physiological importance of tonic inhibition
in regulating excitability and plasticity of cortical neuronal
networks, and its potential role in abnormalities of these
processes in neurological disorders such as epilepsy
(Semyanov et al, 2004; Walker and Semyanov, 2008).
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