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Recent evidence suggests that schizophrenia may result from alterations of integration of signaling mediated by multiple neurotransmitter

systems. Abnormalities of associated intracellular signaling pathways may contribute to the pathophysiology of schizophrenia. Proteins

and phospho-proteins comprising mitogen activated protein kinase (MAPK) and 30–50-cyclic adenosine monophosphate (cAMP)-

associated signaling pathways may be abnormally expressed in the anterior cingulate (ACC) and dorsolateral prefrontal cortex (DLPFC)

in schizophrenia. Using western blot analysis we examined proteins of the MAPK- and cAMP-associated pathways in these two brain

regions. Postmortem samples were used from a well-characterized collection of elderly patients with schizophrenia (ACC¼ 36,

DLPFC¼ 35) and a comparison (ACC¼ 33, DLPFC¼ 31) group. Near-infrared intensity of IR-dye labeled secondary antisera bound to

targeted proteins of the MAPK- and cAMP-associated signaling pathways was measured using LiCor Odyssey imaging system. We found

decreased expression of Rap2, JNK1, JNK2, PSD-95, and decreased phosphorylation of JNK1/2 at T183/Y185 and PSD-95 at S295 in the

ACC in schizophrenia. In the DLPFC, we found increased expression of Rack1, Fyn, Cdk5, and increased phosphorylation of PSD-95 at

S295 and NR2B at Y1336. MAPK- and cAMP-associated molecules constitute ubiquitous intracellular signaling pathways that integrate

extracellular stimuli, modify receptor expression and function, and regulate cell survival and neuroplasticity. These data suggest abnormal

activity of the MAPK- and cAMP-associated pathways in frontal cortical areas in schizophrenia. These alterations may underlie the

hypothesized hypoglutamatergic function in this illness. Together with previous findings, these data suggest that abnormalities of intra-

cellular signaling pathways may contribute to the pathophysiology of schizophrenia.
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INTRODUCTION

Schizophrenia is a complex psychiatric illness associated
with dysregulation of multiple brain neurotransmitter
systems (Fatemi and Folsom, 2009; MacDonald and Schulz,
2009; Stilo and Murray, 2010). Although alterations of these
neurotransmitter systems, including dopamine, glutamate,
GABA, serotonin, and acetylcholine, have led to hypotheses
centered on neurotransmitter receptor expression and func-
tion as key elements of the pathophysiology of this illness,
integration of signaling mediated by multiple neurotrans-
mitter receptors is a critical step in determining the

functional consequences of receptor activation (Kyosseva,
2004b; Lang et al, 2007; Laruelle et al, 2003; Lewis and
Hashimoto, 2007; Lewis and Moghaddam, 2006; Lowes et al,
2002; Ross et al, 2006; Svenningsson et al, 2004; Sweatt,
2001, 2004; Volk et al, 2010). Accordingly, alterations of
signal integration pathways may contribute to the patho-
physiology of schizophrenia.

Many neurotransmitter receptors are functionally coupled
to protein kinases and/or G-proteins, which modulate
cascades of molecules that in turn regulate critical cellular
functions (Gardoni et al, 2006; Hosokawa et al, 2006;
Krapivinsky et al, 2004; Mauceri et al, 2007; Santucci and
Raghavachari, 2008; Song et al, 2004). For example,
the mitogen activated protein kinase (MAPK)-associ-
ated pathway activates transcription factors related to
learning, memory, cell proliferation, and apoptosis. This
pathway integrates extracellular stimuli through the phos-
phorylation of c-Jun N-terminal kinase (JNK), extracellular
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signal-regulated kinase (ERK), p38, and other kinases
(Kyosseva, 2004b; Kyosseva et al, 1999; Sweatt, 2001). Simi-
lar to the MAPK-associated pathway, 30–50-cyclic adenosine
monophosphate (cAMP)-associated pathways are also
coupled to activation of neurotransmitter receptors, and
modulate cellular functions through the activation of
protein kinase A (PKA), exchange protein activated by
cAMP (EPAC), and other molecules (Borland et al, 2009;
Cheng et al, 2008; Hochbaum et al, 2008; Ma et al, 2009;
Roberson et al, 1999; Sands and Palmer, 2008). Alterations
of the MAPK- and cAMP- associated signaling pathways
may impact intracellular Ca + + levels, neurotransmitter
receptors, transcription factors, crosstalk between signaling
pathways, and other biological functions critical for neuro-
plasticity (Gelinas et al, 2008; Reichenberg, 2010; Sands and
Palmer, 2008).

