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Over recent decades, encouraging preclinical evidence using rodent models pointed to innovative pharmacological targets to treat major

depressive disorder. However, subsequent clinical trials have failed to show convincing results. Two explanations for these rather

disappointing results can be put forward, either animal models of psychiatric disorders have failed to predict the clinical effectiveness of

treatments or clinical trials have failed to detect the effects of these new drugs. A careful analysis of the literature reveals that both

statements are true. Indeed, in some cases, clinical efficacy has been predicted on the basis of inappropriate animal models, although the

contrary is also true, as some clinical trials have not targeted the appropriate dose or clinical population. On the one hand, refinement of

animal models requires using species that have better homological validity, designing models that rely on experimental manipulations

inducing pathological features, and trying to model subtypes of depression. On the other hand, clinical research should consider carefully

the results from preclinical studies, in order to study these compounds at the correct dose, in the appropriate psychiatric nosological

entity or symptomatology, in relevant subpopulations of patients characterized by specific biomarkers. To achieve these goals,

translational research has to strengthen the dialogue between basic and clinical science.
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INTRODUCTION

Major depressive disorder (MDD) is a very common
mental disorder, mainly characterized by persistent anhe-
donia (inability to experience pleasure), apathy or lack of
motivation, anxiety, and sadness. According to the World
Health Organization (2008), MDD was ranked as the third
leading cause of disability worldwide, and is predicted to
worsen as it is expected to become the number one cause of
the global burden of disease by 2030 (World Health
Organization, 2008).
The first-line treatment of MDD is pharmacotherapy with

antidepressants. The drugs that are currently used all share
the property of increasing monoaminergic function as they
impact the serotoninergic or the noradrenergic system by
increasing availability of these neurotransmitters, either in a
nonspecific way (eg, monoamine inhibitors or tricyclics
impact both neurotransmission systems) or specifically on
one of these two systems (eg, selective noradrenaline
reuptake inhibitors or serotonin selective reuptake inhibi-
tors (SSRIs)). However, even though these drugs are

considered the primary treatment of MDD, a strong concern
is that only one-third of MDD patients receiving anti-
depressants achieve complete remission of their symptoms
after their first antidepressant therapy (Trivedi et al, 2006).
This resistance to drugs can first be explained by non-
specific factors, such as hepatic drug metabolism (eg,
variations of cytochrome P450; Yin et al, 2006; Mrazek et al,
2011) or insufficient penetrance into the brain of the
compounds used (Kato et al, 2008; Lin et al, 2011; Uhr et al,
2008; Sarginson et al, 2010; Singh et al, 2012). Second, MDD
is a complex pathology, associated with monoamines and
also non-monoaminergic neurotransmitter systems (eg,
GABA, glutamate, peptides, and cannabinoids), with altera-
tions in signaling pathways (BDNF, tropomyosin-related
kinase B receptor, extracellular signal–regulated kinase,
and Akt pathways) and with hormonal dysregulation (eg, of
the hypothalamic–pituitary–adrenal (HPA) axis). Further-
more, in recent years, epigenetic modifications (histone
acetylation and methylation), altered glial function (eg,
astrocyte deficit), inflammation (excess of proinflammatory
cytokines), and decreased neural plasticity (hippocampal
neurogenesis, hippocampal, and cortical synaptogenesis)
have also been described (see Krishnan and Nestler, 2008;
Tanti and Belzung, 2010; Willner et al, 2012 for reviews). It
is evident that some of these alterations cannot be reversed
by increasing monoamines, so the development of innova-
tive treatments targeting these dysfunctions could lead to
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the discovery of antidepressants of the future. This is
generally the rationale for designing new targets (Figure 1):
polymorphisms in some genes or changes in some bio-
markers (seen via imaging or biochemical assays for
example) are usually first detected in patients, enabling
new compounds targeting this dysfunction to be developed.
The actions of these drugs are then assessed using animal
models. Although some of the alterations mentioned above
cannot be targeted by drugs, others yield encouraging
results (see Table 1 for an overview). For example, in the
last two decades very promising preclinical data have been
obtained targeting stress hormone changes. Corticotropin
releasing factor receptor 1 (CRF1) and vasopressin receptor
1b (V1b) antagonists have been developed, which reverse
the HPA axis-related defects, and animal models have
predicted a very high efficiency in treating MDD. Indeed,
these molecules have generally shown antidepressant-like

effects in several animal models of depression, in several
species and on different behavioral readouts (Table 1). For
example, CRF1 receptor antagonists have shown effects in
three bioassays (forced swim test, tail suspension test, and
DRL-72), in two species (mice and rats), and in three
models (chronic stress, Flinder sensitive, and social stress).
In addition, CRF1 receptor antagonists have shown
anxiolytic effects in a wide range of anxiety tests and
models (for a review see Griebel and Holmes, 2013).
However, surprisingly, clinical trials undertaken using these
drugs have frequently found negative results in MDD
(Griebel and Holsboer, 2012), which questions the transla-
tional value of the initial findings. Indeed, concerning CRF1
antagonists, four studies out of five found it inactive in
double blind controlled clinical trials. These disappointing
findings could be explained either by inappropriate animal
models for predicting clinical effects or possible defects

