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Although advances in psychotherapy have been made in recent years, drug discovery for brain diseases such as

schizophrenia and mood disorders has stagnated. The need for new biomarkers and validated therapeutic targets in the field

of neuropsychopharmacology is widely unmet. The brain is the most complex part of human anatomy from the standpoint of

number and types of cells, their interconnections, and circuitry. To better meet patient needs, improved methods to approach

brain studies by understanding functional networks that interact with the genome are being developed. The integrated

biological approaches—proteomics, transcriptomics, metabolomics, and glycomics—have a strong record in several areas of

biomedicine, including neurochemistry and neuro-oncology. Published applications of an integrated approach to projects of

neurological, psychiatric, and pharmacological natures are still few but show promise to provide deep biological knowledge

derived from cells, animal models, and clinical materials. Future studes that yield insights based on integrated analyses

promise to deliver new therapeutic targets and biomarkers for personalized medicine.
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INTRODUCTION

Since the first draft of the human genome was published in
2001 (Venter et al, 2001), genome-wide studies of human
variability have gone from dream to reality, covering the
entire spectrum of human disease, including neurological
and psychiatric diseases. Following the initial draft,
scientific debates arose regarding the number of genes
encoded by the human genome and the percentage of
noncoding or ‘junk’ DNA. At first, the coding elements were
deemed to be a low percent of the entire genome. The first
general translation of human genome in 2012, delivered by
the ‘Encyclopedia of DNA Elements’ or ENCODE project
(Encode Project Consortium, 2012), showed that 80% or
more of the human genome is biologically active and that
the noncoding DNA regions in fact have the potential to
modulate human health and disease. These new data will

provide a basis to increase the impact of genomics in
human medicine and are highly synergistic with data from
trancriptomic, proteomic, glycomic, and metabolomic
initiatives. For instance, only one-third of the ENCODE-
predicted protein-coding genes have been identified at the
protein level. To meet the challenge of identifying all human
proteins and assigning their functions, ENCODE has joined
forces with the Chromosome-centric Human Proteome
Project (C-HPP) (Paik and Hancock, 2012). Those com-
bined efforts are expected to define the mechanisms by
which polygenes, transcription factor networks, and single-
nucleotide polymorphisms (SNPs) control the expression of
groups of protein isoforms. The C-HPP will identify the
expression of yet undetected proteins, including those
encoded by newly identified coding regions. A third partner
in the collaboration is the Genome-Tissue Expression
Project (http://www.genome.gov/gtex/). The GTEx project
employs optimized protocols for obtaining and storing a
large range of organs and tissues, and for analyzing genetic
variation and expression. These tissues and organs
are collected and stored through the National Cancer
Institute’s cancer Human Biobank initiative on behalf of
GTEx. Microarray results for frontal and temporal cortex,
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cerebellum, and pons are already available. The main goal
of the collaboration is to integrate genomic and proteomic
data into functional modules that will describe systems-
wide interactions in biological processes, in health, and in
disease, including neuropsychiatric disorders (Califano
et al, 2012).
Understanding the response of neurological cell popula-

tions within tissues (normal vs diseased, treated vs
untreated, etc.) and evidence that these cell populations
are ‘drivers’ of disease underscores the importance of
understanding the detailed biology at the molecular level
of cells and circuits. Utilizing an integrated biological
approach to probe the response of cells and tissues will
guide the rational design of therapeutic treatment. Because
of the complexity of the approach, this research is most
often accomplished through multidisciplinary and inter-
institutional collaborations, as no single laboratory has
expertise in all the technologies required. The C-HPP is an
extreme example, because it brings together data sets
acquired in hundreds of international laboratories.
Systems biology research is built on knowledge derived

from global data sets measured in patterns of response of
the transcriptome, proteome, glycome, lipidome, and
metabolome. To obtain knowledge of the signaling path-
ways involved in the maintenance of the normal vs diseased
state or treated vs untreated states, quantitative phospho-
proteomic, glycomic, transcriptomic, lipidomic, and meta-
bolomic data sets are collected on each sample. The data are
compared with known, published results and pathways and
then processed with innovative mathematical–computa-
tional algorithms tailored to define correlations between the
data sets and graphical modeling to reconstruct pathways
that are not yet defined in the scientific literature. The focus
is to identify and characterize pathway reactions that will
bridge the final gap and, for the first time, enable a
mechanism to understand cellular responses, identify new
targets, and design appropriate therapeutic interventions
specifically targeting the disease.

We have applied this approach (He et al, 2010a,b; Kroes
et al, 2010; Nilsson et al, 2010) to the study of GBM and
glioma-derived cancer stem-like cells (GSCs). The research
is based on several innovative biological systems and
technologies, and has resulted in novel insights into GBM
and GSC biology. Our approach permits a hypothesis-
driven, carefully planned experimental design to generate
the data that enable identification of novel therapeutic
targets and biomarkers. We measured global changes in
intact polar lipids (gangliosides, phospholipids, sulfatides,
etc.) through an analytical methodology that employed
innovative chromatographic separations, efficient ioniza-
tion techniques, and high-resolution mass spectrometry
(MS) analysis. Observed changes in lipids (lipidomics) and
other metabolites in normal vs treated GBMs and/or GSCs
were correlated to changes in glycogene transcripts. Those
data were further correlated with changes in the phospho-
proteome of treated GSCs. Computational–mathematical
analysis (Goerke et al, 2010; Meyer-Baese et al, 2012a,b)
further defined correlations in the large data sets (Figure 1).
Although the subject of the study was within neuro-
oncology, the same techniques are applicable to other
diseases. However, experimental planning is more compli-
cated in studies of neuropsychiatric illness, because those
studies may include neurodevelopmental hypotheses or
changes over a very long timespan. The appropriate
samples, whether from human or from animal models,
must be obtained in a standardized manner (Mattsson et al,
2012) and must be properly treated and stored, especially
for biomolecular studies. Heat stabilization may be required
at the time of sampling to preserve neuropeptide, metabo-
lite, and protein, especially phosphoprotein, integrity
(Ahmed and Gardiner, 2011)
This review focuses upon how the new knowledge base

provided by advances in genomics can be leveraged in other
genome-wide studies in neuroscience, especially when those
data sets are combined. The four major tissues (human-
derived or from animal models) used in molecular studies
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Figure 1. Computational analysis of comprehensive proteomic, transcriptomic, and lipidomic data sets can yield new insights derived from correlations
hidden in the data.
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of human CNS disease are cerebrospinal fluid, cell cultures,
post-mortem brain, and spinal cord. Blood and urine
samples are always part of the general medical analysis,
but saliva and nasal secretions may prove to be valuable
sample sources, especially for metabolite analysis. Biological
tissues are a rich source of (poly)nucleotides, amino acid
biopolymers (neuropeptides and proteins), lipids, and
metabolites. Traditionally, bioanalytical methods in neu-
roscience have relied heavily on antibody-based detection
of single or a few proteins by western blot or immunohis-
tochemistry analysis. Although highly sensitive, antibody-
based assays only recognize a linear or three-dimensional
epitope of three to seven amino acids (Schechter, 1970)
and often cross-react with molecules other than the one
targeted. If the epitope is modified (such as by phosphor-
ylation), the protein may go undetected. Furthermore, a
single antibody likely will not deliver structural information
outside the epitope and thus cannot resolve molecular
isoforms that may have distinct biological functions. For
these reasons, there has been a surge in interest in analytical
techniques that can provide both high-confidence identifi-
cation and structural assignments.
This review is organized into sections that describe the

enabling technologies that are employed in integrated
biological studies, including genome-wide determination
of transcript, protein, lipid and metabolite expression, and
computational strategies to find novel correlations between
large biological data sets. Examples of synergistic results
obtained in neuroscientific and neuro-oncological investi-
gations are provided. We present methods relevant to
neuroimaging connectomics and the cell biology of
nueropsychiatric disorders. Although we do not include
a separate discussion of the biomarker field, it is our
experience that putative biomarker identification is a
natural outcome of integrated biological studies. Future
perspectives on the potential impact of integrated biological
approaches in the development of neurotherapeutics are
described in each section.