In this study, we have examined the hypothesis that
intracellular signaling molecules are altered in the frontal
cortex in schizophrenia. Using western blot analysis, we
measured expression of proteins of the MAPK- and cAMP-
associated signaling pathways in the anterior cingulate (ACC)
and dorsolateral prefrontal cortices (DLPFC) in samples from
a well-characterized collection of postmortem brains from
subjects with schizophrenia and a comparison group.

MATERIALS AND METHODS

Tissue Acquisition and Preparation

Samples from the ACC and DLPFC were obtained from the
Mount Sinai Medical Center brain collection. Patients were
diagnosed with schizophrenia using DSM-III-R criteria
(Bauer et al, 2008; Davidson et al, 1995; Harvey et al, 1992;
Powchik et al, 1998). Each patient had a documented history
of psychotic symptoms before the age of 40, and at least
10 years of hospitalization with a diagnosis of schizophrenia
made by two clinicians. Patients were recruited prospectively
and underwent extensive antemortem diagnostic and clinical
assessment. Exclusions for this study included a history of
substance abuse, death by suicide, or coma for more than 6 h
before death. Neuropathological examination revealed no
neurodegenerative diseases including Alzheimer’s disease
in any subjects. Next of kin consent was obtained for each
patient (Bauer et al, 2008, 2009, 2010; Funk et al, 2009;
Hammond et al, 2010; Oni-Orisan et al, 2008). Schizophrenia
and comparison groups were matched for sex, age, pH,
and PMI (Table 1). Comparison subjects were selected using
a formal blinded medical chart review instrument with
no history of psychiatric or neurological disease. The assess-
ment included the CERAD battery, the Clinical Dementia
Rating Scale, and the Positive and Negative Syndrome Scale
(Powchik et al, 1998). Comparison subjects were also
evaluated for dementia and neurodegenerative diseases as
well as any history of drug and alcohol abuse (Oni-Orisan
et al, 2008). Detailed tables of comparison and schizophrenia
subjects (Supplementary Tables 1 and 2) are provided as a
comprehensive list of specific demographics for each group.

Samples were obtained at autopsy from the left hemi-
sphere. The ACC was dissected at the level of the genu of the
corpus callosum, the DLPFC was dissected from Brodmann
areas 9 and 46. Gray matter was dissected from white, and
then samples were portioned into 1 cm3 pieces and stored at

�801C until further processing. Tissue was pulverized into
a powder using a mortar and pestle with a small amount
of liquid nitrogen and stored at �801C. Samples were
reconstituted and homogenized in 5 mM Tris-HCl pH 7.4,
0.32 M sucrose and a protease inhibitor tablet (Complete
Mini, Roche Diagnostics, Mannheim, Germany) using a
Power Gen 125 homogenizer (Thermo Fisher Scientific,
Rockford, IL) at speed 5 for 60 s. The homogenates were
assayed for protein concentration using a BCA protein assay
kit (Thermo Scientific), and stored at �801C.

