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Neuroimaging techniques hold the promise that they may one day aid the clinical assessment of individual psychiatric patients. However,

the vast majority of studies published so far have been based on average differences between groups. This study employed a multivariate

approach to examine the potential of resting-state functional magnetic resonance imaging (MRI) data for making accurate predictions

about psychopathology in survivors of the 2008 Sichuan earthquake at an individual level. Resting-state functional MRI data was acquired

for 121 survivors of the 2008 Sichuan earthquake each of whom was assessed for symptoms of post-traumatic stress disorder (PTSD)

using the 17-item PTSD Checklist (PCL). Using a multivariate analytical method known as relevance vector regression (RVR), we

examined the relationship between resting-state functional MRI data and symptom scores. We found that the use of RVR allowed

quantitative prediction of clinical scores with statistically significant accuracy (correlation¼ 0.32, P¼ 0.006; mean squared error¼ 176.88,

P¼ 0.001). Accurate prediction was based on functional activation in a number of prefrontal, parietal, and occipital regions. This is the

first evidence that neuroimaging techniques may inform the clinical assessment of trauma-exposed individuals by providing an accurate

and objective quantitative estimation of psychopathology. Furthermore, the significant contribution of parietal and occipital regions to

such estimation challenges the traditional view of PTSD as a disorder specific to the fronto-limbic network.
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INTRODUCTION

Trauma survivors are at high risk of developing symptoms of
post-traumatic stress disorder (PTSD), including re-experi-
ence of the traumatic event, avoidance of trauma-related
stimuli, and hypervigilance (Yehuda and Flory, 2007).
However, accurate identification of these symptoms can be
difficult due to reliance on a patient’s account (Rosen and
Taylor, 2007) and high rates of comorbidity with other Axis I
psychiatric disorders, somatic disorders, and mild cognitive
impairment (Pace and Heim, 2011). Neuroimaging techni-
ques hold the promise that they may one day aid the clinical
assessment of individual psychiatric patients, particularly in
those cases in which severity of symptoms is difficult to
ascertain (Savitz et al, 2013). Consistent with this notion,
studies using structural and functional magnetic resonance
imaging (MRI) have identified volumetric reductions and

functional alternations in trauma-survivors who develop
symptoms of PTSD, relative to those who do not, within a
distributed fronto-limbic network that includes the dorso-
lateral and ventromedial prefrontal cortices, amygdalae, and
hippocampi (Gilbertson et al, 2002; Pitman et al, 2012; Nardo
et al, 2010; Robinson and Shergill, 2011; Shin et al, 2006; New
et al, 2009; Lyoo et al, 2011; Morey et al, 2012; Weber et al,
2013). Among these, a number of recent studies using
resting-state fMRI specifically have also reported altered
functional connectivity in those with PTSD relative to healthy
controls, which in turn has been observed to correlate with
clinical score (Zhou et al, 2012; Yin et al, 2012; Qin et al,
2012). These differences, however, were based on average
estimates at a group level, which is of little use in clinical
practice where doctors need to make decisions about
individuals. At present, it remains unclear whether neuro-
imaging could be used to inform the clinical assessment of
individual patients.
In an effort to increase the translational applicability of