ESSENTIAL CONSIDERATIONS IN
EXPERIMENTAL DESIGN

The transcription and translation of genetic information
into proteins, lipids, and metabolites comprises highly
nonlinear processes. Intra- and extracellular environments
are dynamic systems that constantly adjust to signals in
their surroundings. Thus, understanding the micro- and
macroheterogeneity of functional molecules is essential to
study disease processes. Recent advances in analytical and
computational technologies show promise to characterize
the full biochemical complement of neurological and other
biological systems in health and disease. It is of importance
to note that studies of biomolecules on a global scale often
result in very large data sets (terabytes) and require a high
degree of skilled experimental planning, execution, and data
analysis in order to obtain biologically relevant results.

The pitfalls in large-scale studies can be eliminated by
thoughtful study design (Oberg and Vitek, 2009). Systematic
data biases result from different treatments between sample
states (different sampling methods or storage conditions, for
instance) and those that cannot be corrected by statistics.
Data from adequate numbers of biological and technical
replicates must be acquired. Every large-scale experiment
does have sources of technical variation, which can be
ameliorated by statistical analysis. Although large-scale
investigations of lipids and metabolites are relatively rare,
still, much discussion of statistical methods to correct for
experimental biases in transcriptomic (Dupuy and Simon,
2007) and proteomic (Cappadona et al, 2012; Thompson
et al, 2012) assays has been published. It is highly advisable
to have a statistician participate in the design of large-scale
studies, beginning at the planning stage.
The most important component of large-scale experi-

mental design is a robust hypothesis, followed by the
identification of sample populations, appropriate compar-
isons, and numbers of biological samples. There are special
challenges associated with molecular research in the
neuropsychiatric field. The privileged nature of human
brain sampling, which most often occurs post mortem, the
need to protect the samples from degradation to the greatest
extent possible, and the challenges in making clinical
diagnoses are especially prominent in this field. A strict
control of factors that affect intersample variability is
necessary. Once the biological samples are accumulated,
experimental variations should be minimized by rigorous
protocols to ensure that all samples are treated identically.
Most samples are extracted and analyzed in a queue,
injected sequentially into a mass spectrometer. When the
samples are grouped and introduced sequentially, systema-
tic quantitative differences may be observed that arise due
to instrument sensitivity rather than real differences
between samples. Block randomization of sample analysis
is one way to overcome this issue.
Quantitative workflows in proteomics, lipidomics, and

metabolomics record patterns of analyte abundances in
samples derived from distinct conditions or states. Typi-
cally, very large data sets are generated, and are first
extracted and processed by the use of commercial or in-
house-developed software tools. A list of quantified analytes
may then be further examined with knowledge-based tools,
such as Ingenuity Pathways Analysis, to find biological
circuits that may be relatively up- or downregulated
between sample states.

TRANSCRIPTOMICS

One important principle underpinning the systems biolo-
gical approach to understand complex neurological dis-
orders is not merely the integration of each of the physical
components and interactions of a system, but also the
mapping of how the information propagates through this
system in response to perturbations. If we hope to
understand the dynamic biology of complex neurological
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disorders, instead of looking at one transcript or protein at
a time, which is historically how this has been approached,
we need to understand the integration of thousands of
proteins in a dynamically changing environment
(Geschwind and Konopka, 2009; Villoslada et al, 2009;
Kotaleski and Blackwell, 2010). How we understand core
transcriptomic changes can occur at several different levels,
depending upon the overarching nature and purpose of the
question at hand: (a) the hypothesis-generating phase.
When transcriptomics is employed as a single technique, it
is an unbiased approach that requires no understanding of
the system and occurs primarily at the level of gene
expression patterns, and (b) the applications or target
generation phase. The latter requires a systems approach
and applies it in a way that can be used to identify better
therapeutic targets or combinations of targets in the proper
context for the treatment of disease. As many genes
contribute to normal functions, research efforts are moving
from the search for a ‘disease-specific gene’ towards the
understanding of the biochemical and molecular function-
ing of gene families whose disrupted interaction in
complicated networks can lead to the disease state.
Transcriptomics can address all (global approaches) or a

segment (focused approaches) of the transcriptome, from
normal or diseased single cells or tissues. Global approaches
represent an important complement to the traditional
reductionist single-gene studies. Whereas traditional single
gene studies are hypothesis-driven, both global and focused
approaches can be hypothesis-generating, discovery-based,
or hypothesis-driven, and therefore have the potential to
yield novel insight into brain function and dysfunction. As
detailed below, depending on the techniques employed, it
can be used as a snapshot to annotate a cell’s expression
profile or fingerprint, including coding as well as noncoding
transcripts; query the structure of the genes that gave rise to
them, including intricacies of exon/intron boundaries,
transcription start sites, splicing patterns, and even gene
fusion events; and aid in mapping interactive networks.
Networks are systems of interconnected entities. When
networks are studied comprehensively, novel properties
emerge that can’t be derived from the individual analysis of
any of their components. And perhaps most familiarly,
transcriptomics are used to determine how transcript
expression patterns are altered under differing conditions
(such as disease or drug treatment), and to identify and
validate potential biomarkers or therapeutic targets.

MICROARRAY-BASED TRANSCRIPTOMICS

Focused Microarray Approaches

Focused microarrays are fabricated using a restricted
number of carefully selected transcripts, and may include
those targeting a particular biological pathway, a specific
tissue, or even a scaled-down version of the transcriptome.
Irrespective of their overall design (detailed below), this
approach optimizes sensitivity and accuracy of the data,

while controlling the cost of experiments, thus facilitating
the repeated measurement and replicate experiments
required in analyses of complex tissues. The reduced
number of probes comprising these arrays can be
stringently designed, thus controlling their biophysical
characteristics critical to hybridization efficiency (melting
temperature, secondary structure, and stability). As such,
these arrays are able to accurately identify differentially
expressed transcripts with high sensitivity to low levels of
differential expression. This approach reliably identifies
transcripts having as low as 10% difference between RNA
samples, reinforcing the applicability of this approach to
analyze highly heterogenous tissue sources. As with all
transcriptomic platforms, the identified transcripts must be
validated by an independent methodology (eg, higher
throughput quantitative real-time PCR assays) (Canales
et al, 2006).
We have utilized this focused microarray approach

(FMA) platform to identify aberrant cell-surface glycosyla-
tion patterns in malignant human gliomas (Kroes et al,
2007a,b; Moskal et al, 2009; Kroes et al, 2010). We
developed a custom-fabricated, focused oligonucleotide
microarray representing all of the known human glyco-
genes: transcripts encoding proteins responsible for glycan
synthesis and glycan recognition, including glycosyltrans-
ferases, glycosylhydrolases, and other glycan processing
enzymes, proteoglycans, and glycan-binding proteins. This
platform was designed to provide comprehensive coverage
of the glyco-associated gene family, the flexibility to add
new sequences to the arrays as they become available, and
to assure the most up-to-date coverage of these gene
families. This platform has been rigorously evaluated in
terms of dynamic range, discrimination power, accuracy,
reproducibility, and specificity, which provides the ability
to reliably measure even low levels of statistically significant
differential gene expression. In particular, when combined
with robust ontological analyses, qRT-PCR corroboration,
and in vivo functional studies, these high-quality, compre-
hensively annotated, application-specific low-density mi-
croarray platforms provide an efficient strategy that can
pinpoint gene expression changes and provide a robust
database for pursuing the creation of novel therapeutics.