Western Blot Analysis

Samples for western blot analyses were diluted with ultra-
pure (Milli-Q A10, Millipore) water and reducing buffer
(6� solution: 4.5% sodium dodecyl sulfate (SDS), 15%
b-mercaptoethanol, 0.018% bromophenol blue, and 36%
glycerol in 170 mM Tris-HCl pH 6.8) to a concentration of
20mg of protein per 12ml and heated at 701C for 10 min.
Samples were then processed in duplicate by SDS-PAGE
using Invitrogen (Carlsbad, CA) 4–12% gradient gels and
transferred to PVDF membranes by BioRad semi-dry
transblotters (Hercules, CA). The membranes were blocked
with LiCor blocking buffer (Lincoln, NE) for 1 h at room
temperature, then probed with primary antisera (Supple-
mentary Table 3) diluted in 0.1% Tween LiCor blocking
buffer. The membranes were washed twice for 10 min each in
0.1% Tween phosphate buffer solution (PBST) then probed
with goat anti-mouse or goat anti-rabbit IR-Dye 670 or
800cw labeled secondary antisera in 0.1% Tween, 0.01% SDS
LiCor blocking buffer for 1 h at room temperature. Washes
were repeated after secondary labeling, washing twice for
10 min in PBST, then placed in water.

Membranes were imaged using a LiCor Odyssey scanner.
Boxes were manually placed around each band of interest,
which returned near-infrared fluorescent values of raw
intensity with intra-lane background subtracted using
Odyssey 3.0 analytical software (LiCor, Lincoln, NE).

Data Analysis

The near-infrared fluorescence value for each protein of
interest was normalized to the in-lane value of either valosin
containing protein (VCP) or b-tubulin, and this normalized

Table 1 Subject Characteristics

Category Comparison group Schizophrenia

Region ACC DLPFC ACC DLPFC

N 33 31 36 35

Sex 14 m/19 f 12 m/19 f 24 m/12 f 23 m/12 f

Tissue pH 6.4±0.2 6.4±0.2 6.4±0.3 6.4±0.3

PMI (h) 8.3±6.8 8.1±6.9 13.2±8.0 12.5±6.6

Age (years) 78±14 78±14 74±11 74±12

On/off Rx 0/33 0/31 25/11 24/11

Abbreviations: Off Rx, number of patients neuroleptic free at least 6 weeks
before death; On Rx, number of patients taking antipsychotic medication at time
of death; PMI, postmortem interval.
Values presented as means±standard deviation.
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ratio from duplicate lanes was averaged. b-tubulin was used
for the normalization of PSD-95, pS295 PSD-95, pATF-2,
and pc-Jun. VCP was used to normalize all other target
proteins, to avoid any potential interference in signal
because of the molecular weight of b-tubulin (55 kDa) and
proteins of interest (Bauer et al, 2009). We found no
changes in raw intensity values for either VCP or b-tubulin
between the schizophrenia and comparison groups, con-
sistent with previous reports (Bauer et al, 2009; Funk et al,
2009; Hammond et al, 2010).

Data were analyzed using Statistica (Statsoft, Tulsa,
OK). All dependent measures were determined to have a
Gaussian distribution. Correlation analyses were performed
to determine associations between the dependent variables
and pH, age, and PMI. Sex and antipsychotic medication
status were used as grouping variables for secondary
analyses. Dependent measures were considered significant
when po0.05. One way analysis of covariance (ANCOVA)
was used to analyze the data when significant correlations
with potential covariates were found, otherwise analysis
of variance was used. Post-hoc power analysis of our
significant findings (with a¼ 0.05) in the ACC revealed an
average power (1 b) of 0.67, with a range of 0.51–0.77. The
average power of our significant findings in the DLPFC
revealed an average power of 0.7, with a range of 0.62–0.74.

RESULTS

MAPK-Associated Signaling Pathway

ERK1/2, JNK1/2, and p38 are central MAPK signaling
proteins (Bogoyevitch et al, 2010; Kyosseva, 2004b; Zarubin
and Han, 2005). We found decreased expression in the ACC
in schizophrenia of JNK1 (F(1,62)¼ 4.1, p¼ 0.047) and JNK2
(F(1,62)¼ 7.35, p¼ 0.009). We found no changes in ERK1/2
or p38 in either cortical region (Table 2). We also measured
the phosphorylation states of these proteins, and found a
decrease in the dual phosphorylation state of JNK1/2 at T183/
Y185 (F(1,60)¼ 7.46, p¼ 0.008) in the ACC in schizophrenia,
but no change in the DLPFC (Table 2). We did not find
changes in phosphorylated ERK1/2 in either region (Table 2).
We were unable to detect and quantify phosphorylated p38.