the results, there has been a recent shift toward the use of
multivariate machine learning techniques (Brammer, 2009).
This alternative approach has two main advantages
compared with standard mass-univariate analytical meth-
ods that are typically used in neuroimaging. First, it allows
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inferences at the level of the individual and therefore
provides results that have higher translational applicability
in everyday clinical practice. Second, it is sensitive to
differences that are subtle and spatially distributed by virtue
of taking inter-regional correlations into account; as such, it
provides an ideal framework for investigating psychiatric
disorders which affect a distributed network of regions.
Here we used a multivariate machine learning technique
known as relevance vector regression (RVR) (Tipping,
2001), to evaluate the potential of resting-state functional
MRI for making accurate predictions about psychopathol-
ogy in individuals at high risk of developing PTSD following
exposure to trauma. The key strength of RVR relative to
other multivariate machine learning techniques such as
Support Vector Machine (SVM) (Orrù et al, 2012) is that it
allows the quantitative prediction of a variable of interest
(eg, a patient’s score on a clinical scale) without the need for
a discrete categorical decision (eg, patients vs controls). We
hypothesized that the application of RVR to resting-state
functional MRI data (Zhou et al, 2012; Yin et al, 2012; Qin
et al, 2012) would allow accurate quantitative prediction of
psychopathology in trauma-survivors. In addition, based on
previous studies of the neurobiological basis of PTSD
(Gilbertson et al, 2002; Pitman et al, 2012; Nardo et al, 2010;
Robinson and Shergill, 2011; Shin et al, 2006; New et al,
2009; Lyoo et al, 2011; Morey et al, 2012; Weber et al, 2013),
we expected that accurate quantitative prediction of
psychopathology would be informed by functional altera-
tions within a highly distributed network of regions that
included the dorsolateral and ventromedial prefrontal
cortices, amygdalae, and hippocampi.

MATERIALS AND METHODS

Subjects

We recruited 121 survivors of the 2008 Sichuan earthquake
between 10 and 15 months after the event (see Table 1).
Inclusion criteria included: (i) physically experiencing the
earthquake; (ii) personally witnessing death, serious injury,
or the collapse of buildings; and (iii) not suffering any
physical injury. Exclusion criteria included psychiatric
comorbidity assessed using the Structured Clinical Inter-
view for DSM-IV, a history of psychiatric or neurological
disorders, recent medication that might affect the brain
function, alcohol or drug abuse, and pregnancy. Each
participant was assessed using the PTSD Checklist (PCL), a
17-item self-report measure of symptoms of PTSD
(Weathers et al, 1994). This revealed a high degree of
individual variability in symptoms of PTSD. Of the 121
participants included, 65 met the criteria for diagnosis of
PTSD at the time of scanning.

Resting-State Functional MRI Data Acquisition

Each participant was investigated using resting-state func-
tional MRI, a technique that provides information on
spontaneous fluctuations in neuronal activity at rest. A total
of 205 images sensitized to changes in BOLD signal levels
were obtained from all participants using a three T MRI
system (EXCITE, General Electric, Milwaukee, WI, USA)
with a gradient-echo echo-planar imaging (EPI) sequence.

Sequence parameters were as follows: repetition time/echo
time (TR/TE)¼ 2000/30ms; flip angle¼ 901; 30 axial slice
per volume; 5mm slice thickness (no slice gap); matrix¼ 64
� 64; FOV¼ 240� 240mm2; voxel size¼ 3.75� 3.75� 5
mm3. Each functional run contained 205 image volumes,
resulting in a total scanning time of 410 s for each
participant. The first five scans were discarded before the
preprocessing of the data to remove the impact of
magnetization stabilization. All participants were instructed
not to focus their thoughts on anything in particular and
keep their eyes closed during the acquisition.

Data Analysis

Following image preprocessing using Statistical Parametric
Mapping (SPM8; http://www.fil.ion.ucl.ac.uk/spm/) and the
Resting State fMRI Data Analysis Toolkit (REST; http://
www.restfmri.net/forum), we performed the statistical ana-
lysis of the data using multivariate RVR (Tipping, 2001) as
implemented in the Pattern Recognition for Neuroimaging
Toolbox (PRoNTo; http://www.mlnl.cs.ucl.ac.uk/pronto/).

