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Dopaminergic and glutamatergic inputs to the nucleus accumbens shell have a central role in reward processing. Non-contingent cocaine

administration generates a number of long-term AMPA receptor-dependent changes in synaptic efficacy. However, the synaptic

consequences of cocaine self-administration and the potential role of dopamine in these processes remain unclear. Here, we examined

the influence of D1 dopamine receptor (D1DR) activation on excitatory synaptic plasticity in the accumbens shell of adult rats following

cocaine self-administration. Our results indicated that during the first 2 days following cocaine exposure both pre- and post-synaptic

mechanisms contribute to a net decrease in AMPA receptor-mediated signaling. This is reflected by decreased frequency of miniature

EPSCs (mEPSCs) attributable to enhanced cannabinoid receptor activity, decreased mEPSC amplitude, and increased paired-pulse ratio

of evoked EPSCs. In contrast, the only changes observed in the shell 3–4 weeks following cocaine self-administration were increased

mEPSCs amplitudes and AMPA/NMDA ratios. We further found that although these cocaine-induced neuroadaptations during early and

late abstinence have different synaptic expression mechanisms, they were normalized by stimulation of D1DRs. Thus, pre-exposure to

the D1DR agonist, SKF38393, during the initial period of abstinence increased excitatory synaptic strength, but reduced excitatory

signaling after weeks of abstinence. Taken together, these results indicate that the direction of changes in excitatory transmission induced

by cocaine self-administration switches over the first few weeks of abstinence. Moreover, D1DRs gate the stability of these cocaine-

induced changes at glutamatergic synapses in the accumbens shell by utilizing multiple temporally distinct mechanisms, which has

implications for the treatment of cocaine craving and addiction.
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INTRODUCTION

Repeated exposure to cocaine results in changes in
glutamatergic AMPA receptor-mediated neurotransmission
in the nucleus accumbens shell that may contribute to
cocaine craving and relapse (Kalivas and O’Brien, 2008;
Schmidt and Pierce, 2010; Wolf, 2010). The changes in
AMPA-mediated synaptic transmission are sensitive to the
duration of abstinence from cocaine administration. Thus,
during the first few days of abstinence following repeated
non-contingent cocaine administration the ratio of AMPA
to NMDA receptor-mediated currents as well as the intrinsic

excitability of the accumbens shell medium spiny neurons
(MSNs) are decreased (Kourrich et al, 2007; Kourrich and
Thomas, 2009, but see Dobi et al, 2011; Kim et al, 2011). At
longer abstinence periods (410 days) the AMPA/NMDA
ratio in the shell increases (Kourrich et al, 2007) as does the
amplitude and frequency of AMPA-mediated miniature
EPSCs (mEPSCs) (Kourrich et al, 2007; Thomas et al, 2001;
Dobi et al, 2011). Consistent with these results, the cocaine-
induced synaptic changes at excitatory synapses in the shell
are accompanied by changes in the expression of specific
AMPA receptor subunits. Surface expression of GluA1, GluA2,
and GluA2/A3 subunits of the AMPA receptor at early absti-
nence in the nucleus accumbens decreases (Schumann and
Yaka, 2009) or remains unchanged (Boudreau and Wolf, 2005;
Boudreau et al, 2009; Ghasemzadeh et al, 2009), but increases
following more prolonged abstinence from experimenter-
administered cocaine (Boudreau and Wolf, 2005; Boudreau
et al, 2007, 2009; Ghasemzadeh et al, 2009; Schumann and
Yaka, 2009; Ferrario et al, 2010).
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Although ample evidence suggests that neuroadaptations
in the nucleus accumbens are sensitive to the mode of
cocaine intake (Crespo et al, 2002; Mu et al, 2010; McCutcheon
et al, 2011; Kalivas and McFarland, 2003; Bowers et al,
2010), a systematic analysis of excitatory synaptic function
following self-administered cocaine is lacking. In the nucleus
accumbens shell, one study reported reduced excitation
during early abstinence from cocaine self-administration
using extracellular field potential recordings (Schramm-
Sapyta et al, 2006). More evidence is available with regard to
specific contribution of calcium-permeable, GluA2-lacking
AMPA receptors after abstinence from self-administration,
although the results vary (Conrad et al, 2008; Mameli et al,
2009; McCutcheon et al, 2011). In biochemical studies,
cocaine self-administration decreases the surface expression
of GluA1 subunits in the nucleus accumbens 1 day after the
cessation of cocaine treatment but increases surface GluA1
and GluA1-pSer845 after extended forced abstinence (Con-
rad et al, 2008; Ferrario et al, 2011). Overall, it remains
unclear to what extent the synaptic plasticity observed
following experimenter-administered cocaine is preserved
when cocaine intake is voluntary.
Many of cocaine’s characteristic behavioral and neuronal