Downstream Targets of MAPKs

Dually phosphorylated JNK is a proxy for JNK activity
(Davis, 1999; Ip and Davis, 1998; Minden et al, 1994). Our
finding of decreased phosphorylation of JNK1/2 in the ACC
led us to measure the phosphorylation state of three
downstream targets of JNK: c-Jun, ATF-2, and PSD-95.
We found no changes in phosphorylated forms of either
c-Jun or ATF-2 in the ACC (Table 2). However, phosphory-
lation of PSD-95 at S295 was decreased in the ACC
(F(1,64)¼ 6.8, p¼ 0.01) and increased in the DLPFC
(F(1,48)¼ 7.09, p¼ 0.01). We also found decreased levels
of total PSD-95 protein expression in the ACC (Table 2).

cAMP- Associated Signaling Pathway

EPAC1 and EPAC2 are activated by cAMP and are guanine
exchange factors of Rap (Borland et al, 2009; Cheng
et al, 2008). Therefore, we examined EPAC1 and EPAC2

expression in the ACC and found no changes in schizo-
phrenia (Table 2). Rap2 expression was decreased (F(1,61)¼
4.64, p¼ 0.035) in the ACC in schizophrenia, with no change
in the DLPFC (Table 2). There was no change in Rap1 in
schizophrenia in either region (Table 2). We also assayed
the catalytic forms of PKA, which are activated by cAMP.
We found no change in the catalytic forms of PKA in
schizophrenia (Table 2).

Signaling Downstream of PKA Activation

We next examined the expression of two downstream
targets of PKA activation, Rack1 and Fyn, which converge