Global Microarray Approaches

The evolution of microarray platforms over the past two
decades has resulted in multiple commercially available
platforms for measuring genome-wide gene expression
levels, including short oligonucleotide (25–30 base), long
oligonucleotide (40–80 base), and cDNA (highly variable in
length) arrays, in both single- and dual-channel formats.
The continual increases in both the efficiency and economy
of the oligonucleotide arrays seem to have made them
the platform of choice for many studies. Performance
characteristics between platforms, as well as inter- and
intraplatform reproducibility of gene expression measure-
ments, have been extensively evaluated over the years
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(Petersen et al, 2005; Microarray Consortium, 2006;
Patterson et al, 2006). Overall, such detailed platform
comparisons reveal mixed results. Several studies demon-
strate concordance between platforms (Kane et al, 2000;
Hughes et al, 2001; Taniguchi et al, 2001; Guckenberger
et al, 2002; Yuen et al, 2002; Barczak et al, 2003; Dabrowski
et al, 2003; Lee et al, 2003; Wang et al, 2003; Bloom et al,
2004; Järvinen et al, 2004; Lee et al, 2004; Parmigiani et al,
2004; Thompson et al, 2004; Ulrich et al, 2004), whereas
others suggest disconcordance (Kothapalli et al, 2002; Kuo
et al, 2002; Li et al, 2002; Carter et al, 2003; Lenburg et al,
2003; Rogojina et al, 2003; Tan et al, 2003; Mah et al, 2004).
Although the explanation for these discrepancies is not
altogether consistent, platform-specific differences in the
statistical algorithms used to discriminate signal from noise
and calculate transcript abundance were most relevant. In
fact, the majority of discrepancy appears to be because of
the (in)ability to detect lower abundance transcripts. This,
however, is an arena where FMA platforms appear to have
significant benefit.
Although FMA, by definition, provides less than the total

transcriptome coverage than a global array, this limitation
can be partially overcome by the careful selection of the
transcripts that are represented. The breadth of the
transcriptome coverage can be achieved, eg, using ap-
proaches that select representative genes within the defined
ontology of the organism under study. Thus, this approach
is clearly limited to those with adequate genome annotation.
As part of a larger program aimed at utilizing such an

approach in appropriate animal models to give some insight
into the molecular mechanisms underlying the emergence
of neurological disorders, we have created and utilized such
annotated arrays (Kroes et al, 2007a,b, 2010). The genes
comprising this oligonucleotide microarray were compiled
from current databases and were strategically chosen to
provide representation of greater than 90% of the major
gene ontological categories. Downstream of the stringent
data analysis, the incorporation of ontological algorithms,
such as GOMiner (Zeeberg et al, 2003), Gene Set Enrich-
ment Analysis (Subramanian et al, 2005, 2007;), DAVID
(Huang et al, 2008), or Expression Analysis Systematic
Explorer (Hosack et al, 2003) provided statistical rigor to
analyses of coregulation of multiple genes (gene sets) that
are functionally related or related by involvement in given
biological pathways. For a full description of the dynamic
range, discrimination power, accuracy, reproducibility, and
specificity of this platform, please see these complete
references (Kroes et al, 2006, 2007a,b). We have identified
expression patterns and functional gene families involved in
models of epileptogenesis (Corcoran et al, 2011), depression
(Kroes et al, 2006, 2007a,b), and autism (Moskal et al, 2011);
all are underexamined areas for development of novel
therapeutics. Such preclinical studies uncovering the
role of NMDA receptor modulation in positive emotional
learning and resilience to depression has reinforced the
clinical development of GLYX-13, a functional partial
agonist of the NMDA receptor currently in phase II clinical

development (clinicaltrials.gov identifier NCT01684163) as
an adjunctive therapy for major depressive disorder
(Burgdorf et al, 2011, 2013).

Direct Sequencing-Based Approaches

Although microarray technology has clearly dominated
transcriptomics research, this situation appears to be
changing rapidly with the recent technological advances in
high-throughput RNA sequencing (RNAseq) (Janitz, 2008;
Wang et al, 2009; Hawkins et al, 2010), albeit a technology
still under active refinement; especially bioinformatic
challenges related to storing, retrieving, and processing
large amounts of data (Pepke et al, 2009; Martin and Wang,
2011). In general, a population of RNA is converted to a
library of cDNA fragments with defined adaptors attached to
one or both ends. Each molecule, with or without
amplification, is then sequenced in a high-throughput
manner to obtain short sequences; typically 30–400 bp,
depending on the DNA-sequencing technology used. Follow-
ing sequencing, the resulting reads are either aligned to a
reference genome or reference transcripts, or assembled de
novo without the genomic sequence to produce a genome-
scale transcription map that consists of both the transcrip-
tional structure and/or level of expression for each gene. It
records the numerical frequency of a sequence in the library
population, and thus provides an absolute measurement of
transcript abundance rather than a relative measure.
RNAseq has some distinct advantages over microarrays

(Courtney et al, 2010; Malone and Oliver, 2011). There is no
prerequisite for genome sequence information in order to
detect and ultimately evaluate transcripts; thus, RNAseq is
most useful in organisms and situations where limited
genome information exists. Unbiased sequence methods
can detect novel transcripts, alternatively spliced isoforms,
SNPs, and fusion transcript, again in the absence of genome
annotation. It provides deep coverage and base-scale
resolution (Cloonan and Grimmond, 2008). However, this
technology also comes with some distinct trade-offs as well.
The amount of time to retrieve results for a given sample is
far greater. It is B10–100 times more expensive when
compared at the same resolution of accuracy (coverage vs
cost). It still may suffer from unknown biases, such as those
imposed by the required ligation steps. The ability to detect
and quantify rare transcripts is obscured. By design, high-
abundance transcripts (such as from housekeeping genes)
are responsible for the majority of the sequencing data (5%
of the genes give rise to 75% of the reads sequenced). As a
consequence, it is difficult to measure the abundances of the
remaining genes reliably, and the majority of transcript
measurements that are made at this level are very noisy. In
fact, some recent reports suggest that in a mammalian
genome,B700 million reads would be required to obtain an
accurate quantification of 495% of the expressed tran-
scripts (Blencowe et al, 2009) but, as yet, there has not been
a systematic analysis on how sequencing coverage affects
differential expression calls (Oshlack et al, 2010). Although
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deep sequencing effectively enhances our view on the
diversity of the transcriptome, the identification of true
differential expression at a low-count range might not be so
easy to achieve. More reads imply the detection of more
genes, but also result in noisier data, which makes the
assessment of differential expression increasingly difficult.
In sum, the diversity of transcriptomic platforms clearly

provides investigators with many options. When sensitivity
is not limiting, DNA microarrays seem to offer significant
advantages. On the other hand, when sensitivity is every-
thing, look toward the short-read sequencing technologies.
These technologies are totally complementary: each strategy
has its appropriate time and place for use. In the end, the
use of multiple platforms can only lead to the generation of
higher quality data.

GLOBAL ANALYSIS OF PROTEINS AND
OTHER BIOPOLYMERS

Unlike transcriptomic experiments, which are readily
performed in a chip format, sequence/structural analysis
of proteins, peptides, lipids, and glycoconjugates relies
heavily on MS. The application of large-scale MS studies has
greatly increased in the past two decades because of the
high sensitivity and structural specificity that MS and
tandem MS (MS/MS) can provide. A mass spectrometer
always contains two parts, a source that generates gas-phase
ions and a mass analyzer. The increase in biological
applications of MS is attributed to the discovery of new,
‘soft’ methods to ionize large biopolymers, the development
of low-flow (nl/min) introduction of solubilized analytes
into mass spectrometers, and improved figures of merit for
speed of data acquisition, sensitivity, and resolution of the
instruments themselves. For small molecules, such as meta-
bolites, gas chromatography (GC) with electron ionization
is one reliable ionization technique. For large analytes, such
as peptides, proteins, and glycolipids, matrix-assisted laser
desorption/ionization (MALDI) (Karas and Hillenkamp,
1988) and electrospray ionization (ESI) (Fenn et al, 1989)
provide intact molecular ions for measurements of intact
mass by MS or fragmentation by MS/MS. MALDI-MS is a
technique that is particularly tolerant of molar excesses of
salts and buffers typically found in biological samples.
MALDI-MS has been applied to analyze not only extracted
analytes but has been used successfully in molecular imag-
ing studies of in situ peptides, proteins, and lipids(Seeley
et al, 2011) (see Andrén et al, this issue).
When an ion source is coupled to an ultra-high-resolution

mass analyzer, such as a Fourier transform ion cyclotron
resonance mass spectrometer (FT-ICR MS) (Marshall et al,
1998; Marshall and Hendrickson, 2008), high mass resolu-
tion (400 000 mass spectral peak width at half-maximal peak
height) and high mass accuracy (ppb mass deviations)
can be routinely attained. For molecules o400Da, exact
molecular fomulae and isotopic fine structures can be
determined. Thus, FT-ICR MS is highly suitable for

metabolomic studies. This type of mass spectrometer is
often a shared resource in academic institutions because of
its cost. For proteomic studies, lower-end instrumentation
is often sufficient.