effects result from increases in extracellular dopamine and
the subsequent stimulation of D1 dopamine receptors
(D1DRs) (Pierce and Kumaresan, 2006). Notably, stimula-
tion of D1DRs in the nucleus accumbens shell facilitates
reinstatement of cocaine seeking (Schmidt et al, 2006). In
terms of synaptic strength, acute application of D1DR
agonists suppresses AMPA receptor-mediated currents via a
pre-synaptic mechanism (Pennartz et al, 1992; Nicola et al,
1996; Harvey and Lacey, 1996). Agonist-induced activation
of D1DRs, however, has also been shown to increase the
surface expression of AMPA receptors in a PKA-dependent
manner (Chao et al, 2002; Mangiavacchi and Wolf, 2004), an
effect that was potentiated following cocaine self-adminis-
tration (Anderson et al, 2008). D1DR activation may elicit
lasting synaptic effects that persist beyond the duration of
the agonist application (Schilström et al, 2006). Such lasting
effects are of particular relevance with regard to cocaine-
induced relapse. Even after prolonged periods of abstinence
in human cocaine users, a single exposure to cocaine may
elicit an extended period of relapse to cocaine taking, an
effect that is presumably driven by enduring cocaine-
triggered neuroadaptations in the relevant brain circuits.
In this study, we used a conventional regimen of cocaine
self-administration to examine AMPA-mediated neuronal
transmission and to determine the lasting influence of
D1DR stimulation on cocaine-induced synaptic plasticity in
the nucleus accumbens shell of adult rats following brief
and extended abstinence.

SUBJECTS AND METHODS

Animals

Male Sprague–Dawley rats (Rattus norvegicus) weighing
300–350 g were obtained from Taconic Laboratories (Ger-
mantown, NY). Animals were individually housed, with
food and water available ad libitum in the home cage. A
12–12-h light–dark cycle was used with the lights on at 0700
hours. All behavioral training was performed during the

light cycle. All experimental protocols were approved by
the Institutional Animal Care and Use Committee of the
University of Pennsylvania.

Surgery and Self-Administration Training

Before surgery, the rats were anesthetized with injections of
80mg/kg ketamine (i.p.) and 12mg/kg xylazine (i.p.). An
indwelling catheter (Strategic Applications) was placed into
the right jugular vein and sutured in place. The catheter
was routed subcutaneously to a mesh platform placed and
sutured between the shoulder blades. Catheters were flushed
daily with 0.3ml of the antibiotic Timentin (0.93mg/ml)
dissolved in heparinized saline. The catheters were sealed
with plastic obturators when not in use. After a 7-day
recovery period from surgery, the rats were placed in
operant chambers (Med Associates) and allowed to lever-
press for intravenous cocaine infusions (0.25mg cocaine
per 56 ml saline over a 5 s infusion) during daily 2-h self-
administration sessions. Each cocaine infusion was followed
by a 20-s timeout period during which responses had no
scheduled consequences. The rats were initially trained
using a fixed ratio 1 (FR1) schedule of reinforcement. When
stable responding was achieved under the FR1 schedule,
they were switched to an FR5 schedule. Rats self-adminis-
tered cocaine for 14 days and were paired with yoked saline
controls. The yoked animals received an infusion of saline
every time its pair received cocaine. There were no con-
sequences to lever pressing by the yoked saline animals.
A subset of rats was implanted with bilateral guide

cannulae (14mm 24-gauge tubing; Small Parts) 2mm dorsal
to the nucleus accumbens shell for microinjection experi-
ments. The stereotaxic coordinates, relative to bregma,
were as follows: 1.0mm anterior, ±1.0mm lateral, 5.0mm
ventral. Cannulae were cemented in place by affixing
dental acrylic to three stainless steel screws fastened to
the skull. In order to prevent occlusion of the guide
cannulae, an obturator (14mm, 33-gauge wire) was inserted
into each one.

Microinjections

Obturators were removed from the guide cannulae and 33-
gauge stainless steel microinjectors (Small Parts) were
inserted. These microinjectors were cut to a length that
extended 2mm below the ventral end of the guide cannulae
and into the shell of the nucleus accumbens. Bilateral
infusions were performed simultaneously over a 120-s time
period in a total volume of 0.5 ml per side. Following the
microinjections, guide cannulae were left in place for 60 s in
order to allow the solution to diffuse away from the tips of
the cannulae before they were removed. The animals were
killed 20–30min following the microinjections and the
brains processed for electrophysiological analyses. The
correct placement of the guide cannulae was verified by
the presence of the cannula track in the nucleus accumbens
shell during electrophysiological recordings.

Nucleus Accumbens Slices

The rats were decapitated following isoflurane anesthesia
1–2 days (early abstinence) or 23–30 days (late abstinence)
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following 14 days of cocaine self-administration. The brain
was removed and coronal slices (300 mm) containing the
nucleus accumbens were cut with a Vibratome (VT1000S,
Leica Microsystems) in an ice-cold artificial cerebrospinal
fluid solution (ACSF), in which NaCl was replaced by an
equiosmolar concentration of sucrose. ACSF consisted
of 130mM NaCl, 3mM KCl, 1.25mM NaH2PO4, 26mM
NaHCO3, 10mM glucose, 1mM MgCl2, and 2mM CaCl2 (pH
7.2–7.4 when saturated with 95% O2/5% CO2). Slices were
incubated in ACSF at 32–34 1C for 45min and kept at 22–
25 1C thereafter, until transfer to the recording chamber. A
subset of slices from each animal was incubated with ACSF
supplemented with SKF38393 (10 mM; Sigma) for 1–3 h. The
partial SKF38393 was chosen on the bases of its pharma-
cological similarity to dopamine (Ryman-Rasmussen et al,
2005) and its ability to modulate excitability of the nucleus
accumbens neurons with efficiency that matches or exceeds
that of the full agonist SKF81297 (Johansen et al, 1991).
Slices pre-exposed to SKF38393 were washed with regular
ACSF for at least 10min before initiation of the
recordings. Importantly, we observed no correlation
between the SKF38393 incubation and wash-out times
and any of the measures reported in this study (median
r2¼ 0.03). The osmolarity of all solutions was 305–
315mOsm. Slices were viewed using infrared differential
interference contrast optics under an upright microscope
(Eclipse FN1, Nikon Instruments) with a 40� water-
immersion objective.