Figure 1 The different steps in the discovery of antidepressants. Abnormalities of some biomarkers (eg, as detected via plasma biochemical assays or
molecular imaging) or polymorphism of some genes were first described in depressed patients. In some cases, preclinical research has already shown that
some of the targets are expressed in crucial brain areas of rodents, eg, corticolimbic networks. Together, these findings enable pharmacological compounds
targeting these dysfunctions to be designed. These drugs are then tested in animal models. It is important first to check whether the targets are expressed in
a similar way in humans and the species that is going to be tested. In case no effect is detected (negative findings), clinical development is stopped (at this
point, it is not possible to know whether the drug was a true negative or a false negative). In case an effect is found in different models, the drug/molecule can
be tested in randomized double-blind clinical trials. When an effect is seen, it indicates that the drug was a true positive and patients can be treated with this
drug. When the clinical trial does not reveal an antidepressant effect of the drug, the compound was a false positive.
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regarding the clinical data. This paper tries to address this
issue, and to propose appropriate solutions.

Did Animal Models Fail to be Predictive?

The first issue concerns animal models of MDD. Several
experimental manipulations have been designed to induce
chronic depressive-like states in rodents, including early
maternal deprivation, learned helplessness, social defeat,
unpredictable chronic mild stress (UCMS), or chronic
corticosterone administration (for an overview see
Table 2; McArthur and Borsini, 2006; Markou et al, 2009;
Cryan and Holmes, 2005). The changes induced can then be
assessed either at the physiological level using corticoster-
one dosage, eg, or at the behavioral level using bioassays
measuring resignation behavior, anhedonia, lack of motiva-
tion, etc (for a summary see Table 3). The failure to find
new pharmacological treatments for this disease could be
related to the inappropriateness of the animal models
currently used to predict clinical outcomes correctly. In this
case, animal models would generate a high number of false
positive drugs: this research would detect antidepressant-
like effects of compounds, which did not have such

properties in clinical trials. This has indeed been observed
in some cases (Markou et al, 2009; Rupniak, 2003), and may
be due to insufficient external validity in translational
research: results from the bench cannot be directly
extrapolated to the bedside.
The failure of preclinical research to translate to the clinic

could be due to poor validity of the animal situations used
to model MDD. Our first example concerns poor homo-
logical validity relating to insufficient relevance of the
species and of the strain chosen to construct the animal
model (Belzung and Lemoine, 2011). It should be remem-
bered that research has focused on the involvement of the
tachykinin family, including substance P, neurokinin A, and
neurokinin B, in psychiatric disorders such as MDD (Ebner
et al, 2009), and also on the relevance of these targets to
treat these pathologies. Tachykinins interact with specific
receptors particularly the NK1, NK2, and NK3 receptors
(Regoli et al, 1994). Several studies have shown that the NK3
receptor antagonist osanetant induces antidepressant-like
and anxiolytic-like effects in rodents (Dableh et al, 2005;
Salomé et al, 2006). However, although rats, guinea pigs,
and gerbils show a distribution of NK3 receptors similar to
that found in some human brain areas relevant to MDD,
such as in the cerebral cortex, the medial habenula, the

Table 1 Monotherapy with Non-Monoaminergic Targets of Antidepressant Action in Patients with Major Depression or Treatment-
Resistant Depression: Effects in Clinical Trials and Predictions from Animal Models

Target Clinical trials in MDD Animal models/test sin which these targets
showed antidepressant-like effects

NK1 receptor antagonists 13 Studies: 4 showed improvement,
6 showed no effects, others were inconclusive
or terminated1

Forced swim test and tail suspension test in gerbils10, chronic social
stress in tree shrews11 and in rats12

NK2 receptor antagonists 6 Studies: 2 showed improvement, 3 no effect,
1 inconclusive1

Forced swim test in rats and mice13, tonic immobility in gerbils14,
olfactory bulbectomy and DRL72 in rats15,
unpredictable chronic stress in mice15