Image preprocessing. For each participant, EPI images
were realigned to the first image and unwarped to correct
for susceptibility-by-movement interaction using SPM8
software (http://www.fil.ion.ucl.ac.uk/spm/) running under
Matlab (Mathworks, 2010 release). Examination of the
movement parameters showed that there was no significant
association between the mean (r¼ 0.008; P¼ 0.931; n¼ 121),
or maximum (r¼ � 0.039; P¼ 0.674; n¼ 121), displace-
ment, and clinical scores. All of the realigned images were
spatially normalized to the Montreal Neurological Institute
template and smoothed using an 8mm full-width half-
maximum (FWHM) Gaussian kernel. Using the smoothed
images, the average amplitude of low frequency fluctuation
(ALFF), across the frequency band 0.01Hz to 0.08Hz, was
calculated within each voxel using REST software (http://
www.restfmri.net/forum) running under Matlab (Math-
works, 2010 release). The resulting spatial ALFF maps were
then normalized with each voxel divided by the whole-brain
ALFF mean, providing ‘mALFF’ spatial maps.

Univariate SPM analysis. We used a standard, univariate
approach to investigate the relationship between clinical
scores and the mean amplitude of spontaneous low
frequency fluctuations during resting-state. A multiple

Table 1 Subject Socio-Demographic and Clinical Information
(mean (SD))

Characteristic Earthquake
survivors (n¼ 121)

Age (years) 43.27 (9.89)

Gender (M:F) 40:81

Years of education (years) 7.02 (3.32)

PCL score 38.45 (13.81)

Abbreviations: F, female; M, Male; PCL, PTSD Checklist; PTSD, post-traumatic
stress disorder.
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regression model was used in SPM8 software to identify any
voxels in the mALFF spatial maps that showed a significant
association with clinical scores. Statistical inferences were
made at Po0.05 (corrected for multiple comparisons using
Family Wise Error (FWE)).

Multivariate RVR analysis. In addition, we examined the
relationship between clinical scores and the mean amplitude
of spontaneous low frequency fluctuations at rest using
multivariate RVR as implemented in PRoNTo (http://
www.mlnl.cs.ucl.ac.uk/pronto/) running under Matlab
(Mathworks, 2010 release). In brief, RVR is a sparse kernel
learning multivariate regression method set in a fully
probabilistic Bayesian framework. Under this framework,
a zero-mean Gaussian prior is introduced over the model
weights, governed by a set of hyperparameters—one for
each weight. The most probable values for these hyperpara-
meters are then iteratively estimated from the training data,
with sparseness achieved due to the posterior distributions
of many of the weights peaking sharply around zero; those
training vectors associated with non-zero weights are
referred to as ‘relevance’ vectors. The optimized posterior
distribution over the weights can then be used to predict the
target value (eg, PCL score) for a previously unseen input
vector (eg, mALFF map) by computing the predictive
distribution (for a more in-depth and detailed description
see Tipping, 2001). In the current study, the input vectors
(features) were mean centered using the training data, and
an estimate for the model’s generalizability obtained via
leave-one-out cross validation, indexed using the Pearson
correlation coefficient and mean squared error (MSE)
between actual and predicted PCL score. The significance
of both indices was estimated using a permutation test
whereby the input-target data were randomly paired and the
RVR rerun 1000 times. This created a distribution of
correlation and MSE values reflecting the null hypothesis
that the model did not exceed chance. The number of times
the permuted value was greater than (or with respect to
MSE values, less than), or equal to, the true value was then
divided by 1000 providing an estimated P-value for both the
correlation coefficient and observed MSE.

For ease of visualization, a table was also created using a
70% threshold for all successful RVR-derived weight maps,
showing those regions with weight vector values in the
upper, or lower, 30% of the absolute maximum and mini-
mum weight vector values across all regions (Table 2).
These values represent the relative contribution of each
voxel to the regression function, in the context of every
other voxel.

A priori mask. In order to take into account those regions
most frequently implicated in PTSD by previous studies, ie,
the bilateral prefrontal cortices, amygdalae, and hippocampi
(Gilbertson et al, 2002; Pitman et al, 2012; Nardo et al, 2010;
Robinson and Shergill, 2011; Shin et al, 2006; New et al,
2009; Lyoo et al, 2011; Morey et al, 2012; Weber et al, 2013),
we also repeated both the univariate and multivariate
analyses using an a priori mask comprising these regions
(see SF1 in the Supplementary Data). This allowed us to
examine whether the sensitivity of each analysis could be
increased.