Electrophysiology

The recording chamber was continuously perfused (1–2ml/
min) with oxygenated ACSF heated to 32±1 1C using an
automatic temperature controller (Warner Instruments).
Picrotoxin (100 mM) was added to all solutions to block the
GABAA receptor-mediated currents. For mEPSC experi-
ments, tetrodotoxin (1 mM) was present in the bath.
Recording pipettes were pulled from borosilicate glass
capillaries (World Precision Instruments) to a resistance of
4–7MO when filled with the intracellular solution. The
intracellular solution contained (in mM): 100 CsCH3O3S, 50
CsCl, 3 KCl, 0.2 BAPTA, 10 HEPES, 1 MgCl2, 2.5
phosphocreatine-2Na, 2Mg-ATP, 0.25 GTP-Tris, 5 QX-314,
adjusted to pH 7.2–7.3 (pH 7.2–7.3 with CsOH, osmolarity
280–290mOsm). For some mEPSC recordings, the intracel-
lular solution contained (in mM): 145 potassium gluconate,
2 MgCl2, 2.5 KCl, 2.5 NaCl, 0.1 BAPTA, 10 HEPES, 2Mg-
ATP, 0.5 GTP-Tris, and 5 QX-314 (pH 7.2–7.3 with KOH,
osmolarity 280–290mOsm). No differences in amplitude,
frequency, or decay kinetics were observed between K
gluconate and Cs-containing solutions and these data were
pooled for analyses. Alexa 568 (200 mM) was also included
in the intracellular solution in some recordings. MSNs in
the nucleus accumbens shell were identified by their
morphology and the low resting membrane potential (�70
to �85mV). eEPSC and mEPSC recordings were conducted
in whole-cell voltage-clamp mode (Vh¼�70 and + 40mV
for eEPSC and Vh¼�70mV for mEPSCs). AM251 was
applied via the Y-tube perfusion system (Murase et al, 1989)
modified for optimal solution exchange in brain slices
(Hevers and Lüddens, 2002). In experiments with AM251,
mEPSCs were analyzed after a minimum of 3min of AM251

application. All recordings were conducted with a Multi-
Clamp700B amplifier (Molecular Devices). Currents were
low-pass filtered at 2 kHz and digitized at 20 kHz using a
Digidata 1440A acquisition board and pClamp10 software
(both from Molecular Devices). Access resistance (10–30MO)
was monitored throughout the recordings by injection of
10mV hyperpolarizing pulses and data were discarded if
access resistance changed by 425% over the course of data
acquisition. Evoked responses were triggered by 100 ms
constant-current pulses generated by an A310 Accupulser
(World Precision Instruments) and delivered at 0.1Hz via a
bipolar tungsten stimulation electrode positioned within
100 mm of the recorded cell. The amplitude of the current
pulses was controlled by a stimulus isolator (ISO-Flex,
AMPI) and was adjusted to elicit monosynaptic responses
in the range of 100–300 pA (the required stimulus intensity
ranged from 15 to 80 mA).

Data Analysis and Statistics

All analyses of intracellular recordings were carried out with
Clampfit 10 (Molecular Devices). The time constant of
decay was based on a monoexponential fit to the decay
phase of an average mEPSCs trace computed from a mini-
mum of 50 individual mEPSCs. For the cumulative probability
distribution plots, 100–150 individual mEPSCs were ana-
lyzed. Mean mEPSC frequencies were analyzed from 10- to
20-s long trace segments. Paired-pulse ratios (PPRs) were
calculated by averaging 5–10 responses at each stimulus
interval and dividing the peak amplitude of the second
eEPSC by the peak amplitude of the first eEPSC. AMPA/
NMDA current ratios were computed by dividing the mean
peak eEPSC at �70mV (AMPA-mediated) by the mean
amplitude at + 40mV, 35ms after the peak over a 2ms
window (NMDA-mediated). The mean eEPSCs were based
on 50 individual responses at each holding potential.
Cells from 4 to 7 animals were analyzed in each experi-

mental condition. The data were expressed as mean±SEM
of cells per group (all figures) as well as the mean±SEM of
recorded cells from a single animal that were then averaged
across the group (see Table 1). These analyses produced
identical statistical interpretation of the results. Statistical
analyses were performed with Microsoft Excel or StatView
5.0.1 for Windows. Statistical comparisons were done using
two-tailed unpaired Student’s t-test, two-way ANOVA (with
Tukey’s HSD post hoc) or Kolmogorov–Smirnov (K–S) as
appropriate.

