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Anorexia nervosa (AN) is an eating disorder characterized by extreme hypophagia, hyperactivity, and fear of weight gain. No approved

pharmacological treatments exist for AN despite high mortality rates. The activity-based anorexia (ABA) phenomenon models aspects of

AN in rodents, including progressive weight loss, reduced food intake, and hyperactivity. First, we optimized the ABA paradigm for mice.

We compared mouse strains (Balb/cJ, A/J) for susceptibility with ABA, and evaluated the effects of different food access durations (2, 4, 6,

8, and 10 h) on ABA parameters. Balb/cJ mice exhibited significantly shorter survival time (days until 25% bodyweight loss) in the ABA

paradigm compared with A/J mice. Furthermore, 6 h of food access reduced survival in mice housed with wheels without reducing

survival in mice housed without wheels. We then evaluated the effects of chronic treatment with fluoxetine (4 weeks) or subchronic

treatment with olanzapine (OLZ) (1 week) on ABA in BALB/cJ mice. OLZ (12mg/kg/day) significantly increased survival and reduced

food anticipatory activity (FAA). However, OLZ did not alter food intake or running wheel activity during ad-lib feeding (baseline) or

restriction conditions, or in mice housed without wheels. Fluoxetine (18mg/kg/day) increased food intake and reduced FAA, but did not

alter survival. Here, we report for the first time that OLZ, but not fluoxetine, reduces ABA in mice. Our findings indicate further need for

clinical investigations into the effects of OLZ, but not selective serotonin reuptake inhibitors, on core features of AN.
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INTRODUCTION

Anorexia nervosa (AN) is an eating disorder characterized
by profound hypophagia, refusal to maintain a normal
body weight, and fear of weight gain. Moreover, AN patients
often exhibit hyperactivity, manifesting as extreme
exercise or general restlessness (Hebebrand et al, 2003;
Kron et al, 1978). AN occurs primarily in females, and has
the highest mortality rate of all psychiatric disorders
(Arcelus et al, 2011; Sullivan, 1995). Despite the severity
of AN, no approved pharmacological treatments currently
exist.
Abnormalities of the serotonin (5-hydroxytryptamine,

5-HT) neurotransmitter system have been reported in
both ill and recovered AN patients. The major metabolite
of 5-HT, 5-hydroxyindoleacetic acid (5-HIAA), is reduced
during illness and elevated after weight restoration (Kaye
et al, 1988, 1991). Furthermore, several PET imaging studies

have found that patients ill or recovered from AN have
increased 5-HT1A receptor (Bailer et al, 2005, 2007a) and
serotonin transporter binding (Bailer et al, 2007a), and
decreased 5-HT2A receptor binding (Audenaert et al, 2003;
Frank et al, 2002). These alterations in the 5-HT system
remain following weight restoration, and thus, are likely
traits of AN. Genetic association studies have linked
polymorphisms in the serotonin transporter and 5-HT2A,

5-HT1D, and 5-HT3 receptor genes with AN (Bergen et al,
2003; Brown et al, 2007; Delorme et al, 2005; Monteleone
and Maj, 2008; Ozaki et al, 2003). However, genome-wide
association studies to date have not identified significant
associations of any genes and AN (Wang et al, 2011).
Pharmacotherapy targeting the serotonergic system has

been attempted in AN patients. Treatment with selective
serotonin reuptake inhibitors (SSRIs) has been unsuccessful
for malnourished patients (Attia et al, 1998; Ferguson et al,
1999; Holtkamp et al, 2005). One randomized-controlled
trial (RCT) found that fluoxetine treatment reduces relapse
(Kaye et al, 2001) in weight-restored patients; however, the
largest RCT to date (Walsh et al, 2006) found fluoxetine to
be ineffective in reducing relapse in AN. Thus, the effects of
fluoxetine on AN remains unclear.
The dopamine (DA) system regulates reward processing,

movement, and feeding behavior, and is also altered in AN.
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Ill and recovered AN patients exhibit reductions in
homovanillic acid, a major metabolite of DA (Kaye et al,
1999), and increased DA D2 and DA D3 receptor binding
(Frank et al, 2005). Furthermore, polymorphisms in
DA D2 are associated with AN (Bulik et al, 2007; Burden
et al, 1993; Monteleone and Maj, 2008). Recent findings
suggest that drugs targeting both 5-HT and DA receptors
may be effective in treating AN. Several open label
studies have reported that the atypical antipsychotic
olanzapine (OLZ) increases body weight, and reduces
hyperactivity and anxiety about eating and body shape
(Barbarich et al, 2004; Dennis et al, 2006; Leggero et al,
2010). Furthermore, two preliminary RCTs recently
showed that OLZ significantly reduces obsessions about
weight while increasing the rate of weight gain (Bissada
et al, 2008), and reduces anorexic ruminations (Mondraty
et al, 2005).
The activity-based anorexia (ABA) phenomenon provides