NK3 receptor antagonists 2 Studies, both inconclusive1 Tonic immobility in gerbils14 and forced swim test in rats16

CRF1 receptor antagonists 5 Studies: 4 inactive and 1 improvement1 Forced swim test in rats17, tail suspension in mice18,
DRL-72 in rats19,
forced swim test in Flinder sensitive rats20, social stress in rats21,
chronic stress in rats22, unpredictable chronic stress in mice23

V1b receptor antagonists 2 Studies: 1 active, 1 inactive1,2 Olfactory bulbectomy in rats24, forced swim test in normal rats25 and
Flinder sensitive rats26, chronic stress in rats27 and mice28

NMDA receptor antagonists 6 Studies in MDD or treatment resistant
depression: 4 active3

Chronic stress, learned helplessness, novelty suppression of feeding,
tail suspension, forced swimming29

AMPA receptor positive allosteric
modulator

1 Study, active4 Forced swimming and tail suspension test29

Sodium chanel inhibitors (lamotrigin) 2 Studies: 1 negative5, 1 not active6 Forced swimming test and chronic stress29

Inhibitor of beta-lactamase (serdaxin) 1 Study, active7 Forced swimming and tail suspension30

Omega-3 supplementation 6 Studies: 4 active8, 2 inactive9 Chronic mild stress in mice and rats31, forced swimming and tail
suspension tests in rats and mice32

This table does not include compounds with a monoaminergic component (such as vortioxetine, quetiapine, or agomalatine), add-on therapies (in which a putative
treatment is associated with a monoaminergic medication), or clinical trials targeting anxiety disorders or bipolar depression. NK1 receptor antagonists tested in clinical
trials in MDD include orvepitant, L-759274, CP-122721, casopitant, aprepitant. Saredutant and osanetant are, respectively, the sole NK2 and NK3 receptor antagonists
tested clinically. CRF receptor antagonists investigated in clinical trials for the treatment of MDD include CP-316311, NBI 30775 (R121919), ONO-2333Ms,
SSR125543, and verucerfront (GSK561679). The sole V1b receptor antagonist tested clinically is SSR-149415. Clinically tested NMDA antagonists include the non-
competitive/high-affinity NMDA receptor antagonist ketamine, the non-competitive/low-affinity NMDA antagonist memantine, and the NR2B subunit-selective
NMDA receptor antagonists CP-101, 606, and MK-0657. 1Griebel and Holsboer, 2012 (review); 2Griebel et al, 2012; 3Mathews et al, 2012 (review); 4Nations et al,
2012; 5Santos et al, 2008; 6Barbee et al, 2011; 7Riesenberg et al, 2012; 8Freund-Levi et al, 2008; da Silva et al, 2008; Freeman et al, 2011; Lespérance et al, 2011; 9van de
Rest et al, 2008; Bot et al, 2010; 10Varty et al, 2003; Wallace-Boone et al, 2008; 11van der Hart et al, 2005; Czéh et al, 2005; 12Papp et al, 2000; 13Steinberg et al, 2001;
14Salomé et al, 2006; 15Louis et al, 2008; 16Dableh et al, 2005; 17Jutkiewicz et al, 2005; 18Nielsen et al, 2004; 19Louis et al, 2006; 20Overstreet and Griebel, 2004;
21Wood et al, 2012; 22Sandi et al, 2008; 23Ducottet et al, 2003; Surget et al, 2008, 2009, 2011, Dournes et al, 2013; 24Breuer et al, 2009; 25Griebel et al, 2002;
26Overstreet and Griebel, 2005; 27Bessa et al, 2009; 28Griebel et al, 2002; Surget et al, 2008; 29Lapidus et al, 2013 (review); 30Mineur et al, 2007; 31Vancassel et al,
2008; Ferraz et al, 2011; Naveen et al, 2013; 32Venna et al, 2009; Blondeau et al, 2009.
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amygdala nuclei, the ventral tegmental area, and the dentate
gyrus, outside these structures strong inter-species differ-
ences can be observed (Griebel and Beeské, 2012). For
example, only the guinea pig possesses NK3 receptors in the
lateral septum, whereas in the rat no NK3-binding sites can
be detected in the thalamus. Interestingly, the distribution
of NK3 receptors found in the guinea pig brain is close to
that described in the human brain; this is also true for the
pharmacological profile of NK3 receptors (Nguyen et al,
1994; Suman-Chauhan et al, 1994). Consequently, rats have
poor homological validity for the investigation of the anti-
stress properties of NK3 receptor ligands, while other
species, such as guinea pigs, are fully appropriate. Using
rats or mice in preclinical research investigating the effects
of NK3 agents can thus lead to false negatives. It is probable
that this observation also applies to other innovative
targets, although inter-species comparisons of these mole-
cular targets have not been conducted in a systematic way
and are thus missing in many cases. Unfortunately, almost
all animal models of MDD have been developed in rats or
mice. Therefore, when human genetics or imaging studies
undertaken in depressed subjects point to precise targets, it
should first be verified that these targets are expressed in
the model species in an appropriate way. If this is not the
case, alternative species in which these targets are expressed