RESULTS

Temporally Dynamic Changes of mEPSCs are Regulated
by D1DR Activation

We began our study by examining the effect of cocaine self-
administration on a basic measure of synaptic signaling,
mEPSCs, in the nucleus accumbens shell MSNs (Figure 1a).
mEPSCs are quantal post-synaptic responses to sponta-
neous, action potential-independent release of neurotrans-
mitter vesicles that can be isolated by application of a
voltage-gated Na+ channel blocker, tetrodotoxin (1 mM).
Following 1–2 days of forced cocaine abstinence, the basal
mEPSC amplitude in cells from cocaine-experienced animals
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was 23% smaller than in cells from yoked saline controls
(Figures 1b and c). To examine if mEPSCs were sensitive to
D1DR stimulation, a subset of slices was incubated with
D1DR agonist, SKF38393 (10 mM, see Subjects and methods
section). Surprisingly, pre-treatment with SKF38393 increased
the mEPSC amplitudes in slices from cocaine-experienced
animals to control levels while mEPSC amplitudes in slices
from yoked saline rats were not affected (Figures 1b and c).
The time constant of mEPSC decay was significantly slower
in slices from cocaine-experienced animals under basal (ie,
in the absence of SKF38393 pre-treatment) conditions (yoke
t¼ 5.2±0.2ms; cocaine t¼ 6±0.3ms, t(26)¼ 2.2, po0.05),
but was increased in the yoked saline group following exposure
to SKF38393 (yoke SKF t¼ 6.2±0.3, t(24)¼ 2.53, po0.05 vs
yoke no SKF; cocaine SKF t¼ 6±0.3ms) (Figure 1b). The
differences in the decay time may reflect the differences in
the relative abundance of GluA subunits subtypes (Jonas,
2000; Lu et al, 2009). The basal frequency of mEPSCs in
cocaine-experienced animals was 43% smaller than in yoked
saline controls. Following SKF38393 exposure, mEPSC
frequency increased to control levels (Figures 1d and e).
The mean frequency of mEPSCs recorded in the yoked
group under the basal conditions was not different from the
mean mEPSC frequency measured after SKF38393 pre-
exposure, although 3 out of 12 recorded cells had very frequent
events (Figure 1e, inset). mEPSC frequency is traditionally
interpreted to reflect the probability of neurotransmitter
release. Therefore, our data suggest that the probability of
glutamate release is decreased following cocaine self-
administration and that incubation with SKF38393 counter-
acts this synaptic adaptation. Thus, the deficits in both the
amplitude and the frequency of mEPSC are reversed by
D1DR stimulation during early abstinence from cocaine
self-administration.
We next examined the mEPSCs following longer periods

of abstinence. After 3–4 weeks of forced abstinence, the
basal mEPSC amplitude in cocaine-experienced animals was
approximately 28% larger than in yoked saline controls
(Figures 2a and b). This increase is slightly greater than that
reported following 10–14 days of withdrawal from experi-
menter-administered cocaine in the mouse (Kourrich et al,
2007). As in early abstinence, pre-treatment of slices with
SKF38393 eliminated this difference (Figures 2a and b). In
contrast to our observations in early abstinence, there were
no basal differences in mEPSC decay time (yoke t¼ 6±0.4ms;
cocaine t¼ 5.7±0.2ms; yoke SKF t¼ 6.2±0.3ms; cocaine
SKF t¼ 5.8±0.3ms, Figure 2a) or mEPSC frequency
(Figures 2c and d) after this longer period of abstinence.
Furthermore, pre-treatment with SKF38393 had no effect on
these measures in either the yoked saline or the cocaine-
experienced groups.
It can be argued that because exposure to cocaine

occurred in animals rather than slices, it is the animals
that represent an appropriate n value for the number of
statistical samples. We have, therefore, re-analyzed our
mEPSCs data by calculating an average of all recorded cells
in each animal and then computing the mean of such values
for all animals within an experimental group. The results of
these analyses for mEPSCs and all other experiments are
presented in Table 1. Note that the interpretation of the
statistical analyses was the same with both methods of
generating the mean values.T
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Pre-Synaptic Effects of Cocaine Self-Administration and
D1 Agonist Pre-Treatment

We attributed the early abstinence decrease in mEPSC fre-
quency to reduced probability of glutamate release. However,
the basal decrease in mEPSC amplitude in cocaine-experi-
enced rats may have forced a fraction of small-amplitude
synaptic events below the detection limit and contributed to
the observed frequency decrease (Stell and Mody, 2002). To
confirm the pre-synaptic origin of mEPSC frequency deficits,
we examined the PPRs, a measure of synaptic efficacy that is
inversely proportional to the pre-synaptic probability of
release (Manabe et al, 1993). In early abstinence, the PPR in

cells from cocaine-experienced animals was significantly
larger than in yoked saline controls across a range of inter-
stimulus intervals (average yoke PPR¼ 1.04±0.05; average
cocaine PPR¼ 1.24±0.06), consistent with a decrease in the
probability of release (Figures 3a and c). This difference was
eliminated by pre-treatment with SKF38393 (average yoke
PPR¼ 1.15±0.08; average cocaine PPR¼ 1.04±0.03; Fig-
ures 3a and c). No differences in PPR were observed among
any of the groups in late abstinence (average yoke¼ 1.14±
0.07; average cocaine 1.1±0.04; average yoke SKF¼ 1.05±
0.06; average cocaine SKF¼ 1±0.03; Figures 3b and d).
Collapsing all cells per animal and across each group led to