RESULTS

Univariate SPM Analysis

Whole brain analysis of the resting-state functional MRI
data did not detect any regions that showed a significant
association with clinical scores at Po0.05 (FWE corrected).
Using an a priori mask comprising regions implicated in

PTSD, ie, the bilateral prefrontal cortices, amygdalae, and
hippocampi (see SF1 in the Supplementary Data), this
region of interest (ROI) analysis was also unable to detect
any region(s) showing a significant association with clinical
scores at Po0.05 (FWE corrected).

Multivariate RVR Analysis

The application of RVR to the whole-brain resting-state
functional MRI data allowed quantitative prediction of
clinical scores with statistically significant accuracy
(correlation¼ 0.32 P-value¼ 0.006; mean sum of squares
¼ 176.88 P-value¼ 0.001), see Figure 1. Prediction was
based on functional alterations across the whole brain,
including in particular, frontal and parietal areas bilaterally
in addition to cingulate, cerebellar, and subcortical regions,
see Table 2 and Figure 2.
Using the same a priori mask as used in the univariate

SPM analysis (see SF1 in the Supplementary Material),
the multivariate analysis was also repeated. Accuracy
of prediction was no longer significant (correlation
¼ � 0.10 P-value¼ 0.408; mean sum of squares¼ 247.03
P-value¼ 0.647), suggesting that prediction of psychopathol-
ogy was informed by regions outside of the bilateral fronto-
limbic network that is traditionally associated with PTSD.

DISCUSSION

Recent studies of psychiatric patients employing multi-
variate machine learning techniques have shown the
potential of structural and functional neuroimaging for
making inferences at the individual level (Orrù et al, 2012);
however, these studies were limited to discrete categorical
decisions such as whether an individual belongs to a
patient or control group. For example, in a recent
investigation, we showed that the application of a multi-
variate machine learning technique known as the SVM to
structural MRI data, allows accurate distinction of trauma-
exposed individuals who do and do not meet criteria for
PTSD (Gong et al, 2013). However, this study was based on
a categorical distinction between patients and controls,
and ignored individual variability in psychopathology
within each subgroup. Here we have extended this earlier
result by showing that the application of RVR to the
whole-brain resting-state functional MRI data allows
quantitative prediction of clinical scores with statistically
significant accuracy. To our knowledge, this is the first
evidence that neuroimaging techniques may inform the
clinical assessment of psychiatric patients by allowing
accurate and objective quantitative estimation of psycho-
pathology.
The existing literature also suggests that psycho-

logical symptoms in PTSD are associated with dysfunction
within a specific fronto-limbic network (Gilbertson et al,
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2002; Pitman et al, 2012; Nardo et al, 2010; Robinson and
Shergill, 2011; Shin et al, 2006; New et al, 2009; Lyoo et al,
2011; Morey et al, 2012; Weber et al, 2013). Dysfunction in
this network is thought to be explained by a combination of
acquired signs of the disorder and pre-existing vulner-
ability factors (Sekiguchi et al, 2012). However, using a