in a homological way to humans should be used in
designing models of depression. This requires prior
extensive research on the biology and ethology of these
species. Furthermore, homological validity not only re-
quires choosing the appropriate species, but also identifying
the relevant strain. For example, mice are characterized by a
large phenotypic and genotypic variability, as more than
450 inbred strains have been described for this species
(Beck et al, 2000). They vary for crucial phenotypes, such as
stress sensitivity (Pothion et al, 2004; Ducottet and Belzung,
2005). In addition, mice are also the model species to design
knockouts, knockdowns, or knockins of particular genes.
Thus, the criteria to be used to choose the appropriate
strain should be selected carefully. First, it is important to
consider that knockout mice, deficient in one particular gene,
are probably not appropriate to model MDD or psychiatric
pathologies in general, as these diseases are not related to the
absence of one particular gene. Appropriate models should
focus on mice strains characterized by a high vulnerability to
developing depressive-like behaviors; this includes strains
bearing polymorphisms of particular genes involved in the
etiology of MDD or strains characterized by poor maternal
care (eg, BALB/c mice: Calatayud and Belzung, 2001, 2004),
as this factor also largely contributes to the occurrence of
depressive episodes in humans (Willner et al, 2012).
Another concern relates to the fact that drug effects have

frequently been assessed using bio-assays such as the forced
swimming test or the tail suspension test performed on
normal animals, ie, in rodents that have not been subjected
to experimental manipulations aimed at inducing a depres-
sion-like state. In humans, it is well documented that
antidepressant therapy has substantial efficacy only in a
sub-category of highly depressed subjects. In non-depressed
patients, antidepressant efficacy is equivalent to placebo
effects (Fournier et al, 2010; Khan et al, 2002; Kirsch et al,
2008). Therefore, it can be predicted that in rodents a
similar picture should be found, namely that drugs should
have no antidepressant-like effects in normal rodents
subjected to these assays. If effects are detected in ‘normal’
rodents tested under these conditions, this argues against
the predictive validity of these situations. Furthermore, in
mice subjected to an UCMS, an experimental manipulation
known to elicit biological and behavioral changes equivalent
to those observed in humans with MDD (Sibille et al, 2009),
it has also been shown that the effects of a chronic treatment
with fluoxetine, a SSRI frequently used to treat MDD, elicit

Table 3 Different Readouts Enabling Depression-Like Behavior in
Rodents to be Assessed

Depression-
related
phenotype

Test Reference

Resignation Forced swimming
Tail suspension

Porsolt et al, 1978
Steru et al, 1985

Lack of motivation Grooming behavior in the splash
test
Nest building in the nest test
Decrease in coat state score

Santarelli et al, 2003
Nollet et al, 2013
Nollet et al, 2013

Anhedonia Sucrose preference
Cookie test
Decreased intra-cranial self-
stimulation

Willner et al, 1987
Surget et al, 2011
Moreau et al, 1992

Anxiety Novelty-induced suppression of
feeding behavior

Dulawa and Hen, 2005

Irritability Resident-intruder test Mineur et al, 2003

Table 2 Animal Models of Depression Based on Experimental Manipulations Inducing Long-Lasting Behavioral and Neurobiological Changes

Animal model Rationale Reference

Repeated maternal
separation

Inducing a strong vulnerability to depression by applying stressful
events during the developmental period (before weaning)

Millstein and Holmes, 2007

Spontaneous stress-prone
rats

Using rats with spontaneous sensitivity to stress such as Flinders
sensitive line rat, Wistar Kyoto rat, fawn-hooded rat, learned helpless rat

Overstreet, 2012

Learned helplessness Inducing chronic behavioral despair by learning that a situation is without solution Overmier and Seligman, 1967

Social defeat Inducing chronic stress by repeated confrontation with a congener in
which mice will experience social defeat

Berton et al, 2006

Unpredictable chronic
mild stress

Inducing chronic mild stress based on the inability of the animals to predict their occurrence Willner et al, 1992