Figure 1 D1DR stimulation increases the mEPSC amplitude and frequency in cocaine-experienced animals at 1–2 days of abstinence. (a) Left, a schematic
of a coronal brain section illustrating the two subdivisions of the nucleus accumbens. Shaded box indicates the area of the shell used for all recordings.
Middle, an infrared differential interference contrast image of an MSN in the nucleus accumbens shell (open arrow) with the recording electrode (closed
arrow) impaling the cell. Right, a confocal microscope image of an accumbens shell MSN filled with Alexa 568. Scale bars, 25 mm. (b) Left, mEPSC traces from
cells in cocaine-experienced and yoked saline animals with and without SKF38393 (10 mM) pre-treatment. Right, same traces normalized to the peak
amplitude illustrate differences in mEPSC decay. (c) Cumulative probability distributions indicate reduced mEPSC amplitudes in cells from cocaine-
experienced rats relative to yoked saline controls, under basal conditions (ie, without SKF38393 pre-treatment; po0.05, K–S test). SKF38393 pre-treatment
results in a rightward shift of the distribution for cells from the cocaine-experienced, but not yoked saline control group. The inset shows mean mEPSC
amplitudes for all groups (n¼ 12–17 cells/5–6 animals). **t(28)¼ 2.98, po0.01 vs yoked controls; #t(32)¼ 2.66, po0.05 vs cocaine no SKF; Student’s t-test.
(d) Representative traces illustrate effects of SKF38393 pre-treatment on mEPSC frequency. (e) Cumulative probability distributions of mEPSC inter-event
intervals show reduced frequency of mEPSCs under basal conditions in cocaine-experienced animals relative to yoked saline controls (po0.01, K–S test).
The mEPSCs frequency deficit is absent following SKF38393 pre-treatment. Inset shows the effect of SKF38393 on mEPSC frequency in all recorded cells
(black horizontal lines indicate the mean). Mean (±SEM) frequencies are as follows: yoke 7.8±0.9Hz; cocaine 4.4±0.7Hz; yoke SKF 8.7±1.6Hz; cocaine
SKF 10±1.4Hz. Notice that three cells from the yoke SKF group had very frequent events contributing to the leftward shift of the cumulative probability
distribution. **t(30)¼ 2.98, po0.01 vs yoked controls; ##t(32)¼ 3.64, po0.01 vs cocaine no SKF; Student’s t-test.
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similar conclusions: cocaine experience significantly in-
creased the PPR in early abstinence, an effect that was
rescued by pre-treatment with SKF38393 (F(3,13)¼ 4.568,

p¼ 0.021) with significant effects of cocaine vs yoke, cocaine
vs cocaine SKF, and cocaine vs yoke SKF groups (Tukey’s
HSD). There was no effect in late abstinence (F(3,13)¼ 1.154,

Figure 2 D1DR stimulation decreases the mEPSC amplitude and does not affect frequency in cocaine-experienced animals at 3–4 weeks of abstinence.
(a) Left, mEPSC traces from cells in cocaine-experienced and yoked saline animals with and without SKF38393 (10 mM) pre-treatment. Right, same traces
normalized to the peak amplitude for comparison of mEPSC decay. (b) Cumulative probability distributions indicate increased basal mEPSC amplitudes in
cells from cocaine-experienced rats relative to yoked saline controls (po0.01, K–S test). SKF38393 pre-treatment only affects the amplitude distribution in
the cocaine-experienced group, shifting it toward smaller mEPSC amplitudes. The inset shows mean mEPSC amplitudes for all groups (n¼ 13–20 cells/5–7
animals). *t(35)¼ 2.35, po0.05 vs yoked controls; #t(33)¼ 2.31, po0.05 vs cocaine no SKF; Student’s t-test. (c) Representative traces illustrate the effects of
SKF38393 pre-treatment on mEPSC frequency. (d) Cumulative probability distributions of mEPSC inter-event intervals and scatterplots of mEPSC
frequencies (inset). Mean (±SEM) frequencies are as follows: yoke 5.1±0.7Hz; cocaine 6.1±0.9Hz; yoke SKF 7.2±1.3Hz; cocaine SKF 6.5±0.8Hz. There
were no differences between any of the groups in either the cumulative inter-event interval distributions or the mean mEPSC frequencies.

Figure 3 Effects of SKF38393 pre-treatment on PPR in early and late abstinence from cocaine self-administration. (a) Sample paired eEPSC comparing the
effects of cocaine exposure and SKF38393 incubation on PPRs in early abstinence from cocaine self-administration. Inter-stimulus interval is 100ms. Stimulus
artifacts are omitted. (b) Same as in (a) but in late abstinence. (c) Mean PPRs measured at inter-stimulus intervals (ISIs) of 20–500ms at 1–2 days of
abstinence from cocaine self-administration. There is a significant main effect of treatment (repeated-measures ANOVA, F(3,44)¼ 3.353, p¼ 0.027). Post hocs
on the main effect of treatment revealed a significant effect of yoke vs cocaine and cocaine vs cocaine SKF groups (*Tukey’s HSD post hoc). In all, 11–15 cells
from 4 to 5 animals were recorded in each group. (d) Mean paired pulse ratios at 3–4 weeks of abstinence. Differences between groups are not significant
(repeated-measures ANOVA, F(3,39)¼ 1.647, p¼ 0.194). 10–12 cells from 4 to 5 animals were recorded in each group.
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p¼ 0.364). Thus, the PPR measurements provide an impor-
tant confirmation to the mEPSC frequency data both before
and after SKF38393 pre-treatment and suggest that D1DR
stimulation affects pre-synaptic mechanisms that increase
the probability of glutamate release specifically in cocaine-
experienced animals in early abstinence from cocaine self-
administration.