a rodent model for aspects of AN. In the ABA paradigm,
rodents subjected to restricted food access and housed
with running wheels develop paradoxical hyperactivity,
hypophagia, and extreme weight loss resulting in death.
Conversely, rodents given either restricted food access or
running wheels maintain body weight (Epling and Stefan
1983; Routtenberg and Kuznesof, 1967). ABA recapitulates
several aspects of AN, including weight loss, reduced food
intake, hyperactivity, increased hypothalamic–pituitary-
adrenal (HPA) axis activity, and loss of estrus (Burden
et al, 1993; Dixon et al, 2003; Watanabe et al, 1992).
Furthermore, adolescent (Boakes et al, 1999; Pare, 1975;
Woods and Routtenberg, 1971) and female rodents
(Klenotich and Dulawa, in press; Paré et al, 1978)
develop more severe ABA phenotypes. Recently, the effects
of SSRIs and OLZ on ABA have been investigated in rats.
FLX (5mg/kg/day) (Altemus et al, 1996), fluvoxamine
(50mg/kg/day) (Yokoyama et al, 2007), and OLZ
(7.5mg/kg/day) (Hillebrand et al, 2005) were all reported
to reduce ABA.
The present studies investigated the effects of chronic

treatment with the SSRI FLX or the atypical antipsychotic
OLZ on ABA in mice. We first performed a strain
comparison study to identify a mouse strain with high
vulnerability to ABA, because mice show strain differences
in ABA susceptibility (Gelegen et al, 2007, 2008, 2010). We
then optimized ABA experimental parameters for investi-
gating drug treatment effects in mice. For example, food
access duration can alter the progression of ABA (Pare et al,
1985; Watanabe et al, 1992). Next, we identified doses of
OLZ (12mg/kg/day, 24mg/kg/day) that alter ABA behavior.
Finally, we determined the effects of chronic FLX (18mg/kg/
day) or subchronic OLZ (12mg/kg/day) treatment on ABA
behavior.

MATERIALS AND METHODS

Animals

Experimentally naive Balb/cJ and A/J female mice (Jackson
Laboratories, Bar Harbor, ME) were aged 6–8 weeks at the
beginning of all experimental procedures. Mice were given
ad libitum access to standard chow and water, except

during food restriction periods described below. Animals
were euthanized, or ‘dropped’, from experiments when they
lost 25% of their initial body weight, defined on the last day
of baseline. All procedures were conducted in accord with
the National Institutes of Health laboratory animal care
guidelines and with the Institutional Animal Care and Use
Committee approval at the University of Chicago.

Drugs

All drugs were administered in the drinking water in dark
bottles. Fluoxetine hydrochloride (BIOTREND, Cologne,
Germany) treatment was initiated 4 weeks before the
restriction period since FLX has a therapeutic onset of
2–4 weeks in humans (Blier, 2003; Fineberg et al, 1992). FLX
was dissolved in distilled water. In contrast to FLX,
OLZ (Sequoia Research Products, Pangbourne, UK) has
more rapid therapeutic onset (1–2 weeks) (Fulton and Goa,
1997); treatment began during the baseline period. OLZ
was dissolved in a minimal quantity of glacial acetic acid,
raised to volume with distilled water, and adjusted to a pH
of 5.7–5.8. During baseline and restriction periods the
same proportion of glacial acetic acid was added to FLX
and vehicle control (VEH) solutions, which were also
adjusted to a pH of 5.7–5.8. Drug concentrations were
adjusted to account for changes in water intake and
body weight twice weekly during baseline conditions.
Drug solutions were changed daily from weekly stock
solutions during food restriction conditions. Water intake
values for drug-treated mice are shown in Supplementary
Table 1.

Experimental Conditions

Animals were housed in a climate-controlled room main-
tained on a 12 : 12 light dark cycle (lights off at 1800 hours).
Cages (19.56� 34.70� 14.41 cm) were equipped with wire-
less low-profile running wheels (Med Associates, St Albans,
VT). Running wheels transmitted running data at 30-s
intervals to a computer with Wheel Manager Software (Med
Associates) 24 h a day throughout the experiment. Food was
provided in a small glass jar (65 cm diameter � 50 cm
height).

ABA Procedure

All animals were pseudo-randomly divided in experimental
groups based on their body weights. During acclimation,
baseline, and food restriction periods, mice were singly
housed and given 24-h access to running wheels. For some
experiments, additional groups of mice were treated
identically, but were not provided running wheels. Daily
body weight, food intake, running wheel activity, and food
anticipatory activity (FAA) were recorded during baseline
and food restriction conditions. FAA refers to running
wheel activity during the 4 h preceding food delivery
(Davidson and Stephan, 1999; Holmes and Mistlberger,
2000; Honma et al, 1983; Mistlberger, 1994). Days to
dropout (loss of 25% baseline body weight) provided a
measure of survival.
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Experiment 1: Effect of Mouse Strain on ABA

Female Balb/cJ (n¼ 15) and A/J (n¼ 15) mice 6 weeks of
age were acclimated to running wheels for 3 days before the
baseline period. Following 4 days of baseline conditions,
mice were given 2 h of food access per day beginning at 1000
hours.