Proteomics

The human proteome is defined as the protein complement
of the human genome. Proteomic studies benefit greatly from
accurate and complete genome characterization. In com-
parative proteomic studies, global characterization without
the use of antibodies of proteins expressed by cells or tissues
in healthy or otherwise normal states, compared with
proteins expressed in diseased states, can provide clues to
underlying mechanisms of the underlying disease process. It
is possible to identify putative biomarkers as a result of those
studies, although extensive validation studies are required as
a consequence. The proteomic samples are complex mixtures
that can be simplified at the level of sampling by laser capture
microdissection (Pérez-Manso et al, 2006) to enrich specific
cell types from tissues. Subcellular fraction or enrichment for
proteins bearing a specific posttranslational modification
(PTM) may be useful approaches, depending on the
experiemental hypothesis. An excellent overview with helpful
facts on the application of proteomics to clinical materials
was published recently by Tabb (2013).

Channelomics

The quest for new therapeutics that could ultimately lead to
personalized treatments for psychiatric disorders remains a
significant challenge. Large-scale genomic studies are likely to
provide the initial data to identify potential disease mechan-
isms and disease-predictive biomarkers (Wong et al, 2011).
The subsequent step is to capitalize on that new knowledge
and evaluate systematically the role of relevant gene products
in specific disease states through integrated biological
technologies and informatics tools. This proposed pharma-
cogenetic pipeline has been proven successful in other
disease contexts, such as cancer (Pitteri and Hanash, 2010)
and cardiovascular diseases (Dubois et al, 2011) but it is at its
nascent stage in psychiatric disorders. Over the past few
years, a phenomenal number of genes have emerged as
relevant in psychiatric disorders but very little is known
about their exact role in psychiatric diseases. Some exemplary
results will be discussed in the following paragraphs.
In neurons, voltage-gated sodium (Nav) and voltage-

gated potassium (Kv) channels expressed at the axonal
initial segment (AIS) drive the initiation and propagation of
the action potential, the electrical signal underlying brain
function and behaviors (Lai and Jan, 2006). Scaffolding and
regulatory proteins at the AIS cluster with Nav and Kv
channels ensure the integrity of electrical signaling (Ogawa
and Rasband, 2008; Grubb and Burrone, 2010a,b) and
interference with this protein network can lead to deficits in
excitability and eventually neuronal death (Buffington and
Rasband, 2012). The emerging association of mutations,
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copy variants, or SNPs in genes coding for these ion-
channel molecular complexes with psychiatric disorders is,
in our opinion, one of the most exciting recent discoveries.
A large-scale genomic study in autistic patients identified

two independent nonsense variants that interfere with the
coding of Nav1.2 (Sanders et al, 2012), one of the Nav
channel isoforms expressed at the AIS. Those results further
support earlier studies that identified SNPs in the genes
coding for Nav1.1 and Nav1.2 from another cohort of
autistic patients (Weiss et al, 2003). Given the comorbidity
of autism and epilepsy (Robinson, 2012), it is not surprising
that the mutation in the Nav1.1-coding gene had been
previously identified in a patient with juvenile myoclonic
epilepsy (Weiss et al, 2003). Similar to Nav1.1, mutations in
KCNQ2 (coding for Kv7.2, another channel expressed at the
AIS) are recognized causes of human epilepsy and other
excitability-driven inherited disorders (Singh et al, 1998;
Mulley et al, 2003; Cooper, 2011; Mulley and Mefford, 2011).
A new splice variant of the KCNQ2 gene has been identified
in bipolar disorder and its aberrant phenotype described in
cellular studies (Borsotto et al, 2007). Whether all these
genetic modifications of Nav and Kv channels converge on
common cellular phenotypes with heterogeneous clinical
manifestations remains to be determined, but it is a
plausible hypothesis.
Other results from the collection of studies implicate

ankyrin-G in bipolar disorder (Leussis et al, 2012).
Ankyrin-G is the main scaffolding protein of the AIS
required for clustering both Nav and Kv channels (Zhang
and Bennett, 1998; Bennett and Lambert, 1999; Jenkins and
Bennett, 2001; Brachet et al, 2010; Gasser et al, 2012)
and necessary for establishing and maintaining neuronal
polarity (Grubb and Burrone, 2010a,b; Galiano et al, 2012).
Studies from different genetic cohorts have consistently
ascribed the gene coding for ankyrin-G as a potential risk
gene for bipolar disorder (Smith et al, 2009; Gella et al,
2011; Lett et al, 2011; Roussos et al, 2011; Tesli et al, 2011;
Lee et al, 2012). Likewise, the gene coding for b-IVspectrin,
a molecule associated with the ankyrin-G complex (Berghs
et al, 2000) and intimately linked to both the Nav and Kv
channel complexes (Komada and Soriano, 2002; Kosaka
et al, 2008; Hund et al, 2010), was found to contain
microdeletions in an autistic patient (Griswold et al, 2011).
Furthermore, a missense mutation in the FGF14 gene,
coding for a Nav channel regulatory protein expressed at
the AIS (Lou et al, 2005; Laezza et al, 2007, 2009; Goetz et al,
2009; Shavkunov et al, 2012), is associated with cognitive
impairment, neurodegeneration, and motor dysfunction
(Van Swieten et al, 2003; Brusse et al, 2006), and SNPs in the
same gene have been identified in schizophrenic patients
(Need et al, 2009).
The biology of the mutations described above and their

pathophysiological roles in psychiatric disorders is poorly
understood. However, one could speculate that these ion
channel macromolecular complexes are part of a nonre-
dundant molecular network vital for neuronal communica-
tion, which, if aberrant, could lead to a wide range of

neurological or psychiatric syndromes. A systematic
quantitative proteomic analysis of expression levels and
regulatory PTMs (eg, phosphorylation, glycosylation, and
ubiquitination) of these ion channel complexes in health
and disease could provide guidance to formulate new
hypotheses on disease mechanisms and identify reliable
biomarkers for clinical applications (Filiou et al, 2012;
Filiou and Turck, 2012). Those results will require further
validations and proof of scalability, especially for mem-
brane-associated proteins such as ion channels. A first step
toward this goal would be to utilize animal models to
evaluate the role of specific gene products into disease
contexts and to optimize proteomic techniques towards
clinical applications (Holsboer, 2008). The biological
experimental data sets would then be properly integrated
into predictive informatics networks and contribute to
elucidate the complex mechanisms of psychiatric disorders.
This process will require many further steps performed in
translational collaborations between basic sciences and the
clinical settings in order to create personalized treatments.

Protein PTMs

More than 100 PTMs of proteins have been described,
including disulfide bonds, phosphorylation, glycosylation,
and myristoylation. A polypeptide transcript may be
processed differently in different tissues and depend on
developmental stage and health of the organism. Epige-
nomics, the study of histone PTMs on a global scale, is an
expanding area of research in neuroscience, recently
reviewed in this journal (Volume 38, Number 1, 2013).Con-
versely, the quantitative study of a specific PTM on a global
scale can elucidate the role of that PTM in a disease state.
For instance, large-scale studies of protein phosphorylation
are frequently employed to measure changes in intracellular
signaling pathways (Nilsson, 2012).