Role for CB1 Signaling in Regulation of Glutamate
Release

Cannabinoid receptor system can both regulate glutamate
release in the striatum and is sensitive to modulation by
D1DRs (Patel et al, 2003; Andre et al, 2010). Activation of
CB1 receptors is known to decrease neurotransmitter
release (reviewed in Kano et al, 2009). Reduced release
probability after cocaine self-administration in early absti-
nence may therefore suggest stronger basal CB1 receptor
activation that could be sensitive to SKF38393 pre-treatment.
In this scenario, CB1 receptor blockade should increase the
mEPSC frequency before, but not after the SKF38393 pre-
treatment. Indeed, we found that in early abstinence, application
of a CB1 receptor antagonist, AM251 (3mM) increased the
mEPSC frequency by 9.3±5.3% of baseline values in cells
from yoked saline controls, but led to a 48±8.9% increase
in cells from cocaine-experienced rats (Figure 4a). After
slices had been incubated with SKF38393, this difference
was eliminated (Figure 4a). At 3–4 weeks of abstinence
from cocaine, AM251 increased the mEPSC frequency to a
similar extent in yoke and cocaine slices both before and
after incubation with SKF38393 (Figure 4b). These data
are consistent with our prediction that D1DR stimulation
in cocaine-experienced animals affects CB1 receptor
signaling and that this may contribute to the reduction
of glutamate release in early abstinence from cocaine self-
administration.

D1DR Stimulation Restores AMPA/NMDA Ratio to
Control Levels in Late Abstinence

Multiple studies have found that exposure to cocaine modu-
lates the ratio of AMPA to NMDA receptor-mediated currents,
an index of the relative excitatory synaptic strength (reviewed

in Bowers et al, 2010). We examined the sensitivity of this
widely used measure to SKF38393 pre-treatment. At 1–2
days of forced abstinence from cocaine self-administration,
the AMPA/NMDA ratio did not differ between yoked saline
and cocaine groups (yoke: 4.53±0.71; cocaine: 4.69±0.62;
Figures 5a and b). SKF38393 pre-treatment did not affect
the AMPA/NMDA ratio although a trend toward smaller
values was observed in slices from cocaine-experienced
animals (yoke SKF: 4.37±0.48; cocaine SKF: 3.75±0.38,
p¼ 0.19; Figures 5a and b). At 3–4 weeks of abstinence from
cocaine self-administration, AMPA/NMDA ratio was 52%
larger in the cocaine-experienced group (yoke: 4.18±0.49;
cocaine: 6.34±0.69; Figures 5c and d) similar to a previous
report (Kourrich et al, 2007). SKF38393 exposure reduced
the AMPA/NMDA ratio in cells from cocaine-experienced
animals to control levels, but had a negligible effect on cells
from yoked saline pairs (yoke SKF: 4.71±0.7; cocaine SKF:
4.34±0.39; Figures 5c and d). We conclude that AMPA/
NMDA ratio, a broad measure of excitatory synaptic strength,
is sensitive to D1DR stimulation in nucleus accumbens shell
MSNs of cocaine-experienced, but not yoked saline control
animals and that this unique sensitivity develops only after
an extended period of abstinence from cocaine self-
administration.

In Vivo Treatment with SKF38393 Mimics the In Vitro
Effects

Our data suggest that D1 receptor stimulation triggers lasting
synaptic changes in the slices from cocaine-experienced
animals. We sought to investigate whether treatment with
SKF38393 in vivo is similarly capable of modulating the
strength of excitatory synapses onto the accumbens shell
MSNs. To accomplish this, the animals were implanted with
guide cannulae targeting the accumbens shell bilaterally. At
24 h after the last cocaine self-administration session (early
abstinence), each animal received a microinfusion of saline
into one brain hemisphere and of SKF38393 into the other
hemisphere. Following this treatment, the slices were
prepared according to the standard protocol and recordings
performed within 5 h of microinjections. We found a robust
reduction of both mEPSC frequency and amplitude in cells
from saline-treated hemispheres of cocaine-experienced

Figure 4 Pre-synaptic effects of cocaine self-administration and D1 agonist pre-treatment in early abstinence involve modulation of CB1 receptor
signaling. (a) Bar histograms illustrate an enhanced effect of AM251 on mEPSC frequency in neurons from cocaine-experienced animals at 1–2 days of
abstinence from cocaine self-administration. This effect is suppressed following incubation with SKF38393. (b) Same as (a), but at 3–4 weeks of abstinence.
In all, 8–11 cells from 4 to 5 animals were recorded in each group. **t(18)¼ 4.33, po0.01 vs not treated yoke; ##t(17)¼ 4.24, po0.01 vs not treated
cocaine; Student’s t-tests.
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animals (Figure 6). In cells from SKF38393-treated hemi-
spheres, both the mEPSC frequency and mEPSCs amplitude
deficits were rescued, similar to the rescue observed after
in vitro exposure to SKF38393 (Figure 6, compare with
Figure 1). The mEPSC decay times, however, were not
different between treatment groups (yoke t¼ 4.4±0.3ms,
cocaine t¼ 4.8±0.3ms, yoke SKF t¼ 4.2±0.2ms, cocaine
SKF t¼ 4.8±0.2ms). Thus, we confirm a lasting modula-
tion of excitatory synapses by D1DRs in an intact accumbal
circuit. Stimulation of D1DRs is known to elicit a variety of

cocaine-associated behaviors when administered into the
nucleus accumbens (reviewed in Schmidt and Pierce, 2010)
and these findings shed light onto possible underlying
mechanisms.