Experiment 2: Effect of Food Access Duration on ABA

Eight-week-old female Balb/cJ mice (n¼ 72) were accli-
mated to wheel (n¼ 36) or non-wheel (n¼ 36) housing
conditions for 2 days. Following 7 days of baseline
conditions, mice housed with and without wheels received
2 h (n¼ 7 per group), 4 h (n¼ 7 per group), 6 h (n¼ 8 per
group), 8 h (n¼ 7 per group), and 10 h (n¼ 7 per group)
of food access during the restriction period. Food was given
at 0800 hours each day. Mice were euthanized after losing
25% of baseline body weight, or following 12 days of
restriction.

Experiment 3: Dose-Dependent Effects of Subchronic
OLZ Treatment on ABA

Female Balb/cJ mice (n¼ 15) aged 8 weeks were acclimated
to running wheels for 2 days. During baseline (7 days), mice
received VEH (n¼ 5), OLZ 12mg/kg/day (n¼ 5), or OLZ
24mg/kg/day (n¼ 5). During the restriction period, food
was given for 6 h per day beginning at 0800 hours. Mice
were euthanized following either 25% loss of baseline body
weight or 14 days of restriction.

Experiment 4: Effects of Chronic FLX and Subchronic
OLZ Treatment on ABA

Female Balb/cJ mice (n¼ 60) 6 weeks of age were treated
with either VEH (0mg/kg/day, n¼ 20), OLZ (12mg/kg/day,
n¼ 20), or FLX (18mg/kg/day, n¼ 20) and housed either
with or without running wheels. Following the acclimation
to single housing and running wheels (3 days) and the
baseline period (7 days), mice received 6 h of food access a
day beginning at 0800 hours. Mice were euthanized either
after 25% baseline body weight loss, or 14 days had elapsed.

Statistical Analysis

For baseline data, ANOVAs assessed the effects of group
(strain, drug, food access period, or wheel) as between
subjects factors, and day as a within subjects factor for each
dependent variable (body weight, food intake, running
wheel activity, and FAA). When significant interactions
were found, post hoc comparisons were made using the
Student–Newman–Keuls test for between subjects factors or
post hoc ANOVAs for within subjects factors. Bonferroni
adjustments were made when post hoc ANOVAs were
applied.
For restriction data, the linear mixed effects model

(mixed ANOVA model) was used to assess differences in
body weight, food intake, running wheel activity, and FAA.
Mice continually drop out of the ABA paradigm, creating
data sets with missing values. Post hoc analysis resolving
‘treatment� day’ interactions were adjusted for multiple

comparisons using the false discovery rate method. Survival
analysis was performed using the Kaplan–Meier test with
log-rank (Mantel–Cox) post hoc tests.

RESULTS

BALB/cJ Mice Exhibit Increased Vulnerability to ABA

During baseline, Balb/cJ mice had significantly higher body
weights on day 1 (F(7, 28)¼ 3.735; po0.001), and ran
significantly more than A/J mice overall (F(1, 28)¼ 53.307;
po0.0001). There were no differences in food intake
between strains during baseline (Table 1). During food
restriction, Balb/cJ mice weighed significantly less than A/J
mice on days 1 through 4 (F(3, 66)¼ 13.85; po0.0001)
(Figure 1a). Balb/cJ mice also ran significantly more than
A/J mice during food restriction (F(1, 66)¼ 7.82; po0.01)
(Figure 1c). A trend was found for increased FAA in Balb/cJ
mice (F(1, 38)¼ 3.01; p¼ 0.09) (Figure 1d). Strain had no
effect on food intake during restriction (Figure 1b). Overall,
A/J mice were more resilient to the ABA paradigm, as they
survived food restriction conditions significantly longer
than Balb/cJ mice (po0.0001) (Figure 1e). As Balb/cJ mice
exhibited a more severe ABA phenotype, this strain was
used in subsequent studies.