Chronic corticosterone Chronic corticosterone in the drinking water David et al, 2009
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impressive changes in the expression of mRNA in various
brain areas crucial for MDD, such as the dentate gyrus, the
amygdala, and the cingulate cortex. Interestingly, in the
cingulate cortex, the molecular changes induced by chronic
fluoxetine were compared in mice subjected to UCMS or
not, and no correlation of the molecular changes induced
under these two conditions was found (Surget et al, 2009).
This indicates that, at the molecular level, this SSRI does not
elicit the same changes in normal mice and in those
subjected to a protocol inducing a depressive-like state.
Therefore, predictive validity (the ability of a model to
predict drug efficacy: see McKinney and Bunney, 1969;
Abramson and Seligman, 1977; Willner, 1984; Soubrié and
Simon, 1989; Geyer and Markou, 1995; Koob et al, 1998;
Sarter and Bruno, 2002; Weiss and Kilts, 1998 for further
definitions) of a given compound has to be assessed in
animals subjected to manipulations inducing a pathological
state (eg, early environmental manipulations during the
developmental period or stress-related manipulations dur-
ing adulthood): when this is not the case the relevance and
thus predictability may be poor. This is in line with findings
that have shown that some putative antidepressants demon-
strate effects only in rodents, which are either genetically
stress-prone or have been placed in highly challenging
conditions, such as stressful situations. For example, CRF
receptor antagonists have poor effects in depression assays
in animals that have not been stressed or that do not show
high basal sustained activation of CRF receptors (for a
review see Kehne and Cain, 2010). CRF antagonists might
induce an effect only when these receptors have been
activated by endogenous ligands such as CRF or urocortin,
which is the case in stressful situations. It is also important
to mention here that the experimental manipulations that
are used to induce the depressive-like state should directly
target the disease, and not comorbid pathologies. For
example, chronic corticosterone administration has been
used as a model of MDD (Fernandes et al, 1997; David et al,
2009) but this is in fact a model of Cushing’s disease, a
pathology highly comorbid with MDD, and not of MDD
itself. Indeed, glucocorticoids per se are not sufficient to
induce all aspects of stress exposure. It is probable that the
subject requires concomitant occurrence of the context
eliciting stress and of the associated hormonal component
(ie, glucocorticoid release). This has recently been illustrated
by Veenit et al (2013) who showed that corticosterone
administration mimicked some (the aggressive component)
but not all aspects of the depressive-like behavior (not the
resignation component) related to stress. Interestingly, in
patients suffering from Cushing’s disease, a decrease in
glucocorticoid synthesis or action rather than antidepres-
sant therapy results in remission of the depressive symp-
toms (Pereira et al, 2010); therefore, high predictive validity
of an animal model based on excessive glucocorticoids
should in fact correspond to poor response to monoami-
nergic antidepressants, which seems not to be the case.
We have already reported that depression is characterized by

a high proportion of treatment-resistant patients (see Intro-
duction), ie, patients who do not show remission after mono-
therapy with monoaminergic drugs. New treatments that are
effective in these patients therefore need to be designed, which
also requires animal models of treatment-resistant depression.
Few such models are available, particularly because response to

classically used antidepressants is considered an important
criterion to be fulfilled for the model to be considered valid for
depression. Rodent models of treatment-resistant depression
should thus be designed which do not respond to classical
antidepressants and mimic some of the factors that are
associated with treatment-resistant depression in humans.
Some such models already exist: eg, the treatment resistance
that is associated with high-fat diets has been translated to
an animal model (Isingrini et al, 2010). Furthermore,
reduced sensitivity to antidepressant therapy can also occur
spontaneously in some strains of mice such as the BALB/
cOLaHsd strain (O’Leary et al, 2013).
Finally, in the clinic, sub-categories of MDD have been

described, including atypical depression and melancholic
depression. According to the DSM-IV-TR, atypical depression
is characterized by mood reactivity (patients being able to
experience improved mood in response to positive events),
weight gain or increase in appetite, hypersomnia, and
extreme reaction to negative events, whereas melancholic
depression corresponds to anhedonia or mood non-reactivity
(patients cannot experience positive moods, even when
good things happen), early morning wakening, excessive
guilt, anorexia, or weight loss. SSRIs and also monoamine
inhibitors such as phenelzine, are usually quite effective in
the treatment of atypical depression, whereas tricyclic
antidepressants such as imipramine are not (Stewart et al,
1998). For example, Joyce et al (2002) compared the
response to nortriptyline (a tricyclic antidepressant) and
to fluoxetine (a SSRI) in patients suffering from atypical
depression and they found a response rate of 67% with the
SSRI, whereas there was no response with nortriptyline.
This is associated with some biological features such as
HPA axis hypoactivity (Anisman et al, 1999; Geracioti et al,
1997). On the other hand, Joyce et al (2002) reported that in
melancholic patients, nortriptyline and fluoxetine were equally
effective and that melancholic patients displayed high
imipramine responsivity (Quitkin et al, 1989). Furthermore,
in the melancholic subtype, the stress hormones cortisol,
ACTH, and CRF are hypersecreted (Wong et al, 2000),
suggesting an HPA overdrive in melancholia. In most cases,
animal models have been designed to model MDD rather
than a sub-form of MDD. Therefore, the validity of these
models could be greatly improved by providing models of
MDD sub-types instead of MDD. This can be achieved in
currently used models by assessing the status of the HPA
axis and testing the efficacy of drugs belonging to different
pharmacological classes. For example, tricyclics should be
ineffective in an animal model of atypical depression.