Protein Phosphorylation

Reversible protein phosphorylation is a well-studied me-
chanism in the regulation of cell signaling. This PTM can
increase or decrease protein activity, change protein
subcellular localization or protein–protein binding char-
acteristics. Important regulatory proteins are typically
detected at substoichiometric concentratons in cells, which
presents special challenges to their analysis.
Protein phosphorylation is by far the most-studied PTM

in the area of the control of cell signaling. It is a reversible
modification of serine, threonine, and tyrosine, enzymati-
cally catalyzed by kinases (phosphorylation, ‘writer’) and
phosphatases (dephosphorylation ‘eraser’). SH2-domain
binding proteins recognize and bind to sites of tyrosine
phosphorylation, providing a specific ‘reader’ protein that
can modulate tyrosine phosphorylation-mediated signaling
pathways (Table 1). Recently, quantitative phosphoproteo-
mic analysis of hippocampus samples from Alzheimer’s
disease (AD) patients compared with control samples found
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changes in several proteins involved in metabolism and
signal transduction (Di Domenico et al, 2011). An inte-
grated transcriptomic–phosphoproteomic study of neuronal
retrograde injury responses in a rat model identified
several hundred redundant signaling networks; those may
provide a relatively robust response to neuronal damage
(Michaelevski et al, 2010).

Protein Glycosylation

Unlike protein phosphorylation, protein glycosylation is not
a single chemical entity. Glycan structures are among the
most complex structures in the biochemical space. The
coding density of sugars is significantly higher than that of
amino acids or nucleotides (Laine, 1997). For a given
saccharide of six sugar units, the number of possible
structural isomers is 1.44� 1015; for a six-amino-acid-long
peptide, it is 6.4� 107; and for a nucleotide of six, it is 4096.
The branching nature of oligosaccharides, the substitution
of sugars with phosphate or sulfate, and differing anomeric
linkages all contribute to the structural diversity of
carbohydrates, yielding rich complexity dubbed ‘the sugar
code’ (Gabius et al, 2002, 2004) that is a key determinant of
cell adhesion, receptor activation, and intracellular trans-
duction. The complexity of carbohydrate epitopes on
proteins (and lipids) modulates glycan–glycan interactions
at the cell surface and intra- or extracellular glycan–protein
interactions.
Proteins that recognize an extended glycoepitope but lack

enzymatic or transporter activities are called lectins. The
name lectin is derived from tha past participle of legere
(from Latin, to read) and are indeed readers of the sugar
code (Table 1). Dysfunctional lectins and lectin polymorph-
isms have been implicated in neurological and psychiatric
disorders. Galectins are defined by their affinity of
b-galactosides and modulate cell cycle, apoptosis, angiogen-
esis, and cell motility. Galectin-3 has been associated
in inflammatory diseases. Neuroinflammation has an
important role in age-associated cognitive disorders. A
recent study of genetic variation in the gene that encodes
galectin-3 (LGALS3) showed an association of certain
LGALS3 SNPs to higher baseline C-reactive protein con-
centrations and subtle attention defects (Trompet et al,
2012). Galectin-1 is another lectin whose glycan interactions
have been shown to be essential in tempering microglial
activation, brain inflammation, and neurodegeneration, with
therapeutic implications for treatment of multiple sclerosis
(Starossom et al, 2012). This lectin was recently implicated
in the disease mechanism of the hereditary disorder giant
axonal neuropathy (Mussche et al, 2012). In addition to
binding glycoproteins and glycolipids, and acting as a
noncovalent crosslinker, lectins can activate intracellular
signaling cascades. For instance, the attachment of galectin-3
to branched N-glycans modulates focal adhesion remodeling
through activation of focal adhesion kinase and phosphoi-
nositide 3-kinase (Ono et al, 2001).

There is biochemical cross-talk between aberrant cell
surface glycosylation patterns and intracellular phosphor-
ylation cascades; recent investigations have demonstrated
that modulation of glycogene function by gene therapy can
suppress tumor growth in vivo and induce measurable
changes in kinase-mediated signaling (Moskal et al, 2009;
Kroes et al, 2010). Reversible serine and threonine
O-glycosylation by N-acetyl glucosamine has been demon-
strated to act as an off-switch for protein phosphorylation
(Hart et al, 2011).
Proteoglycans and glycoproteins are enriched in the

extracellular matrix (ECM). In addition to disrupted extra-
cellular lectin–matrix interactions, dysregulation of ECM
components are associated with neuropsychiatric disorders.
In a genome-wide association study of 682 patients and
1300 control subjects, genetic variation in the neurocan
gene was demonstrated to be linked to bipolar disorder
(Cichon et al, 2011). A follow-up study to derive main
clinical factors associated with the neurocan risk allele was
most strongly linked to mania, especially overactivity (Miro
et al, 2012). Furthermore, neurocan knockout mice showed
hyperactivity and other mania-related symptoms that were
decreased by lithium administration (Miro et al, 2012).
The aberrant organization of the ECM in AD was studied
by Morawski et al (2012). ECM components, such as
brevican and aggrecan, form perisynaptic axonal coats
and perineural nets, respectively. Loss of brevican was
correlated to synaptic loss, but other ECM components
resisted degradation.

GLYCOMICS

Glycans decorate cell surface glycoproteins and glycolipids;
as previously mentioned, these oligosaccharide structures
are some of the most complex and diverse structures in
vertebrate cells. The advancement of glycomics has been
challenged by the need to develop analytical tools to
characterize glycans on proteins and lipids in large-scale
studies. Previously, definitive structural assignment, includ-
ing anomeric sugar linkages, required nuclear magnetic
resonance (NMR) methods, which are highly specific in
their output but, in general, lack sensitivity for global

TABLE 1 Examples of Writers, Readers and Erasers as Key
Control Proteins in Biological Systems

Writers Readers Erasers

Histone acetylases BRD proteins Histone deacetylases

Kinases SH2-domain-containing proteins Phosphatases

Glycosyltransferases Lectins Glycosidases

Ubiquitin ligases UB-binding proteins Deubiquitinases

The interplay of their activities contributes to the complexity of biochemical
signaling pathways in health and disease states. Thus, integrated biological studies
benefit greatly from defining protein phosphorylation, glycosylation, histone
modifications, and ubiquitin-mediated signaling.

Analysis for neuropsychopharmacology
MR Emmett et al

...............................................................................................................................................................

12

REVIEW

..............................................................................................................................................

Neuropsychopharmacology REVIEWS



studies of cellular glycans. Advances in MS have recently
enabled high-sensitivity analysis of both protein and lipid
glycans. Low-flow liquid chromatography (LC) separations
(nano-LC) coupled to low-flow ESI (micro and nano-
electrospray) (Emmett and Caprioli, 1994; Wilm and Mann,
1994) with high-resolution MS, FT-ICR MS, and MS/MS
analysis greatly facilitates identification of glycans from
extremely complex biological mixtures. Lower-resolution
MS and other ionization methods can also be used in
glycoconjugate analysis, albeit with lower confidence in
identification. MALDI-MS analysis is fast, tolerant of salts,
and uses little sample, but often the MALDI process causes
the loss of labile saccharides (especially sialylation),
resulting in the loss of structural information. FT-ICR MS
analysis provides the highest mass accuracy and resolution,
which greatly aid in the identification of sugar residues, but
the analysis time (scan speed) is slow compared with other
MS analyses. The slower scan speed does not take full
advantage of the chromatographic separation, but the high-
resolution FT-ICR analysis permits identification of most
overlapping peaks. Some direct glycomic applications with
high-resolution FT-ICR MS will be discussed below.
To determine the importance of glycan changes in disease,

it is necessary to coordinate many data sets. As proteins
mediate the biosynthesis and degradation of complex
glycoconjugates, it is necessary to merge transcriptomic,
proteomic, glycomic, lipidomic, and even metabolomic data
sets to chart pathways involved in altered glycoconjugate
phenotypes in disease. The integrated biological approach
has been successfully developed through the correlation of
phenomic, transcriptomic, phosphoproteomic, and lipido-
mic data sets (He et al, 2007, 2010a,b; Kroes et al, 2010;
Nilsson et al, 2010; Nilsson, 2012). Computational mathe-
matical algorithms described in the next section were
developed (Goerke et al, 2011; Meyer-Baese et al, 2012a,b)
to extract useful correlations from these massive data sets to
generate biochemical pathways to drive intelligent experi-
mental design and to elucidate therapeutic targets. The goal
of these studies is to further understand glycan changes to
generate new therapeutic targets and identify novel biomar-
kers for disease treatment and early disease diagnosis.
Analysis of glycoproteins involves not only the structural