Table 1 Baseline-Dependent Measures

Manipulation Wheel BW FI RWA

A/J Y 17.08±0.10a 3.14±0.10 2853.14±869.02a

Balb/cJ Y 17.98±0.08 3.12±0.07 23 219.60±1392.58

2 h Y 19.15±0.13 4.37±0.09b 31 234.89±1361.90

2 h N 19.53±0.12 3.75±0.07 F

4 h Y 19.14±0.11 4.25±0.09b 34 961.67±1544.30

4 h N 19.09±0.12 3.41±0.06 F

6 h Y 18.75±0.09b 3.73±0.09b 31 573.98±1497.85

6 h N 20.04±0.10 3.21±0.06 F

8 h Y 18.78±0.15 3.73±0.07b 34 181.74±1671.04

8 h N 19.42±0.10 3.22±0.05 F

10 h Y 18.66±0.11 3.72±0.07b 32972.25±2000.84

10 h N 19.49±0.11 3.11±0.06 F

0mg/kg/day VEH Y 19.16±0.12 3.48±0.09 34 572.89±2120.48

12mg/kg/day OLZ Y 19.23±0.15 3.27±0.15 27 070.11±1930.15

24mg/kg/day OLZ Y 19.02±0.12 3.11±0.10 22 398.69±1535.49

0mg/kg/day VEH Y 19.30±0.14 4.44±0.11c 32 547.43±1227.52

0mg/kg/day VEH N 19.98±0.11 3.85±0.05 F

12mg/kg/day OLZ Y 19.05±0.12 3.93±0.07c 28 575.06±925.39

12mg/kg/day OLZ N 19.09±0.12 3.60±0.07 F

18mg/kg/day FLX Y 19.73±0.15 4.61±0.16c 30 070.46±1429.23

18mg/kg/day FLX N 19.79±0.12 3.87±0.05 F

Abbreviations: BW, daily body weight; FI, food intake; RWA, running wheel
activity during baseline.
aSignificant difference from Balb/cJ strain (po0.01).
bSignificant difference between wheel groups within the food access duration
group (po0.01).
cOverall significant effect of wheel (po0.005).
Values are means±SEM.
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Increasing Food Access Duration Reduces ABA
Behavior

During the baseline period, body weight did not differ
between animals housed with or without a wheel within the
2-, 4-, 8-, and 10-h food access duration. However, small
but significant differences in body weight were found within
the 6-h group (F(1, 14)¼ 12.854; po0.05) (Table 1). Mice
housed with wheels had significantly higher food intake
during baseline in the 2-h (F(1, 12)¼ 25.810; po0.0005), 4-h
(F(1, 12)¼ 35.442; po0.0001), 6-h (F(1, 14)¼ 10.724; po0.01),
8-h (F(1, 28)¼ 19.184; po0.0005), and 10-h (F(1, 28)¼ 27.001;
po0.0001) groups.
During the restriction phase, survival analyses found no

difference between animals housed with or without wheels
given 8 h (p¼ 0.06) or 10 h (p40.05) of food access
(Figure 2). However, mice housed without wheels survived
significantly longer than those housed with wheels in the
2-h (po0.005), 4-h (po0.0005), and 6-h (po0.0001) food
access groups. Six hours was the only food access duration
in which all mice under wheel conditions and none of
the mice under non-wheel conditions met dropout
criteria. Changes in daily bodyweight, food intake, wheel

running, and FAA are shown in Supplemental Results and
Supplementary Figures S1, S2.

Dose-Dependent Effect of Subchronic OLZ Treatment
on ABA Behavior

During the baseline period, neither 12mg/kg/day nor
24mg/kg/day OLZ treatment altered body weight, food
intake, or running wheel activity (Table 1). During the
food restriction period, mice receiving 12mg/kg/day OLZ
weighed significantly more than those receiving VEH
control (F(1, 32)¼ 6.43; po0.05). Furthermore, mice receiv-
ing 24mg/kg/day OLZ weighed significantly more than
VEH-treated mice on days 3 and 4 of food restriction
(F(3, 32)¼ 4.63; po0.05) (Figure 3a). Neither 12mg/kg/day
nor 24mg/kg/day OLZ altered food intake during restriction
(Figure 3b). A trend for increased running wheel activity
was found for mice treated with 12mg/kg/day OLZ
(F(1, 32)¼ 3.82; p¼ 0.06) compared with VEH-treated mice,
while mice treated with 24mg/kg/day ran significantly more
than VEH-treated mice (F(1, 22)¼ 14.23; po0.005)
(Figure 3c). Neither 12mg/kg/day nor 24mg/kg/day altered
FAA (Figure 3d). Finally, both the 12mg/kg/day (po0.05)
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and the 24mg/kg/day doses (po0.05) of OLZ significantly
increased survival compared with VEH control treatment
during food restriction (Figure 3e).