Did Clinical Research Fail to Detect Effects?

Failure to provide adequate test situations to predict drug
efficacy has not only been observed in some preclinical
research, but is also true in some clinical trials designed
without taking into account the predictions of the preclini-
cal findings.
A first issue concerns the choice of the relevant dose to be

used in the clinical trial. Indeed, it is well known that
pharmacokinetic parameters (clearance and bioavailability)
can differ across species and particularly between small
mammals, such as rodents, and humans, thus an equivalent
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peripheral administration will induce very different plasma
doses of the compound. As efficacy corresponds to a precise
dose–response curve, an inappropriate plasma dose would
logically induce failure to detect effects. For example, in
mice, the NK2 receptor antagonist saredutant has repeat-
edly been tested in animal models of MDD, and it has
shown effectiveness at doses of 10 and 30mg/kg per os/per
day, corresponding to a maximum plasma concentration
(Cmax) ranging from 223 to 1390 ng/ml. However, clinical
trials used a dose of 100mg/day, corresponding to a very
low Cmax of 28–49 ng/ml, which is five times below the
minimal effective dose in rodents (Griebel and Holsboer,
2012). This may clearly explain the negative findings from
the clinical trials and it is probable that doses closer to the
effective dose in rodents would have elicited positive results.
Another issue is an inappropriate choice of the disease

targeted by the drug. For example, according to Griebel and
Holsboer (2012), three clinical phase II and phase III trials
have been undertaken to investigate the effects of CRF1
receptor antagonists in anxiety disorders: two of them
investigated drug effects in social anxiety disorder and the
other one in generalized anxiety disorder. Unfortunately, so
far they have lacked compelling efficacy, which is not
surprising. To our knowledge, data from animal models did
not predict effects of these drugs in models of social anxiety
or of generalized anxiety (in fact, no model has yet been
designed for these pathologies), but instead predicted
effects in disorders characterized by a high contribution
of stress in the etiology, such as post-traumatic stress dis-
order (Philbert et al, 2013). It is probable that these
compounds would induce encouraging results in this
pathology, as predicted from animal models. However, this
remains to be tested in clinical trials.
Another issue concerns patient stratification as MDD is

not a homogeneous disorder. The biological alterations
observed in this pathology are complex, and not necessarily
present in all patients. For example, some patient sub-
categories exhibit altered HPA axis regulation, while others
do not. The same heterogeneity can be found regarding
alteration in neurotransmission, or in inflammation status.
It can thus be that some MDD are related to an altered HPA
axis, whereas others are due to increased levels of pro-
inflammatory cytokines, decreased serotonin, etc (Tanti and
Belzung, 2010). This has consequences regarding treatments
used to reverse the symptomatology. It is possible to
predict, eg, that only those patients who exhibit altered HPA
axis regulation would benefit from treatment acting on
stress hormones such as CRF1 receptor antagonists or V1b
receptor antagonists. Similarly, only patients having in-
creased pro-inflammatory cytokines would respond to a
treatment targeting inflammation, and so forth. This means
that stratification of patients based on available biomarkers
is necessary to improve treatment response in order to
identify patients according to the biological mechanism that
is altered. Preclinical research might, in this case, enable
researchers to define the mechanism targeted by the
innovative drug; then clinical trials should select the clinical
sub-population who exhibit alterations that corresponds to
that particular treatment.
Finally, some theoretical models consider that MDD, as

well as other psychiatric disorders, cannot be described as a
unified entity but rather as a set of independent endophe-