DISCUSSION

In this study, we determined the persistent effects of cocaine
self-administration and D1DR activation on the efficacy

Figure 5 SKF38393 pre-exposure reverses the cocaine-associated changes in AMPA/NMDA ratio. (a, c) Representative average current traces show
AMPA (thin traces) and compound, AMPA+NMDA (thick traces) receptor-mediated eEPSCs from yoked saline and cocaine-experienced groups with and
without SKF38393 pre-treatment in early (a) and late (c) abstinence. Each trace is an average of 50 individual eEPSCs. For display purposes, AMPA receptor-
mediated currents are shown as outward-going. Arrows indicate time-points for measurement of the NMDA component (see Subjects and methods). (b, d)
Mean AMPA/NMDA ratios in early (b) and late (d) abstinence from cocaine self-administration. In all, 11–15 cells from 4 to 5 animals were recorded in each
of the groups. *t(21)¼ 2.61, po0.05 vs yoke; #t(24)¼ 2.71, po0.05 vs not treated cocaine; Student’s t-test.

Figure 6 In vivo microinjection of SKF38393 rescues mEPSC amplitude and frequency deficits. (a) Sample mEPSC traces from NAc shell MSNs of yoked
saline and cocaine animals following an injection of saline (0.5 ml) into the NAc shell of the left hemisphere and SKF38393 (1mg/0.5ml) into the NAc shell of
the right hemisphere. Microinjections and recordings were performed 24 h following the last self-administration session (see Subjects and methods for
details). (b) Decreased mEPSC amplitudes in saline-treated hemispheres are restored to control levels in the SKF38393-treated hemispheres. **t(19)¼ 2.91,
po0.01; #t(20)¼ 2.65, po0.05, Student’s t-tests; C, SKF38393 microinjection rescues the reduction in mEPSC frequency. **t(19)¼ 4.31, po0.001;
#t(20)¼ 2.67, po0.05; Student’s t-tests; n¼ 10–11 cells from four animals.
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of AMPA receptor-mediated synaptic transmission in the
nucleus accumbens shell following brief (1–2 days) and
extended (3–4 weeks) abstinence. Our results indicate that
incubation with the D1DR agonist, SKF38393, had no app-
reciable influence on most measures of excitatory synaptic
strength in the shell of control rats. In contrast, in cells from
cocaine-experienced animals both the early abstinence sup-
pression as well as the late abstinence potentiation of AMPA
receptor-mediated signaling were normalized by SKF38393
pre-treatment. Such reversal of cocaine-associated synaptic
plasticity occurred in measures implicating pre-synaptic
(mEPSC frequency, PPRs) and post-synaptic (mEPSC ampli-
tude, AMPA/NMDA ratio) mechanisms (Table 2). Moreover,
the effects of SKF38393 were observed after drug incubation
ceased and also after microinjection of this drug in vivo,
suggesting recruitment of signaling and effector mechanisms
that persist in the absence of pharmacological stimulation.
These results describe a range of synaptic adaptations
triggered by cocaine self-administration and identify a
unique role for D1DRs in gating the maintenance of these
neuroadaptations.

D1DR Stimulation Reverses Time-Dependent Post-
Synaptic Modifications in Cocaine-Experienced Animals

During early abstinence, the basal amplitude of mEPSCs
was decreased in accumbens shell MSNs from rats that self-
administered cocaine. This effect may indicate a decrease in
the expression of post-synaptic AMPA receptors (Conrad
et al, 2008; Schumann and Yaka, 2009; Ferrario et al, 2010),
which should decrease the AMPA/NMDA ratio. In fact, with
non-contingent cocaine administration some studies report
decreased AMPA/NMDA ratio in the accumbens shell at
a similar abstinence time period (Kourrich et al, 2007;
Mameli et al, 2009) although others observe no changes
(Kim et al, 2011). Despite a reduction in mEPSC amplitude,
we did not observe basal changes in AMPA/NMDA ratio
during early abstinence. This may be explained if a decrease
in NMDA receptor-mediated currents occurred in parallel
with a decrease in AMPA receptor-mediated currents. We
observed a small reduction in the basal amplitude of NMDA
receptor eEPSCs in cocaine-experienced animals during
early abstinence (at normalized stimulus intensity; yoke:
56.3±9.2 pA; cocaine¼ 45.8±8.4 pA). Nevertheless, it must
be noted that the amplitude of AMPA mEPSCs does not
reliably predict a change in the AMPA/NMDA ratio because
the populations of post-synaptic AMPA receptors activated
during miniature and evoked events differ (Thomas et al,
2001; Sara et al, 2011).

In contrast to early abstinence, cocaine self-administra-
tion followed by 3–4 weeks of forced abstinence increased
basal AMPA mEPSC amplitude and increased the AMPA/
NMDA ratio. These results are consistent with electro-
physiological studies following experimenter-administered
cocaine (Thomas et al, 2001; Kourrich et al, 2007) and
reports of increased surface expression of AMPA receptors
following an extended period of abstinence (Boudreau and
Wolf, 2005; Boudreau et al, 2007, 2009; Ghasemzadeh et al,
2009; Schumann and Yaka, 2009; Ferrario et al, 2010). The
decrease in mEPSC amplitude during early abstinence as
well as the increases in mEPSC amplitude and the AMPA/
NMDA ratio in late abstinence were normalized following
pre-treatment of slices from cocaine-experienced animals
with SKF38393. Thus, cocaine-associated excitatory synap-
tic plasticity in the accumbens shell can be dynamically
regulated by D1DR signaling. Adaptive changes in D1DR
expression and signaling observed throughout abstinence
(Anderson and Pierce, 2005) are likely to contribute to such
dynamic regulation.