Subchronic OLZ, but Not Chronic FLX, Increases
Survival in ABA

Effects of chronic FLX on ABA. Chronic FLX treatment had
no effect on baseline body weight, food intake, or running
wheel activity in mice housed with or without wheels.
Food intake was significantly increased for animals housed
with wheels across treatments (F(1, 36)¼ 9.084; po0.005)
(Table 1).
During the restriction period, FLX had no effect on body

weight for mice housed with or without wheels (Figure 4a,
Supplementary Figure S3A). Chronic FLX treatment sig-
nificantly increased food intake in mice housed with wheels
(F(1, 100)¼ 5.24; po0.05) (Figure 4b), but not in mice housed
without wheels (Supplementary Figure S3B). Although FLX
did not alter overall daily running wheel activity (Figure 4c),
FAA was decreased in FLX-treated mice on days 7, 10,
12, 13, and 14 of restriction (F(12, 82)¼ 2.67; po0.005)
(Figure 4d). However, FLX had no effect on survival in the
ABA paradigm (p¼ 0.16) (Figure 4e). FLX also had no effect
on survival in mice housed without wheels (Supplementary
Figure S3C).

Effects of subchronic OLZ on ABA. During the baseline
period, subchronic OLZ treatment decreased body weight

on day 3 (F(7, 36)¼ 7.787; po0.0001) regardless of wheel
status. Although mice housed with wheels ate significantly
more than mice without wheels across treatments
(F(1, 36)¼ 10.807; po0.005), OLZ treatment significantly
decreased food intake on day 1 and day 2 of baseline
(F(6, 36)¼ 4.314; po0.0005). OLZ did not alter baseline
running wheel activity (Table 1).
Subchronic OLZ treatment had no effect on body weight

in mice housed with or without wheels during restriction
(Figure 4a, Supplementary Figure S3A). A trend was found
for OLZ to increase food intake in mice housed with wheels
(F(1, 114)¼ 3.55; p¼ 0.06) (Figure 4b), and OLZ had no effect
on food intake in mice housed without wheels (Supple-
mentary Figure S3B). Treatment with OLZ did not alter
overall daily running wheel activity (Figure 4c). However,
OLZ treatment significantly decreased FAA (F(1, 96)¼ 6.14;
po0.05) (Figure 4d). Finally, OLZ treatment significantly
increased survival in mice housed with wheels (po0.05)
(Figure 4e), and a trend for OLZ to increase survival in mice
housed without wheels was found (p¼ 0.06) (Supplemen-
tary Figure S3C).

DISCUSSION

Here, we report for the first time that subchronic treatment
with OLZ, but not chronic FLX, increases survival in the
ABA paradigm in mice. First, we found that BALB/cJ mice
exhibit shorter survival durations than A/J mice in the ABA
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paradigm; thus, BALB/cJ mice may provide a suitable
mouse strain for modeling aspects of AN. Next, we
determined the optimal food access duration for evaluating
drug effects on ABA using mice. We found that a 6-h food
access duration induced a moderate ABA phenotype,
potentially allowing detection of either drug-induced
increases or decreases in ABA. Finally, using these
experimental conditions, we found that subchronic OLZ,
but not chronic FLX, treatment increased survival in the
ABA paradigm in BALB/cJ mice. Although FLX-treated
mice showed increases in food intake and reductions in
FAA, survival in ABA was not significantly extended
compared with VEH-treated mice. Conversely, OLZ-
treated mice exhibited significant increases in survival and
reduced FAA. Our data support preliminary clinical
findings on the efficacy of OLZ in AN (Bissada et al,
2008; Mondraty et al, 2005), and further validate the ABA
mouse model as a tool for identifying potential treatments
for AN.
The vast majority of ABA studies have been performed

using rats. However, recent advances in molecular genetics
have established mice as the foremost mammalian
model for basic studies of psychiatric disorders. We
therefore identified an appropriate mouse strain with which
to perform ABA studies. Mouse strain differences in

susceptibility to ABA have been reported previously, with
the A/J and DBA/2J strains showing increased susceptibility
to developing the ABA phenotype compared with C57BL/6J
mice (Gelegen et al, 2007, 2008, 2010). In fact, C57BL/6J
mice do not develop ABA, but instead show reductions in
wheel running during food restriction. Our results show
that Balb/cJ mice exhibit significant decreases in body
weight (Figure 1a), increases in running wheel activity
(Figure 1c), and reduced survival compared with A/J mice
(Figure 1e). Interestingly, Balb/cJ mice have increased DA
and DA metabolites in nucleus accumbens and prefrontal
cortex, as well as decreased levels of 5-HT and 5-HIAA in
comparison with A/J mice. Balb/cJ mice also show increased
DA D2 binding in nucleus accumbens in comparison with
A/J mice (Couppis et al, 2008). These data are similar to
findings in ill and recovered AN patients, whom exhibit
increased D2 binding potentials (Frank et al, 2005), as well
as decreases in 5-HIAA (Kaye et al, 1988; Kaye et al, 1991).
These differences in 5-HT and DA neurochemistry may
have a role in the significantly higher susceptibility of Balb/
cJ mice for developing a severe ABA phenotype. Taken
together, our findings indicate that Balb/cJ mice exhibit
high susceptibility to developing ABA, and exhibit a
neurochemical profile that supports use of this strain as
an AN-like mouse. Therefore, the Balb/cJ mouse is an
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appropriate strain for modeling AN-like behavior using the
ABA paradigm.
We optimized the ABA paradigm for use with Balb/cJ