whole-brain analysis approach, we found that a number of
regions outside this fronto-limbic network traditionally
associated with PTSD contributed to the accurate prediction
of clinical scores. These included, for example, the left
superior parietal lobule, right angular gyrus, right superior
and middle occipital gyri, and right cerebellum and the
right uncus (see Table 2 and Figure 1b). Furthermore, the
accuracy of prediction was no longer significant when we
repeated the analysis using an a priori mask comprising the
bilateral prefrontal cortices, amygdalae, and hippocampi.
Thus, although the majority of studies investigating PTSD
have reported the bilateral prefrontal cortices, amygdalae,
and/or hippocampi, our findings are consistent with the
subset of studies that report structural and functional
alterations in parietal and occipital regions also (Zhang
et al, 2011; Chao et al, 2012; Tavanti et al, 2012; Liu et al,
2012; Eckart et al, 2011; Schuff et al, 2011). For instance Liu
et al (2012) and Eckart et al (2011) reported a reduction of
the right inferior parietal gyrus in terms of cortical
thickness and volume, respectively, in participants with
PTSD relative to healthy controls. Similarly, using arterial
spin labeling MRI, Schuff et al (2011) noted an increased
regional cerebral blood flow in the right parietal and
superior temporal cortex of subjects with PTSD relative to
those without. More recently, Tavanti et al (2012) reported a
reduction in cortical gray matter volume in the frontal and
occipital lobes of PTSD patients relative to healthy controls,
which in turn appeared to correlate with clinical measures.
Further consistent with this finding, Chao et al (2012) found
that combat veterans diagnosed with PTSD had reduced left
occipital lobe gray matter volume relative to those without
the illness, which was negatively correlated with PTSD
symptom severity. Our investigation therefore extends these
studies by indicating that parietal and occipital regions
provide critical information for successfully estimating
PTSD symptomatology at individual level. This therefore
supports the notion that regions outside the fronto-limbic
network are critical for accurate prediction of psycho-
pathology following exposure to trauma, and challenges the

Table 2 Neuroanatomical Regions With a Weight Vector Score in
the Top, or Bottom, 30% of The Maximum Weight Vector Score
across All Regions for the Resting-state Functional MRI-based RVR
Used to Accurately Predict PCL Symptom Score. wi, and MNI
Coordinates Refer to the Peak Weight Vector Score in each Cluster

Region Number
of voxels

MNI
coordinate
(x, y, z)

wi

(� 10� 3)