Table 2 Statistical Analyses of Dependent Variables

Protein F d.f. p

ACC

JNK1 4.10 1,62 0.05

JNK2 7.35 1,62 0.01

ERK1 0.38 1,58 0.54

ERK2 0.14 1,56 0.71

p38 1.16 1,67 0.28

pT183/Y185 JNK1/2 7.46 1,60 0.01

pT202/Y204 ERK1/2 1.77 1,59 0.19

Rap1 0.48 1,60 0.49

Rap2 4.64 1,61 0.04

EPAC1 0.01 1,67 0.95

EPAC2 0.48 1,46 0.49

PSD-95 6.10 1,64 0.02

pS295 PSD-95 6.80 1,64 0.01

pATF-2 2.17 1,50 0.15

pc-Jun 0.01 1,61 0.98

Cdk5 0.41 1,65 0.52

Rack1 0.80 1,60 0.37

Rac1 0.85 1,67 0.36

Fyn 0.48 1,65 0.49

DLPFC

ERK1/2 0.03 1,54 0.87

p38 0.39 1,52 0.53

pT183/Y185 JNK1/2 1.39 1,54 0.24

pT202/Y204 ERK1/2 1.15 1,52 0.29

Rap1 0.53 1,60 0.47

Rap2 0.24 1,54 0.63

pS295 PSD-95 7.09 1,48 0.01

pY1336 NR2B 4.50 1,57 0.04

Cdk5 6.70 1,47 0.01

Rack1 5.93 1,53 0.02

Rac1 0.71 1,53 0.40

Fyn 5.04 1,55 0.03

PKA 0.07 1,60 0.80

Bold lines indicate significant differences between patients with schizophrenia
and comparison subjects (a¼ 0.05). ANOVA was used for statistical analyses
except for pT202/Y204 ERK1/2, pY1336 NR2B, Rap1, and PKA of the DLPFC,
where ANCOVA was used.
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upon conserved intracellular signaling molecules mentioned
above (Thornton et al, 2004; Yaka et al, 2002). Rack1
(F(1,53)¼ 5.9, p¼ 0.018) and Fyn (F(1,54)¼ 4.1, p¼ 0.049)
were increased in the DLPFC in schizophrenia, but not in
the ACC (Table 2). NR2 subunits are phosphorylated by Fyn
and other Src family kinases (Dunah et al, 2004; Goebel-
Goody et al, 2009; Yaka et al, 2002). We therefore examined
the phosphorylation of NR2B at Y1336 (F(1,57)¼ 4.5,
p¼ 0.038), which was increased in the DLPFC in schizo-
phrenia (Table 2). Additional protein-protein interactions
can modulate PSD-95–NR2B association and localization
(Hawasli et al, 2007; Kim et al, 2007; Morabito et al, 2004;
Xie et al, 2007a, b; Zhang et al, 2008). Accordingly, we
determined the expression of two candidate proteins that
modulate such associations, Rac1 and Cdk5. We found
increased Cdk5 in the DLPFC (F(1,47)¼ 6.7, p¼ 0.013), but
not in the ACC. There was no change in Rac1 in either
region (Table 2).

Secondary Analyses

Sex and antipsychotic medication status were used as
grouping variables for secondary analyses. This cohort
contains both male and female subjects, and in an effort to
control for sex differences we performed an ANOVA with
sex as the grouping variable when analyzing our dependent
measures. No significant changes were detected between
male and female subjects in either comparison or schizo-
phrenia groups (data not shown). Additionally, we analyzed
the effect of antipsychotic medication on each of our
dependent measures by using medication status (ON vs OFF

antipsychotics 46 weeks before death) as a grouping
variable. Post-hoc analyses showed no significant changes
because of the medication status for any dependent measure
(data not shown).

DISCUSSION

In this study, we examined the expression of a series of
proteins in the MAPK- and cAMP-associated signaling
pathways in the ACC and DLPFC in schizophrenia.
Decreased expression of Rap2, JNK1, JNK2, pT183/Y185
JNK1/2, and pS295 PSD-95 was found in ACC (Figure 1).
These proteins comprise a MAPK-associated signaling
pathway that integrates information from many neuro-
transmitter receptors implicated in schizophrenia (Figure 3).
On the other hand, in the DLPFC we found increased
expression of Cdk5, Rack1, Fyn, pS295 PSD-95, and pY1336
NR2B (Figure 2). These cAMP-associated signaling proteins
and targets integrate information from neurotransmitter
receptors (Figure 3). The proteins in these two pathways are
critical for the integration of neurotransmission from
diverse systems often implicated in the pathophysiology of
schizophrenia. These findings may be representative of
widespread signaling deficits, which universally affect all
CNS cell types and regions.

Signal integration from multiple neurotransmitter recep-
tors is essential for the modulation of learning, memory,
and complex behavior (Svenningsson et al, 2004; Sweatt,
2001, 2004). Perhaps the most well-characterized central
regulatory molecule known to influence these processes
is dopamine-and-cAMP-regulated-neuronal-phosphoprotein

Figure 1 Intracellular signaling abnormalities of the ACC in schizophrenia. Decreased JNK1 and JNK2 expression were found in schizophrenia (a, b). Dual
phosphorylation of JNK1/2 at T183/Y185 (c), Rap2 expression (d), and phosphorylation of PSD-95 at S295 (e) were all decreased in schizophrenia.
Representative immunoblots (f). Data are means±SEM. *po0.05.
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(DARPP-32), which integrates signaling of glutamate,
dopamine, serotonin, GABA, and other neurotransmitter
families (Svenningsson et al, 2004). DARPP-32 knockout
mice exhibit abnormalities of neurotransmitter receptor
conductance and phosphorylation, synaptic plasticity, and
immediate early gene and transcription factor activation
(Svenningsson et al, 2004). These findings have been
interpreted to suggest that integration of receptor signaling
is critical for learning, memory, and executive functioning,
which are often impaired in psychiatric illness. Although
DARPP-32 is particularly well studied, there are many
other kinases and effector molecules that finely tune input,
output, and crosstalk between multiple neurotransmitter
systems. In this study, we found region-specific changes
in multiple intracellular pathways that integrate signaling of
neurotransmitter systems previously reported to be dysre-
gulated in schizophrenia, supporting a hypothesis that
neuronal signal integration may be altered in this illness
(Figure 3).