mice. Food access duration can alter the progression of
ABA, with longer food access periods reducing the
phenotype (Pare et al, 1985; Watanabe et al, 1992).
Furthermore, food access durations employed in rat ABA
studies (2–4 h) (Pare et al, 1985; Watanabe et al, 1992)
induced rapid dropout in mice housed without wheels
(Figure 2), which should be able to adapt to daily food
restriction and maintain body weight according to the
definition of ABA (Routtenberg and Kuznesof, 1967). We
sought to identify a food access duration that would extend
the length of time mice survive during food restriction,
allowing for the detection of decreases and increases in
survival in response to various treatments. Our results
indicate that 6 h of daily food access induces a length of
survival (2–5 days) (Figure 2) that avoids both floor and
ceiling effects. Mice given 6 h of food access showed
significant reductions in body weight (see Supplementary
Results, Supplementary Figure S1A), and food intake (see
Supplementary Results, Supplementary Figure S1B) com-
pared with mice without wheels. In addition, the 6-h food
access condition induced dropout of all mice with wheels,
whereas all mice without wheels maintained at least 75% of
baseline body weight. Thus, this food access duration

permits the assessment of treatment effects during food
restriction conditions alone. In addition, the 8- and 10-h
food access duration times induced milder ABA pheno-
types, and could be used to evaluate the effects of long-term
treatments, or long-term ABA, on the brain.
Varying the food access period provided the most

practical means for adjusting ABA severity. However, many
other variables have been shown to affect ABA severity. For
example, the adaptation theory of ABA is based on findings
that food access during the light cycle and pre-exposure to
running wheels increases the ABA phenotype (Dwyer and
Boakes, 1997; Ratnovsky and Neuman, 2011). Thus,
adaptation to a feeding schedule that is more similar to
species-typical behaviors reduces ABA behavior. We found
that acclimation and baseline exposure to running wheels
before restriction, coupled with 6-h food access during
restriction, produced a moderate ABA phenotype in Balb/cJ
mice, which serves as a tool for investigating the effects of
drug treatment on ABA. In addition to varying food access
duration, our design also varies circadian feeding patterns
between groups, and the effects of these two factors on ABA
cannot be dissociated.
In an initial dose-finding study, we found that both 12

and 24mg/kg/day of OLZ significantly increased survival in
ABA. A previous report suggests that, OLZ reduces ABA in
rats (Hillebrand et al, 2005), although the dose of OLZ used
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caused robust reductions in running wheel activity in rats
fed ad libitum and food restricted rats (1-h daily food
access). These findings suggest that the dose of OLZ used
induced sedation. We therefore aimed to identify a non-
sedative dose that would significantly reduce ABA behavior.
Both the 12 and 24mg/kg/day doses of OLZ significantly
increased body weight during food restriction (Figure 3a),
and increased survival in the ABA paradigm (Figure 3e).
Importantly, OLZ did not significantly decrease running
wheel activity or increase food intake during baseline
(Table 1). Although not significant, mice treated with the
highest dose (24mg/kg/day) did show about a 35%
decreases in running wheel activity during baseline,
illustrating that this high dose approached a sedative effect.
Although only subchronic OLZ treatment (1 week) is
sufficient to increase survival in ABA (Figures 3e and 4e)
without significant sedation or hyperphagia, an intermedi-
ate, chronic dose of OLZ (4 weeks; 16mg/kg/day) also
produces significant increases in survival (Supplementary
Figure S6A) without significant increases in pre-treatment
or baseline body weight (Supplementary Figure S6B) or
sedation (Supplementary Figure S6D) (see Supplementary
Results and Methods). In fact, chronic OLZ (16mg/kg/day)
treatment produced significant hypophagia in mice housed
with wheels during baseline (Supplementary Figure S6C)
(see Supplementary Results). These data indicate that
chronic OLZ treatment does not induce significant increases
in body weight, metabolism, or general activity levels in
Balb/cJ mice. Overall, these results indicate that subchronic
(1 week) and chronic (4 weeks) OLZ treatment increases
survival in ABA without inducing sedation or hyperphagia.
Our results indicate that subchronic OLZ, but not chronic