Regions with positive wi scores

Frontal

Left superior frontal gyrus 40 � 12, 34, 60 7.55

Left middle frontal gyrus 25 � 30, 56, 28 6.46

Left lateral fronto-orbital
gyrus

17 � 26, 50, � 18 7.64

Right superior frontal gyrus 16 22, 4, 72 7.27

Parietal

Left superior parietal lobule 75 � 30, � 80, 48 7.33

32 � 36, � 68, 58 7.64

Left post central gyrus 56 � 56, � 28, 48 7.10

1 � 24, � 40, 76 5.99

Right angular gyrus 1 56, � 26, 54 5.75

Regions with negative wi scores

Frontal

Right precentral gyrus 95 12, � 20, 78 � 8.59

2 30, � 22, 72 � 6.69

Left medial frontal gyrus 79 � 2, 62, 6 � 7.93

9 � 12, � 14, 78 � 7.17

Left cingulate region 40 � 2, 46, � 14 � 7.06

Right cingulate region 20 0, 34, � 8 � 7.81

Right middle frontal gyrus 19 26, 44, 46 � 7.27

Right superior frontal gyrus 1 12, � 8, 78 � 6.29

Occipital

Right cuneus 24 6, � 100, 4 � 7.77

Right superior occipital gyrus 13 12, � 84, 48 � 7.46

Right middle occipital gyrus 1 42, � 76, 42 � 6.52

Parietal

Right angular gyrus 7 44, � 56, 58 � 7.19

Left superior parietal lobule 2 � 30, � 50, 72 � 6.07

Cerebellum

Right cerebellum 9 28, � 90, � 24 � 6.35

4 16, � 92, � 26 � 6.35

Subcortical

Right uncus 2 30, 10, � 32 � 6.39

Abbreviations: MNI, Montreal Neurological Institute; PCL, PTSD checklist;
PTSD, post-traumatic stress disorder; RVR, relevance rector regression.
wi: weight vector score indicating the relative contribution of each voxel to the
regression function.
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Figure 1 Scatter plot showing the predicted clinical score for each
subject derived from their resting-state data using relevance vector
regression (RVR), vs their actual clinical score.
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traditional view of PTSD as a disorder specific to frontal and
limbic regions. In particular, the notable contribution of
parietal and occipital regions to accurate prediction,
suggests that the development of psychopathology following
exposure to trauma may be associated with functional
alterations in attentional and perceptual regions. This is
consistent with cognitive models of PTSD that explain some
of the main symptoms of the disorder in terms of altered
attentional and perceptual processing (Ehlers and Clark,
2000). Similarly, the regions implicated here are in
accordance with those areas often reported by studies
investigating depersonalization disorder and social cogni-
tion, of which elements of both are frequently evident in
those with PTSD (Phillips et al. 2001, Lemche et al. 2007;
Lanius et al, 2011; Sierra and David 2011; Sugiura et al.
2013). However, it should be noted that in multivariate
methods, an individual region may display high discrimi-
native power due to two possible reasons: (i) a difference in
signal intensity between individuals with low and high
scores in that region; (ii) a difference in the correlation
between that signal intensity of that region and other areas
between individuals with low and high scores. Thus, the
prefrontal, parietal, and occipital regions identified in the
present investigation should be interpreted as a spatially
distributed pattern rather than as independent areas.
In contrast, the univariate analysis of the resting-state

functional MRI data, in which each voxel was considered as
a spatially independent unit, did not detect any regions that
showed a significant association with clinical scores.
Critically, this finding remained unchanged when the a
priori mask of fronto-limbic regions as described above was
used. Together, this provides support to the idea that
multivariate methods such as RVR are more sensitive to the
subtle and spatially diffuse alterations typically observed in
psychiatric disorders, and therefore may be better suited to
the development of a real-world clinical diagnostic tool,
than standard mass-univariate techniques (Brammer, 2009).

Our finding that fluctuations in resting-state neural
activity can accurately predict clinical symptomatology also
builds on the growing number of studies which, using
univariate techniques, reported an alteration of the resting-
state neural networks in those with PTSD relative to healthy
controls, which in many cases was in turn found to be
correlated with clinical score (Zhou et al, 2012; Yin et al,
2012; Qin et al, 2012).
A limitation of the present study is that all participants

were investigated after exposure to the earthquake using a
cross-sectional design; thus, it was not possible to establish
whether the observed variability in the brain function
reflected plastic changes that occurred after the earthquake
or pre-existing differences associated with individual
variability in psychological vulnerability. In contrast, a
recent investigation employing a longitudinal design was
able to distinguish between morphological brain changes
that reflect acquired signs of post-earthquake stress and
pre-existing vulnerability at the group level (Sekiguchi et al,
2012). Another limitation is that all participants were free
from psychiatric comorbidity and were not taking any
medication that might affect the brain function. Although
this had the advantage of minimizing the impact of these
potential confounds on the results, it meant that our sample
might not be fully representative of the population with
PTSD. Further studies using a more representative sample
including individuals with and without comorbidity would
be required to better characterize the potential of resting-
state functional MRI as a clinically useful diagnostic aid.
In conclusion, our results provide preliminary support to

the development of resting-state functional MRI as a
clinically useful diagnostic aid. Such aid could potentially
be used in a clinical setting to inform the clinical evaluation
of those difficult to categorize using traditional methods of
clinical assessment alone (Pace and Heim, 2011; Lanius
et al, 2007). In addition, it could potentially be employed in
forensic evaluations of mental insanity by providing an

LEFT
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0.008

Figure 2 Multivariate map showing the weight of each voxel indicating its relative contribution to the regression function in the context of all other voxels
(color bar in arbitrary units).
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objective means of reducing controversy and detecting
malingering (Sartori et al, 2011). Nevertheless, it should be
stressed that the eventual use of resting-state functional
MRI in clinical practice would ultimately require a more
comprehensive evaluation of clinical utility that takes
several factors into account such as outcome impact, cost
effectiveness, potential risks and side-effects, inconveni-
ence, and ethical considerations.
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