notypes, each corresponding to a specific genetic determi-
nant, to a particular biological substrate and to a specific
symptomatology (Hasler and Northoff, 2011). According to
this theoretical framework, MDD corresponds to three main
endophenotypes: increased self-focus, increased stress
sensitivity, and anhedonia. Although the first of these,
self-focus, is related to increased resting state of brain
activity linked to heightened glutamatergic function and
decreased GABAergic neurotransmission, the third, anhe-
donia, is associated with decreased monoaminegic function
(serotonin, dopamine, and noradrenaline), and increased
stress sensitivity to altered serotonin and GABA function.
Genetic determinants of these dimensions include glutama-
tergic-, GABAergic-, and monoamine-related genes. If each
of these dimensions is independent of the others and
corresponds to a specific and drugable function, it would
theoretically be possible to treat each of these symptoms
separately. Preclinical research frequently tests a limited
number of symptomatic dimensions. Although a well-validated
model of MDD requires assessing a full set of dimensions
rather than a sole endpoint, some preclinical research can
show that a particular mechanism is involved in specific
behavior. For example, hippocampal neurogenesis has been
shown to be pivotal for some aspects of depressive-like
behavior, such as latency to feed in the novelty-induced
suppression of feeding test, but not for other behaviors,
such as anxious behavior in an open field test or resignation
behavior in the forced swimming test (David et al, 2009).
This means that predictions of preclinical research in some
cases concern drug effects on a MDD-related endopheno-
type, and not on MDD as a whole construct. Translating
these findings to the clinic means that clinical trials should
test innovative treatments on symptomatic dimensions
related to that particular endophenoytpe, rather than on
patients exhibiting all dimensions of MDD. Of course, this
requires at the same time designing new methods to stratify
the patients according to these dimensions, rather than
through classical DSM-related diagnostic features or
classical depression scales. However, the precise way to
achieve this goes beyond the scope of this review. Similarly,
if animal research enables predictions about subcategories
of MDD (such as atypical or melancholic depression) to be
made, clinical research should take them into account when
assessing efficacy of drugs in patients.

Solutions to Improve the Translational Value of
Psychiatric Research

Solutions to improve the translational value of findings in
the field of psychiatric research can easily be drawn up and
are summarized in Table 4. They concern the ways to
improve animal models and clinical trials, and also the
transition from animal models to clinical trials.
In the field of animal models, homological validity can be

improved by designing new models in species that are not
currently used. As homological validity is certainly higher
in mammals than in other vertebrates (Belzung and
Philippot, 2007), because of the proximity of the central
nervous system (only mammals have a well-developed
neocortex) and of some cognitive processes involved in
psychiatric conditions (mainly executive functions such as
flexibility and inhibition), this means that new mammals
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should be used in preclinical studies. Consequently,
research should be undertaken to carefully investigate the
biology, genetics, and ethology of these species. Other
aspects of validity of the animal models can also certainly be
improved, by designing models based on experimental
manipulations inducing a pathological-like state, and
particularly by trying to find situations that would mimic
sub-categories of the disorders, or particular dimensions or
endophenotypes linked to a disorder. The sex aspect should
also be taken into account more. Indeed, women are more
prone to stress-related psychiatric disorders such as MDD
(Holden, 2005) and sex differences have already been shown
in animal models of MDD as female rodents display higher
immobility than males in the forced swim test, whereas they
do not respond in the learned helplessness paradigm (Dalla
et al, 2011). Furthermore, after chronic mild stress, the
modification in sucrose intake is seen mainly in males,
whereas the HPA axis dysfunction is observed mainly in
females (Dalla et al, 2011). Animal models should be
developed that take the higher female prevalence of MDD
into account. Finally, animal models can also be greatly
improved by trying to improve the translation of the clinical
findings. In many cases, clinical research has established
changes in some biomarkers detected via imaging or plasma
assays or associated genetic polymorphisms linked to a
pathological state: these alterations can also be a starting
point for designing new animal models.
Pharmacokinetic concerns could also be addressed, by

developing better models for inter-species differences in
pharmacokinetics. This involves both clinical and preclini-
cal research. This can be achieved in different ways. In some
cases, the appropriate dosage can reasonably be extrapolated
from the preclinical findings, using specific formulae to
calculate the relevant doses according to the species (Lin,
1998; Martignoni et al, 2006). In other cases, this appears
more complicated. Interspecies variations are mainly
related to differences in the expression and catalytic activity
of hepatic P450 enzymes (Caldwell, 1981; Bogaards et al,
2000), as 102 functional P450 genes have been identified in
the mouse genome compared with 57 in humans (Nelson
et al, 2004). A way to address this difficulty consists in using
humanized mouse lines expressing human P450 enzymes to
test the effectiveness of innovative targets (Cheung and
Gonzalez, 2008). Interestingly, this has already been carried
out in antidepressant-related research (Shen and Yu, 2009).
Clinical research could also be improved. Patients who