Reversal of Pre-Synaptic Deficits by D1DR Stimulation

During the early abstinence from cocaine self-admini-
stration, we observed a decrease in mEPSC frequency
accompanied by an increase in the PPR, implicating a pre-
synaptic site of action. These results highlight a difference
with the effects of non-contingent cocaine administration
that have been reported to increase the mEPSC frequency
in two recent reports (Dobi et al, 2011; Kim et al, 2011).
Interestingly, Kim et al (2011) found this increase to be
specific to D1-expressing MSNs, with a significant
decrease in mEPSC frequencies observed in D2-expres-
sing MSNs.
Although D1DRs are predominantly expressed post-

synaptically (Levey et al, 1993; Hersch et al, 1995; Yung
et al, 1995; Caille et al, 1996), up to a quarter of D1DRs in
the nucleus accumbens are pre-synaptic heteroreceptors
(Dumartin et al, 2007). Electrophysiological evidence indicates
that acute stimulation of D1DRs reduces the frequency of
mEPSCs and increases the PPR (Pennartz et al, 1992; Nicola
et al, 1996). We found that following SKF38393 pre-exposure,
slices from cocaine-experienced animals during early absti-
nence showed a prominent increase in mEPSC frequency
that was accompanied by a decrease in the PPR. These
observations suggest that SKF38393 increased the prob-
ability of glutamate release in cocaine-experienced animals
following brief, but not longer abstinence.

Table 2 Exposure to SKF38393 Reverses Cocaine-Induced Synaptic Adaptations

mEPSC amplitude mEPSC frequency Paired-pulse ratio AMPA/NMDA ratio mEPSC frequency in AM251

Early Late Early Late Early Late Early Late Early Late

Cocaine SA kk m kk 2 m 2 2 m mm 2

Cocaine SA+ SKF38393 m k mm 2 k 2 2 k kk 2

In the cocaine SA row, the arrows indicate significant (one arrow, po0.05; two arrows, po0.01) changes relative to saline yokes at the corresponding withdrawal
time-point. In the cocaine SA+SKF38393 row, the arrows indicate significant changes relative to the cocaine SA animals at the corresponding time-point.
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A wealth of clinical evidence suggests that interaction
between the dopamine and endocannabinoid systems is
involved in the pathophysiology of disorders involving the
limbic system (Parolaro and Rubino, 2008; Fernández-Ruiz
et al, 2010; Kuepper et al, 2010; Pisani et al, 2011). Deletion
of CB1 receptors reduces reinforcing properties of cocaine
as does administration of CB1 receptor antagonists (Xi et al,
2006; Li et al, 2009; Ramiro-Fuentes et al, 2010). The
molecular mechanisms underlying these effects are likely
to involve glutamate receptors although the precise details
of interaction between the dopamine, glutamate, and
cannabinoid signals remain to be worked out. We identify
cannabinoid receptor activation as a contributor to the
pre-synaptic changes observed in slices from cocaine-
experienced animals. Application of the CB1 antagonist,
AM251, significantly increased mEPSC frequency in the
shell of cocaine-experienced relative to saline control animals
in the early abstinence. This difference was abolished following
treatment with SKF38393, in line with the reported ability of
D1DR agonists to decrease endogenous cannabinoid levels
(Patel et al, 2003). Following extended cocaine abstinence,
AM251 had similar effects both with and without the
SKF38393 incubation, consistent with the lack of differences
in mEPSC frequency and the PPR at this time point.

Summary and Conclusions

Sensitivity of AMPA receptor-mediated synaptic plasticity
to cocaine history including sensitivity to duration of
abstinence has been reported by a number of groups
(reviewed in Wolf and Ferrario, 2010). Among the most
robust findings is the enhancement of AMPA signaling
following extended abstinence from non-contingent co-
caine. To our knowledge, our results provide the first
confirmation that this enhancement persists following
extended abstinence from cocaine self-administration and
that this enhancement is characterized by post-synaptic
neuroadaptations. Notably, in early abstinence from
cocaine self-administration we identified a broader pattern
of synaptic changes attributable to both pre- and post-
synaptic mechanisms.
We found that administration of a D1DR agonist only

affected those measures of synaptic efficacy that were
altered by cocaine experience (ie, decreased mEPSCs
amplitude, frequency, PPR, at 1–2 days and increased
mEPSCs amplitudes and AMPA/NMDA ratios at 3–4 weeks
of abstinence). It is thus tempting to speculate that
synapses modified by cocaine self-administration possess
a unique sensitivity to D1DR stimulation. Moreover,
D1DRs appear to gate the ability to adjust such modifica-
tions. Neuroadaptations associated with cocaine experi-
ence may underlie an impaired ability to assign
motivational salience to novel rewards unrelated to the
drug, similar to impaired learning after saturation of
hippocampal synapses by tetanic stimulation (McNaugh-
ton et al, 1986; Moser et al, 1998). Normalization of
excitatory synaptic efficacy following D1DR stimulation
suggests that synapses altered by cocaine self-administra-
tion remain plastic and maintain the potential to recover
normal function, which has implications for the treatment
of cocaine craving and addiction (Haney and Spealman,
2008; Self and Nestler, 1995).
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