identity of the attached glycan, but it is also important to
know the site of the glycan attachment to the protein.
Collisionally induced fragmentation in a mass spectrometer
will often result in the removal of the glycan, resulting in the
loss of the attachment site. Coupling a softer fragmentation
technique first (such as electron capture dissociation (ECD)
(Zubarev et al, 1998), with a heating fragmentation such as
infrared multiphoton dissociation (IRMPD) (Little et al 1994)
as demonstrated by Hakansson et al (2001), provides
complementary data that identifies the site of glycosylation
attachment with ECD and complementary carbohydrate
structural information with IRMPD. Altered protein glyco-
sylation has been detected in AD (Sihlbom et al, 2004, 2005).
CSF from individual patients with AD was separated by
narrow range two-dimensional (2D) gel electrophoresis,

in-gel-digested with trypsin, and analyzed by electrospray
FT-ICR MS. Glycopeptides were fragmented with IRMPD,
which produces abundant fragment ions through dissocia-
tion of glycosidic linkages. MS/MS with high mass accuracy
facilitates the structural determination of site-specific
N-linked glycosylation and possible identification of AD
biomarkers. These analyses can be performed on enzymati-
cally released glycans from the glycoproteins, or intact
glycopeptides. The released glycans are collected from the
peptides/proteins and further chromatographically purified
on-line before high-resolution MS and MS/MS analysis
(Wang et al, 2010). These analyses are information-rich,
typically producing hundreds of glycan structures from a
single sample.

LIPIDOMICS

About 50% of the brain and spinal cord is composed of lipid
material. Bioidentical lipids have even been examined as
therapeutics; for instance, intracerebroventricular adminis-
tration of GM1 ganglioside to early onset Alzheimer patients
showed positive effects, such as improved motor perfor-
mance and neuropsychological assessments (Augustinsson
et al, 1997; Svennerholm et al, 2002). Lipid profiling or
lipidomics is often bundled into metabolomics, but lipids
represent a distinct chemical and functional group of bio-
molecules. Lipids are enriched in the plasma membrane and
lipid rafts. Lipids also are important in the compartmenta-
lization of the cell by formation of organellar membranes.
Polar lipids, such as gangliosides are cell-surface glycocon-
jugates that modulate cell adhesion, migration, and signal
transduction through interactions, with growth factor
tyrosine kinases and other kinase pathway members. Lipids
are also responsible for altering membrane properties (eg,
membrane permeability) and directly interact with effector
proteins (eg, G-proteins) (Chun, 2005; Piomelli, 2005).
Lipids are implemented as key factors in many neuroactive
processes, such as second messenger signaling, potassium
channel flux, cannabinoid receptor activity, and NMDA
receptor function (Piomelli et al, 2007). Lipidomic data
from neurological and psychiatric model systems can
elucidate activation of enzymatic, receptor, and signaling
pathways.
Polar lipid analysis has been documented in GBM and

GSC cultures (He et al, 2007, 2010a,b) and correlated with
phenotypic, transcriptomic, and functional proteomic
changes (He et al, 2010a,b). Lipid profiling identifies not
only the abundant phospholipids, but also the glycolipids in
mammalian cells. Phospholipids are major components of
the cell membrane, and their compositions and modifica-
tions affect the membrane fluidity and phospholipid-
mediated signaling pathways. The methodology described
by He et al (2007) was applied to identify phosphatidyli-
nositol (PI), phosphatidylethanolamine, phosphatidylcho-
line (PC), sphingomyelin (SM), and many other polar lipids
with a wide range of acyl chain lengths and varying
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numbers of hydroxylations and unsaturations. Changes in
phospholipid composition not only modulate the mem-
brane fluidity, but also affect phospholipid-mediated signal
transduction. For example, phosphorylated PI, including
inositol 3,4-bisphosphate [PI(3,4)P2] and inositol 3,4,5-
triphosphate [PI(3,4,5)P3], has been shown to affect cell
proliferation, survival, and movement (Di Paolo and De
Camilli, 2006). The presence of a double bond results in a
‘kink’ in the phospholipid fatty acyl chain. Thus, cells with a
high concentration of unsaturated phospholipids may poss-
ess a more fluid cell membrane relative to cells with more
saturated ones, because unsaturated phospholipids pack
much more loosely. Moreover, differentiated tumor cells
show an increase in PC and SM, which are predominantly
localized on the outer plasma membrane and carry positive
charges (Yamaji-Hasegawa and Tsujimoto, 2006). Together,
these changes will alter membrane stability, modulate cell
surface charge, and alter signal transduction via intracel-
lular pathways.
MS analysis is the analytical detector of choice in lipid

analysis. The primary methodology employed for lipid
analysis involves a simple solvent/solvent extraction of the
lipids and partitioning of the polar and nonpolar lipids
into an aqueous and organic phase, respectively. Because
of the complexity of the lipid mixture, a chromatographic
separation is necessary before MS analysis. Reverse-phase
chromatography is often used for the separation of the
lipids, but is not the optimal choice because of the risk of
irreversible binding of lipids to that resin. He et al (2007)
optimized separation of the lipids over a chromatographic
resin that focusses on p–p stacking (such as phenyl–hexyl),
which greatly improves the recovery of polar lipids from the
chromatographic column. Complex polar lipid mixtures are
reasonably resolved chromatographically with phenyl–hexyl
resins based on variations of oligosaccharide and aglycone
moieties. Nano-LC was used to further increase sensitivity
and was introduced by high-sensitivity microelectrospray
(Emmett and Caprioli, 1994; Emmett et al, 1998) to a high-
resolution FT-ICR MS to further aid in the detection of the
complex lipid mixture (Schaub et al, 2007, 2008). Negative-
ion micro-electrospray provided better sensitivity com-
pared with positive-ion mode for analyzed polar lipids
(Levery, 2005). The lipid analysis methodology described
above has been applied to analyses of cell culture, tissue,
blood, and CSF samples. MALDI-MS imaging is showing
great potential to analyze lipids in their histological context,
which provides complementary data to information gained
through analysis of total extracts (Sparvero et al, 2010;
Hanada et al, 2012).
Accurate mass (typically better than 1 ppm), LC retention

time trends, along with available tandem mass spectra
generated from collisional-induced dissociation of precur-
sor enable the determination of chemical composition and
proposed structural assignment of 600–800 glycolipids and
phospholipids per sample. A Kendrick mass analysis
algorithm aids in assignment of structural families of polar
lipids (Hughey et al, 2001). High mass accuracy and high

resolving power of high-field FT-ICR MS (Senko et al, 1997;
Marshall et al, 1998; Levery, 2005; Schaub et al, 2008)
greatly improves the resolution and assignment of glycoli-
pids and phospholipids in the complex mixture of polar
lipid extracts from biological samples.

METABOLOMICS IN
NEUROPHARMACOLOGY

To elucidate the etiology of neuropsychiatric disorders,
metabolomic data can be quite complementary to proteo-
mics. For example, Zhang et al, 2011 studied high and low
anxiety-related behavior in mice by this combined ap-
proach. One conclusion of the integrated study suggested
that the inositol pathway was implicated in mice with a
genetic predispositon to anxiety. Taken together, their
findings described proteins, metabolites, and pathways that
could be related to the anxiety phenotype. Metabolites vary
in size, polarity, charge, structure, and elemental composi-
tion, all of which reside as a highly complex mixture in a
biological matrix; thus, comprehensive metabolite profiling
is a daunting task that cannot be performed by a single
analytical technique. Metabolomic profiling in neuroscience
is discussed at length by Wood (2013) elsewhere in this
issue. This section is meant to encourage metabolomic
analysis, to inform the reader of the methodologies available
and challenges of each.
NMR spectroscopy analysis provides the most detailed