FLX, treatment increases murine survival in the ABA
paradigm (Figure 4e). Although both treatments appeared
to increase survival under the experimental conditions
employed, this effect only achieved significance in OLZ-
treated mice. Under food restriction conditions, neither
treatment significantly altered body weight (Figure 4a,
Supplementary Figure S3A). Although 12 and 24mg/kg/day
of OLZ induced small but significant increases in body
weight during food restriction in the dose-response study
(Figure 3a), 12mg/kg/day OLZ only induced small, non-
significant increases in body weight during the first 6 days
of food restriction in the drug comparison study
(Figure 4a). Both OLZ and FLX significantly reduced FAA
(Figure 4d), which contributes substantially to progressive
weight loss in the ABA paradigm (Beneke et al, 1995; Dwyer
and Boakes, 1997). During restriction, OLZ only produced a
trend for increased food intake, while FLX significantly
increased food intake during restriction (Figure 4b). How-
ever, increases in food intake did not result in significant
increases in body weight or survival for FLX-treated mice.
Although both OLZ and FLX reduced aspects of ABA
behavior, only OLZ produced significant increases in
survival (Figure 4e).
Subchronic OLZ treatment (12mg/kg/day) and chronic

OLZ treatment (8mg/kg/day, 16mg/kg/day) produced OLZ
plasma levels (Supplementary Figure S7, S8) that are above
the threshold, which predicts a therapeutic response in
patients with schizophrenia (Perry et al, 2001). Only two
studies, with few patients (n¼ 14, n¼ 13) have measured
OLZ plasma level in AN (Powers et al, 2002; Theisen et al,

2006), and more work needs to be done to evaluate the OLZ
serum level required for therapeutic response in AN.
Although the OLZ plasma levels reported here are higher
than levels seen in patients with AN, it is unclear whether
these differences are due to species differences or how the
ABA phenotype affect OLZ metabolism as animals approach
75% of baseline body weight. We additionally found that
under conditions of 3-h daily food access, subchronic OLZ
treatment (30mg/kg/day) significantly increased survival,
whereas chronic FLX treatment (25mg/kg/day) was ineffec-
tive (Supplementary Figure S4). Furthermore, we also found
that subchronic OLZ treatment (25mg/kg/day, 60mg/kg/
day) increased the survival of female adolescent (4–6 weeks)
BALB/cJ mice in the ABA paradigm (Supplementary Figure
S5). Our data suggest that OLZ treatment at doses ranging
from approximately 12–25mg/kg/day in Balb/cJ mice given
6 h of food access per day significantly increase survival in
ABA. These findings suggest that OLZ treatment may
reduce AN symptomology in patients.
SSRI treatment has previously been reported to reduce

ABA in rats (Altemus et al, 1996; Yokoyama et al, 2007).
The discrepancy between findings in rats and our present
findings in mice may result from species differences, or
differences in methodology. For example, we performed
studies using BALB/cJ, a mouse strain that exhibits a robust
ABA phenotype. However, the rat studies reporting effects
of SSRI treatment on ABA employed commonly used rat
strains, which have not been evaluated phenotypically for
ABA severity. Methodological differences include the sex of
rodents used and treatment duration. For example,
Yokoyama et al (2007) treated male rats with a very high
dose SSRI (50mg/kg/day fluvoxamine) for only 7 days
during restriction. Our negative findings with FLX are
unlikely to have resulted from using a non-therapeutic dose
because in BALB/cJ mice, as 18mg/kg/day FLX has been
shown to produce plasma FLX levels that fall in the middle
of the range observed in depressed patients taking
therapeutic doses (Dulawa et al, 2004). Mice receiving
18mg/mg/day FLX in the present studies had somewhat
higher plasma FLX levels than previously reported using
this dose (Supplementary Figure S7) (Dulawa et al, 2004).
The significant decreases in body temperature that develops
during ABA could have reduced systemic clearance of FLX
leading to higher plasma levels (Tortorici et al, 2007), since
samples were collected as mice reached dropout criteria.
Current reports conflict regarding the influence of seroto-
nergic tone on ABA. For example, both decreasing (Atchley
and Eckel, 2006), and increasing (Altemus et al, 1996)
serotonergic tone have suggested to ameliorate ABA. Our
results suggest that chronic FLX treatment with doses
producing similar plasma levels in patients do not reduce
ABA in mice.
The mechanisms by which chronic OLZ treatment

increases survival in the ABA paradigm have not been
identified. OLZ might increase survival in ABA by decreas-
ing HPA axis reactivity or altering metabolism. HPA axis
activity is increased during ABA as indicated by increased
corticosterone levels (Burden et al, 1993), and corticoster-
one is required for the development of hyperactivity in ABA
(Duclos et al, 2009). Chronic treatment with atypical
antipsychotics reduces markers of HPA axis activity in
patients with psychosis (Zhang et al, 2005). Thus, OLZ may
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reduce ABA by reducing HPA axis activity. Chronic OLZ
treatment has also been associated with increases in body
weight and metabolic syndrome (Pramyothin and Khaod-
hiar, 2010) in clinical populations with psychosis, suggest-
ing alterations in metabolism (Allison et al, 1999;
Newcomer, 2007). However, any OLZ-induced metabolic
changes in our study are unlikely, because 12 and 24mg/kg/
day OLZ did not increase baseline body weight or food
intake (Table 1).
OLZ is an antagonist at multiple neurotransmitter

