www.neuropsychopharmacology.org

Corrigenda Epigenetic Mechanisms for the Early Environmental Regulation of Hippocampal Glucocorticoid Receptor Gene Expression in Rodents and Humans

Tie Yuan Zhang, Benoit Labonté, Xiang Lan Wen, Gustavo Turecki and Michael J Meaney

Neuropsychopharmacology (2013) **38**, 1140; doi:10.1038/npp.2012.262

Correction to: *Neuropsychopharmacology Reviews* (2012) **38,** 111–123; doi:10.1038/npp.2012.149; published online 12 September 2012.

Figure I Maternal licking/grooming (LG) induces glucocorticoid receptor (GR) expression in the pup hippocampus by increasing association between NGFI-A and the GRI₇ promoter. Increased frequency of maternal LG activates the 5-HT₇ receptor, inducing NGFI-A through a cAMP-PKA dependent pathway *in vivo*. In hippocampal cell culture 5-HT binds the 5-HT₇ receptor and increases GR expression through the same cAMP-PKA pathway. ACTH, adrenocorticotropin releasing hormone; CRF, corticotropin releasing factor; cAMP, cyclic adensoine 3,5 mono-phosphate; NGFI-A, nerve growth factor-inducible A; PKA, protein kinase A; 5-HT, serotonin.

Figure 2 Glucocorticoid receptor (GR) gene organization. Schema describing the organization of the rat and human glucocorticoid receptor gene, including the 9 exon regions. Exons 2–9 code for the glucocorticoid receptor protein. Exon 1 is comprised of multiple, tissue-specific promoter regions (rat is adapted from McCormick et *al* (2000) and human from Turner and Muller (2005)). The rat exon I_7 shares ~ 70% sequence homology with the human exon $I_{\rm fr}$ and both are highly expressed in hippocampus.

In this article, there are errors in the legends of Figures 1, 2, and 3. Below are the correct legends.

Figure 3 DNA 5-hydroxymethylcytosine (5-hmC) and 5-methylcytosine (5-mC) analyses of the GR exon 1₇ promoter in hippocampal samples from offspring of high and low LG dams. 5-hmC (left panel) and 5-mC (right panel) levels are expressed as a percentage (mean \pm SEM) of input DNA (5-hmC n=3-4 per group; 5-mC n=5-6 per group). Controls show negligible signal (ie, 0–3%; data not shown) assayed using a commercially available kit (5-hmC, Diagenode Cat. No. AF-104-0016; 5-mC: Epigentek, Cat. No. p-1015-24).

Yohimbine Depresses Excitatory Transmission in BNST and Impairs Extinction of Cocaine Place Preference Through Orexin-Dependent, Norepinephrine-Independent Processes

Kelly L Conrad, Adeola R Davis, Yuval Silberman, Douglas J Sheffler, Angela D Shields, Sam A Saleh, Namita Sen, Heinrich JG Matthies, Jonathan A Javitch, Craig W Lindsley and Danny G Winder

Neuropsychopharmacology (2013) 38, 1140; doi:10.1038/npp.2013.14

Correction to: *Neuropsychopharmacology* (2012) **37**, 2253–2266; doi:10.1038/npp.2012.76; published online 23 May 2012

In this article, we inadvertently referred to a compound used in experiments in figure 3 as JNJ-10397047. However,

it should read JNJ-10397049 (1-(2,4-dibromo-phenyl)-3-((4S,5S)-2,2-dimethyl-4-phenyl-[1,3]dioxan-5-yl)-urea).