A growing literature implicates intracellular signaling
abnormalities in schizophrenia (Kyosseva et al, 1999).
Previous studies of the MAPK-associated pathway found
changes in several constituent proteins. For example, both
protein and transcript levels of ERK2, c-fos, and c-Jun were
increased in the thalamus, whereas c-Jun protein and Elk-1,
CREB, and ATF-2 protein levels and transcripts were noted
to be increased in the cerebellar vermis (Kyosseva, 2004a;
Kyosseva et al, 2000; Todorova et al, 2003). Other proteins
of the MAPK pathway including MEK1, MEK2, RSK1, B-Raf,
and CREB were decreased in the frontal cortex (Yuan et al,
2010). Although these earlier data support a hypothesis that
MAPK-associated signaling is altered in schizophrenia,

functional phosphorylation states and downstream phos-
phorylation targets were not assessed in these studies. In
our study, we found a decrease in the dual phosphorylation
state of JNK in the ACC in schizophrenia, which is a well-
characterized proxy for JNK activity (Davis, 1999; Ip and
Davis, 1998; Minden et al, 1994), suggesting that JNK
activity is decreased in these subjects (Figure 1). We also
evaluated several targets of JNK-mediated phosphorylation,
to assess the potential functional relevance of decreased
JNK activation. We found decreased pS295 PSD-95 in the
ACC (Figure 1), consistent with decreased JNK activity
(Figure 3). Decreased phosphorylation at S295 of PSD-95
suggests less PSD-95 targeted to synaptic sites (Kim et al,
2007), indicating impairment of glutamate neurotransmis-
sion in schizophrenia.

Abnormalities have been reported in cAMP-associated
pathways in schizophrenia as well. For example, decreased
DARPP-32 was detected in the frontal cortex and thalamus
(Albert et al, 2002; Feldcamp et al, 2008; Ishikawa et al,
2007; Torres et al, 2009; Zhan et al, 2011), whereas trans-
cripts for calcyon and spinophilin, mediators of dopami-
nergic signal integration, were increased in the thalamus in
schizophrenia (Baracskay et al, 2006; Clinton et al, 2005).
Additionally, phosphorylation of the N-methyl-D-aspartic
acid (NMDA) receptor type 1 subunit at S897, a target of
PKA, is decreased in the frontal cortex, suggesting fewer
NMDA receptors at the synapse (Emamian et al, 2004;
Tingley et al, 1997).

Increasing evidence implicates NMDA receptor dysregu-
lation in schizophrenia, initially based on clinical evidence
that non-competitive antagonists of N-methyl-D-aspartic
acid receptors can be psychomimetic (Allen and Young,

Figure 2 Intracellular signaling abnormalities of the DLPFC in schizophrenia. Increased expression of Rack1 and Fyn (a, c), Cdk5 (b), and phosphorylation
of PSD-95 at serine 295 and NR2B at tyrosine 1336 (d, e) were seen in schizophrenia. Representative immunoblots (f). Data are means±SEM. *po0.05.
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1978; Kristiansen et al, 2007; Lahti et al, 1995a, b, 2001; Luby
et al, 1959; Meador-Woodruff and Healy, 2000; Svennings-
son et al, 2003). Our present data suggest dysregulated
localization and function of NMDA receptors. For example,
increased phosphorylation of Y1336 NR2B, which targets
NMDARs to extrasynaptic sites, suggests abnormal localiza-
tion of NMDARs in the DLPFC (Figure 2) (Goebel-Goody
et al, 2009; Zhu et al, 2005). This is consistent with the
finding of decreased phospho-NR1, suggesting decreased
NMDA receptors or altered subunit stoichiometry at
synaptic sites (Emamian et al, 2004). Increased phosphor-
ylation of NR2B at Y1336 may also confer abnormalities of
LTP induction (Gardoni et al, 2009; Goebel-Goody et al,
2009).