structural information for metabolites, but its application
has limits of sensitivity and complexity (Steuer, 2006). One-
dimensional (1D) NMR spectroscopy is often used for
metabolite profiling, because the analysis is fast (min), but
the fast scan time results in low resolution and low signal-
to-noise ratios on metabolites. 2D NMR greatly increases
resolution of metabolites, but the tradeoff is long acquisi-
tion times (several hours) per sample (Motta et al, 2010).
NMR sensitivity is improving with the development of
microcoil probes and the ability of coupling NMR detection
with LC concentration/separation of biological metabolites,
but for analysis of metabolites at biological concentrations,
MS is currently the method of choice (Rubakhin et al, 2011).
For MS analysis of metabolites, GC-MS is the gold

standard (Griffin and Kauppinen, 2007; Wibom et al, 2010;
Garcia and Barbas, 2011). Even though GC-MS is char-
acterized by high sensitivity, the separation of metabolites is
greatly improved by 2D GC (GC�GC) analysis, because
often more than one compound occupies a peak as it elutes
from the GC. The second dimension separation in GC�GC
often reveals lower-level components that were masked in a
1D separation. Recently, GC�GC separations have been
applied increasingly to the analysis of metabolites because
of the complexity of the biological samples (Mohler et al,
2006; Ralston-Hooper et al, 2011). The added separation
afforded by GC�GC decreases the complexity of the MS
analysis of small metabolites. Both GC-MS and GC�GC-MS
techniques are limited to the analysis of volatile compounds
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or compounds derivatized chemically to make them
volatile. On the other hand, LC separations before MS
analysis allows analysis of compounds without derivatiza-
tion (Urban et al, 2010; Vuckovic and Pawliszyn, 2011) and,
similar to GC, have the ability to separate chiral molecules
under optimal conditions (Oh et al, 2011). The nonpolar
component of metabolomics has been largely overlooked.
Many nonpolar analytes once derivatized can be analyzed
by GC or GC�GC MS, but not all nonpolar metabolites can
be detected. Supercritical fluid chromatography (SFC)
coupled to MS analysis adds another dimension to the
analysis of these complex nonpolar metabolite mixtures
(Farrell et al, 2009). In a very simplistic description, SFC
separations combine attributes of both GC and LC
separations, because the separations are performed in a
gas that is in a supercritical or enhanced fluidity state
(Taylor, 2008). Molecules that are not volatile and thus
intractable by GC can often be dissolved in an enhanced
fluidity gas and be separated by SFC. The same can be said
of nonpolar compounds that are insoluble in aqueous
solvents and can’t be separated by conventional reverse-
phase LC. In addition, SFC is readily interfaced with MS
through atmospheric ionization sources and, with short
separation times, is considered a high-throughput analysis
(Farrell et al, 2009).
The application of SFC-MS for metabolomics has been

demonstrated, but currently SFC-MS is underutilized in
metabolomic analysis. Most of the methodologies described
above involve different separation techniques coupled with
MS, but all of the technologies are complementary and,
when used together, will provide the most complete
metabolomic data sets to date. Another factor involved in
the MS analysis of metabolites is the efficient ionization of
the compounds before MS detection. Multiple ionization
modes are needed to detect comprehensively the diverse
chemical compounds in the complex biological metabolome,
including positive and negative ionization electrospray,
chemical ionization in both positive and negative modes,
and photoionization. Once separated and ionized, elemental
composition assignment of metabolites is the first step of
analysis. NMR analysis is superior to MS, because it
provides exact structural information for compounds;
however, the sensitivity of the technique can be insufficient
for the anlysis of complex biological mixtures. Low-
resolution MS analysis necessitates MS/MS in most cases
to provide elemental composition. Ultrahigh-resolution
high mass accuracy MS (FT-ICR MS) often can assign
elemental composition based on accurate mass, but sub-
ppm mass accuracy alone maybe insufficient for elemental
assignment because of the large number of possible
atomic configurations for a given nominal mass. Recently,
accurate mass coupled with ultrahigh-resolution isotopic
fine structure information (as shown in Figure 2) has
demonstrated that compounds can be correctly identified
(Marshall et al, 1998; Shi et al, 1998; He et al, 2004; Marshall
and Hendrickson, 2008; Miura et al, 2010). By using the
hetero-atom content of the metabolite ion, nominal spacing

of isotopic intensities, and ultrahigh mass accuracy,
metabolites’ elemental composition can be determined
unambiguously (Daltonics B, 2012).
In summary, the acquisition of comprehensive metabolite

data sets requires an enhanced metabolomics toolbox of
complementary analytical technologies and methods. There
is no single assay that permits the detection and identifica-
tion of all metabolites in a biological sample; thus, several
analytical techniques must be employed to perform global
metabolomic analysis. Because of the complexity of these
analyses, a targeted metabolite approach is often adopted
for specific experiments.

COMPUTATIONAL METHODS FOR
INTEGRATIVE NEUROBIOLOGY

Computational approaches have facilitated quantitative
analysis and data interpretation of large data sets stemming
from EEG, MEG, PET, CT, MRI, and fMRI, showing the
response of the brain to placebo and drug effects for
substance use and cognitive disorders. The computational
techniques range from (a) neural dynamical models
describing synchronization to (b) multivariate pattern
recognition techniques for emerging spatial and temporal
maps as a response to a certain task or analyzing impulse
control in connection to drug abuse, and finally to (c) graph
theoretic approaches to elucidate the brain network
topology and contrast structural and functional connectivity
deficiencies associated with disorders (Stam et al, 2010;
Fornito et al, 2012; Giessing and Thiel, 2012).
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Figure 2. Ultrahigh-resolution isotopic fine structure of a metabolite,
S-methyl-L-cysteine. Spectra were collected with a 12 T FT-ICR MS with a
mass resolving power of B340 K. The exact mass of S-methyl-L-cysteine
[MþH]þ is 136.04267. The zoomed inset shows the first 13C isotopic
fine structure. The natural isotope abundances are: 15N, 0.36%; 33S,
0.76%; 13C, 1.1%; and 2H, 0.015%. The exact mass, isotopic fine
structure, and isotope abundances are used to assign unambiguously
elemental compositions.
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The latter, also known as ‘imaging connectomics’ (Fornito
et al, 2012), represents a novel trend in neuroimaging
techniques. It is based on analysis of graph networks, whose
topologies aid in identifying areas of malfunctioning brain
network architectures as targets for cognitive enhancing
drugs. Existing studies, which are few, have shown that
graph networks represent a powerful tool in the develop-
ment of data-driven biomarkers of cognitive enhancing drug
effects, on both local and global scales. Also, they provide a
framework to understand the dynamics of neurodegenera-
tive diseases. A new approach in drug development, network
pharmacology, aims at addressing the whole brain instead of
targeting specific areas, and represents a new route in
therapeutics. Although neuroimaging scientists have em-
braced recently graph theoretic approaches, integrated
biological studies in neuropharmacology based on large
graphs are sparse (limited to only two studies of visualiza-
tion in AD and Parkinsons diseases) (Paananen and Wong,
2009; You et al, 2010). Large-scale biological data analysis
and their integration in neuropharmacology based on graph
networks must overcome two major challenges: the high
dimensionality of the data compared with neuroimaging and
the disparate data sources to be integrated within the same
network. Advances in graph theoretical analysis in the
context of statistics and the development of visualization
and navigation tools in large graphs have been combined to
overcome these major challenges.
The first steps in this direction can be found in several

approaches to mathematical modeling that have been
developed to infer relationships between large data
sets derived from complex biological systems. Biological
systems are highly nonlinear and, thus, mathematical
approaches are either qualitative, such as the graph network
analysis based on correlations, or quantitative, such as
the nonlinear multi-mode autonomous deterministic or
stochastic system. However, one major issue needs to be
addressed in order to facilitate the application of these
techniques: the feature size of the measured data is far
larger than the sample size, a phenomena known as the
‘curse of dimensionality’ in data mining. Effective feature
reduction in case of qualitative approaches or model order
reduction for quantitative techniques becomes imperative
in order to reduce the complexity in computation and
enhance the generalization capabilities of the proposed
model. The field of transcriptomics has benefited greatly
from the development of computational models to deter-
mine gene regulatory networks (GRNs) (Hecker et al, 2009),
but the techniques are applicable to proteomic and
glycomic data sets as well. In the following section, we will
present some modern techniques that pertain to nonlinear
quantitative and qualitative model reduction.