would respond to innovative therapeutics should be more
carefully chosen, particularly by focusing on patients scoring
very high on MDD scales in order to avoid false negatives
because of patients who were not clinically depressed, but only

suffering from normal sadness, which does not respond to
antidepressant therapy. Indeed, currently this is not the case
and many clinical trials have been undertaken with patients
scoring low on depression scales. Finally, animal models
generally enable precise predictions about the therapeutic
target as they describe under which conditions a given drug
is effective. For example, drugs targeting the stress axis are
effective when the HPA system has been challenged, such as
by high stressful conditions, but not under more basal
conditions. Patients should therefore be stratified according
to these predictions, which would considerably increase the
probability of finding positive effects in clinical trials.
Finally, clinical trials should shift from a DSM-based
nosology to studies based on the detection and character-
ization of the relevant endophenotypes that would respond
to a particular treatment.

CONCLUSION

In conclusion, failure to find new therapies that would
result in an effective translation between the preclinical and
clinical research is mainly due to insufficient dialogue
between preclinical scientists such as fundamental neuros-
cientists, and medical doctors such as psychiatrists. Progress
in this field and therapeutic innovations would result from
improved reciprocal exchanges between protagonists in
these two fields. Scientific societies as well as funding
agencies should encourage this dialogue by providing
adequate structures, whereas scientists and practitioners
should become more open minded in fully incorporating
the findings from the two fields using an integrated, co-
generative method. Beyond research on innovative treat-
ments for MDD, this applies more generally to finding new
drugs in the field of psychiatry, and even, in some cases, in
non-psychiatric pathologies.
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Dournes C, Beeské S, Belzung C, Griebel G (2013). Deep brain
stimulation in treatment-resistant depression in mice: compar-
ison with the CRF1 antagonist, SSR125543. Prog Neuropsycho-
pharmacol Biol Psychiatry 40: 213–220.

Ducottet C, Belzung C (2005). Correlations between behaviours in
the elevated plus-maze and sensitivity to unpredictable sub-
chronic mild stress: evidence from inbred strains of mice. Behav
Brain Res 156: 153–162.

Ducottet C, Griebel G, Belzung C (2003). Effects of the selective
nonpeptide corticotropin-releasing factor receptor 1
antagonist antalarmin in the chronic mild stress model of
depression in mice. Prog Neuropsychopharmacol Biol Psychiatry
27: 625–631.

Dulawa SC, Hen R (2005). Recent advances in animal models of
chronic antidepressant effects: the novelty-induced hypophagia
test. Neurosci Biobehav Rev 29: 771–783.

Ebner K, Sartori SB, Singewald N (2009). Tachykinin receptors as
therapeutic targets in stress-related disorders. Curr Pharm Des
15: 1647–1674.

Fernandes C, McKittrick CR, File SE, McEwen BS (1997).
Decreased 5-HT1A and increased 5-HT2A receptor binding after
chronic corticosterone associated with a behavioural indication
of depression but not anxiety. Psychoneuroendocrinology 22:
477–491.

Ferraz AC, Delattre AM, Almendra RG, Sonagli M, Borges C,
Araujo P et al (2011). Chronic o-3 fatty acids supplementation
promotes beneficial effects on anxiety, cognitive and depressive-
like behaviors in rats subjected to a restraint stress protocol.
Behav Brain Res 219: 116–122.

Fournier JC, DeRubeis RJ, Hollon SD, Dimidjian S, Amsterdam JD,
Shelton RC et al (2010). Antidepressant drug effects and
depression severity: a patient-level meta-analysis. JAMA 303:
47–53.

Freeman MP, Hibbeln JR, Silver M, Hirschberg AM, Wang B, Yule
AM et al (2011). Omega-3 fatty acids for major depressive
disorder associated with the menopausal transition: a prelimin-
ary open trial. Menopause 18: 279–284.

Freund-Levi Y, Basun H, Cederholm T, Faxén-Irving G, Garlind A,
Grut M et al (2008). Omega-3 supplementation in mild to
moderate Alzheimer’s disease: effects on neuropsychiatric
symptoms. Int J Geriatr Psychiatry 23: 161–169.

Geracioti TD Jr, Loosen PT, Orth DN (1997). Low cerebrospinal
fluid corticotropin-releasing hormone concentrations in eucor-
tisolemic depression. Biol Psychiatry 42: 165–174.

Geyer MA, Markou A (1995). Animal models of psychiatric
disorders. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology:
the Fourth Generation of Progress. Raven Press: New York,
pp 787–798.
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