receptors, including DA D1, D2, D4, 5-HT2A, 5-HT2C, 5-
HT3, a1-adrenergic, histamine H1, and several muscarinic
receptors (Bymaster et al, 1996). OLZ may increase survival
in the ABA paradigm by blocking one or more 5-HT and/or
DA receptors. Recently, Verhagen et al (2009) found that
the nonselective DA antagonist cis-flupenthixol increased
body weight, food intake, and body temperature during
ABA, but also reduced general locomotor activity in a
sedative manner. Patients with AN likely have disruptions
in 5-HT and DA signaling, because levels of DA (Kaye et al,
1999) and 5-HT (Kaye et al, 1988, 1991) metabolites are
altered in ill and recovered AN patients. Furthermore, AN
patients also show altered expression of specific 5-HT and
DA receptors and transporters. Binding potentials for the 5-
HT1A receptor and serotonin transporter are increased
(Bailer et al, 2005, 2007a, 2007b) and binding potentials for
the 5-HT2A receptor are decreased (Audenaert et al, 2003;
Frank et al, 2002) in ill and recovered AN patients. Increases
in DA D2/D3 receptor binding in the ventral striatum are
also seen following recovery (Frank et al, 2005). Future
work should examine the receptor subtypes at which OLZ
acts to reduce ABA.
Patients with AN find little rewarding in life beyond their

drive for thinness (APA, 2000; Davis and Woodside, 2002),
and abnormalities in dopaminergic signaling in AN may
alter reward processing. Indeed, AN patients are more
sensitive to reward and punishment (Harrison et al, 2010;
Jappe et al, 2011). However, AN patients do not show the
differential activation in the anterior ventral striatum
distinguishing wins and losses following a reward task that
control subjects exhibit (Wagner et al, 2008). Thus, AN
patients may not differentiate positive and negative feed-
back normally. They also do not find palatable foods as
rewarding (Fernstrom et al, 1994; Santel et al, 2006) have
reduced novelty seeking (Harrison et al, 2010), and exhibit
altered responses to taste stimuli in insular and striatal
regions (Wagner et al, 2008). The suppression theory of
ABA suggests that reward processes may also be altered in
ABA because rodents lever press more for access to a
running wheel when food deprived, and find food less
salient as activity levels increase (Pierce et al, 1986).
The effects of OLZ on reward processes may contribute to

its ability to reduce ABA. OLZ has variable effects on reward
anticipation in the ventral striatum (Abler et al, 2007; Juckel
et al, 2006; Schlagenhauf et al, 2008), and has been
suggested to reduce substance abuse (Petrakis et al, 2006;
Sayers et al, 2005; Smelson et al, 2006). OLZ may alter the
reward saliency of wheel running, demonstrated by reduc-
tions in FAA (Figure 4d). Furthermore, OLZ has been
shown to improve cognitive functioning in patients with
schizophrenia (McGurk et al, 2004; Meltzer and McGurk,
1999). It is unclear whether OLZ improves cognitive

function in mice. Several studies provide evidence for
improvements in learning and memory (Hou et al, 2006;
Mutlu et al, 2011; Wolff and Leander, 2003), while others
show no effect (Rosengarten and Quartermain, 2002) or
deficits (Arnt and Skarsfeldt, 1998; Mutlu et al, 2011;
Skarsfeldt, 1996; Terry et al, 2002). This discrepancy may be
due to differences in methodology, including duration of
treatment, learning tasks, and species used. Although it is
unclear whether OLZ may enhance learning in ABA, OLZ-
treated mice housed with wheels exhibited increased
adaptation to the food restriction paradigm, as illustrated
by a trend for increases food intake in comparison with
vehicle-treated mice (Figure 4b). Overall, both FLX and OLZ
treatment reduced FAA and increased food intake in ABA
in comparison with vehicle-treated mice, possibly through
alterations in the reward saliency of the wheel and/or
improved adaption to the food restriction paradigm via
enhanced cognitive function. Nevertheless, these improve-
ments in ABA behavior only produced significant increases
in survival in OLZ-treated mice. The therapeutic mechan-
ism by which OLZ increases survival needs further
investigation.
In summary, chronic OLZ treatment reduces FAA and

increases survival in the ABA paradigm in mice, without
inducing sedation or hyperphagia. Furthermore, chronic
FLX treatment was ineffective in increasing survival in ABA.
Given the high mortality rate in AN (Arcelus et al, 2011;
Sullivan, 1995), approved pharmacological treatments for
the disorder are sorely needed. Our findings strongly
suggest that OLZ, but not FLX, may provide treatment for
AN. Future work will investigate the mechanisms by which
OLZ reduces ABA.
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