Approaches to Model GRNs

GRNs represent gene circuits that interact and regulate their
own and the activity of other genes by protein expression.
Many GRNs are described by complex models, which are

difficult to analyze and control (Hecker et al, 2009). The
large-scale nature of these systems and the highly complex
underlying models require reduced-order models to facil-
itate their analysis. Balanced truncation is known as a
popular method for model reduction, as it is relatively
simple and it yields a qualitatively accurate system. The
interpretation of most balancing techniques (Scherpen,
1993) is based on the concept of past input energy
(controllability) and future input energy (observability).
For a GRN system to be controllable means to be able to
reach a given state under the influence of an input signal,
whereas to be observable means that there is enough
information to observe all possible states of the system. The
idea behind transforming a system into balanced form is to
easily detect and remove a state component of the initial
system to obtain a reduced-order model. Although for
linear systems finding a balancing coordinate transforma-
tion via solutions of the controllability and observability,
Lyapunov equations (Hamilton, 1994) are quite easy, but for
nonlinear systems these equations are almost impossible to
solve and, thus, balancing becomes in general a challenging
task. Carleman bilinearization (Mohler, 1973; Brockett,
1976; Meyer-Baese et al, 2012a,b) facilitates the representa-
tion of a nonlinear system by a bilinear form. The idea
behind the Carleman bilearization procedure is to approx-
imate the nonlinear function in the GRN by a Taylor
expansion. This procedure preserves a certain contribution
of the nonlinearity of the system in the resulting simplified
form. The achieved reduction represents a simple estimate
for the additional parameters employed and is, at the same
time, computationally nonintensive for deterministic GRN
under assumption of a bounded input. The determined
model reduction has potential application for reverse
engineering and robust biosynthetic GRN design.

Approaches to Model Phosphoprotein-Mediated
Networks

Advances in MS techniques have facilitated the identifica-
tion and quantification of very large numbers of phospho-
proteins and corresponding phosphorylation sites. These
identified and quantified phosphorylation sites provide a
wealth of information about the biochemical status of cells
and tissue, and have an increasing role to elucidate the
mechanism and importance of novel therapeutics in cancer
research and other diseases. However, the extensive data
sets do not automatically provide deep insight into
deciphering the phosphoproteome and, most importantly,
how to use the acquired knowledge in reverse engineering
and drug design. Quantitative data analysis methods, such
as statistical data analysis and predictive analytical techni-
ques, are essential to derive knowledge from the data.
For large data sets at the protein level, network-based

perspectives offer a solution to this problem and many
node-edge graphs are stored in public databases. Most
protein networks are assembled from literature or inferred
merely from data and cannot predict the response of cells to
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aberrant signals. Few attempts to specify a pathway as a
logical model emulating the signal input/output flow
through gates in a parallel optimization against experi-
mental data have been described. However, for site-specific
phosphorylation data sets, both the theoretical and
computational integration tools are very limited. The
analysis of phosphoproteomic data highly pertinent to
systems biology and disease informatics is either data-
driven or topology-driven. Data-driven analysis requires a
priori information of the signaling topology and includes
standard techniques from chemometrics, such as principal
component analysis and partial least square regression.
Topology-driven techniques are based on ordinary
differential equations, fuzzy logic, and Boolean logic, and
employ canonical pathways as a scaffold. The only
theoretical study for phosphoproteomic data constructs
large signaling pathways using an adaptive perturbation
approach (Melas et al, 2012). Pathway optimization is
accomplished via integer linear programming. Two compu-
tational tools are available in the form of advanced
bioinformatics platforms: NetworKIN (Linding et al, 2008)
and PhosphoSiteAnalyzer (Bennetzen et al, 2012). Networ-
KIN predicts kinase families based on detailed linear motif
analyses by employing an artificial neural network and
scoring matrices. The prediction of kinase families respon-
sible for the phosphorylation of a given substrate are
determined with high accuracy and sensitivity. PhosphoSi-
teAnalyzer is currently the most advanced tool and
enhances the capabilities of NetworKIN by using it to
obtain kinase predictions from several phosphorylation

sites. A large-scale phosphoproteomic data analysis is
accomplished based on integrated bioinformatics modules.
These modules perform a statistical data analysis and
extract relevant biological information.
Future research initiatives in theoretical phosphoproteo-

mic modeling must focus on mathematical formulations
that do allow a prediction of therapeutic targets or a
desired response to a certain stimulus. Computational
bioinformatic tools should provide improved solutions for
facilitating complex kinase-substrate network analysis in a
user-friendly integrative manner.

Identification of Novel Interactions Based on
Compressed Graph Networks

The analysis of transcriptomic, proteomic, and metabolo-
mic data sets with existing knowledge-based tools, such as
IPA, can only reveal interconnected pathways that are
already represented in the scientific literature. New models
are needed to ‘connect the dots,’ making occult connections
between data sets obvious. As physicist Richard Feynman
expressed it, ‘There is a rhythm and a pattern between the
phenomena of nature which is not apparent to the eye, but
only to the eye of [mathematical] analysis.’ The Gaussian
Graph Model (GGM) technique is one approach to create
interrelated ‘omics’ graph network and determine novel
correlations (Mueller et al, 2011). Reproducible quantitative
changes in (phospho)proteins, transcripts, and metabolites
in response to disease or other perturbations can contain
correlations that cannot be derived based on intuitive
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reasoning. Visualization by generation of Gaussian Graph
Maps is a powerful technique to find novel correlations and
can be applied to derive new knowledge about the function
of activators or inhibitors in brain-derived tissues or cells.
To identify the effects on lipid levels in glioma cells as a

result of drug treatment, lipidomic data sets from control
and treated cells were acquired (He et al, 2007). In contrast
to simple Pearson’s correlation networks the partial
correlations of GGMs only identify direct correlations,

whereas indirect associations are eliminated as shown in
Figure 3. By implementing disease-driven GGM, we revealed
GBM-specific lipid correlations to advance biomedical
research on novel gene therapies. A summary of our results
is found in Figure 4.
We have previously applied graph-clustering techniques

to determine correlations in the glycomic and glycotran-
scriptomic responses of glioma stem cells to pharmacolo-
gical treatment with a STAT3 phosphorylation inhibitor or
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fetal bovine serum (Goerke et al, 2011), yielding character-
istic fingerprints of glioma stem cell responses that could
not have been determined by searches of the scientific
literature. We developed a novel technique to replace
standard correlation networks to better reveal the topolo-
gical properties reflecting the response to therapeutical
interventions (Steuer et al, 2003; Steuer, 2006). Traditional
correlation networks are based on computing the Pearson’s
correlation coefficients between the nodes of the graph
corresponding to the distinct measurements and establish-
ing an edge if the correlation value exceeds a specified
threshold.
Our paradigm is based on graph-clustering techniques as

an equivalent to standard correlation networks for the
analysis of therapeutic outcomes for GBM cells. Global
multivariate approaches become imperative to comprehend
the potential dysregulation of normal cellular responses in
disease and their response to various therapeutic interven-
tions, and to identify causal influence relationships invol-
ving multiple biological analytes. Figure 5 shows an
example of such an emerging graph network structure.
Algorithms that are robust and efficient for large-scale

experiments and drug design are an active field of
development in mathematics and will become standard
tools in the future for biomedical scientists to identify novel
correlations between dysregulated pathways in neurological
and psychiatric disease.

FUTURE DIRECTIONS AND CLINICAL
IMPLICATIONS

The recent advancements in human genomic research are
essential to other global biological studies, but not
completely sufficient to describe complex underlying
phenomena associated with neurological and psychiatric
disorders. The application of integrative biological techni-
ques in the realm of neuropsychiatry and neuropharmacol-
ogy is increasing in number and frequency in the scientific
literature. The success of these endeavors will require new
collaborations between basic science and clinical teams.
Through the acquisition and integration of quantitative data
sets from two or more biomolecular subsets, synergies arise
and promise to provide the field with new therapeutic
targets and biomarkers of disease and drug response.
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