Synaptic vs extrasynaptic location of NMDARs critically
alters receptor function and signaling pathway activation
(Groc et al, 2009; Hardingham and Bading, 2010; Hard-
ingham et al, 2002; Ivanov et al, 2006; Lau and Zukin, 2007).
Extrasynaptic NR2B-containing NMDARs regulate NR2A
function, potentially altering synapse development and
plasticity (Kollen et al, 2008; Zhu et al, 2005). Consistent
with abnormal synaptic NMDAR composition and the
potential impact on plasticity, subunit specific transcript
studies show decreased NR2D expression in multiple
regions in schizophrenia (Harney et al, 2008). Alterations

in proteins that modulate NR2–PSD-95 interactions may
also impact synaptic structure and NMDAR function. For
example, Rack1 is dissociated from the C-termini of NR2
subunits via activated PKA, permitting phosphorylation by
Fyn and other Srk family kinases in a PSD-95-dependent
manner (Cheng et al, 2008; Thornton et al, 2004; Yaka et al,
2002). Cdk5 can modulate Reelin and PSD-95/Fyn inter-
actions (Beffert et al, 2004; Hawasli et al, 2007; Morabito
et al, 2004; Ohshima et al, 2007; Xie et al, 2007a; Zhang et al,
2008). Thus, increased expression of Rack1, Cdk5, and Fyn
suggests altered modulation of NMDAR–PSD-95 inter-
actions at synaptic sites (Figure 2). The net effect of altered
NMDAR–PSD-95 interactions may be decreased neuro-
transmission and signal integration at excitatory synapses
in the DLPFC, functionally consistent with the result of
changes found in the ACC (Figure 3).

In addition to NMDA abnormalities in schizophrenia, the
AMPA receptor has also been implicated in the pathophy-
siology of this disorder (Dracheva et al, 2005; Hammond
et al, 2010; Meador-Woodruff et al, 2001; O’Connor et al,
2007). Previously, we reported increased expression of the
AMPAR associated proteins SAP97 and GRIP1 in the brain,
as well as an increase in GluR1 AMPAR protein subunit
expression in endosomes in the DLPFC (Hammond et al,
2010). Increased phosphorylation of PSD-95 at S295 reduces

Figure 3 Dysregulation of convergent intracellular signaling pathways in frontal cortical regions in schizophrenia. Significant alterations found in the ACC
and DLPFC are bolded and underlined or bolded and boxed, respectively. Downstream pathways of neurotransmitter systems known to be disturbed in
schizophrenia converge upon common intracellular signaling pathways. Our data reflect abnormal protein expression and phosphorylation of key intracellular
signaling molecules in both cortical regions. *A phosphorylated state of PSD-95 (pS295).

MAPK- and cAMP-associated signaling pathways in FCA
AJ Funk et al

901

Neuropsychopharmacology



AMPAR internalization from the synapse and results in
inhibition of LTD (Kim et al, 2007). Thus, increased
phosphorylation of PSD-95 (Figure 2), in combination with
increased SAP97 and GRIP1, suggests accelerated forward
trafficking of AMPA receptors to synaptic sites. In the ACC,
we found decreased phosphorylation of PSD-95 at S295
(Figure 1). Serine 295 is a target of JNK, phosphorylation
of which induces localization of PSD-95 to synaptic sites
(Kim et al, 2007). Thus, our data suggest less synaptically-
localized PSD-95, which may induce AMPAR internalization
and induction of LTD in the ACC (Kim et al, 2007).
Additionally, Rap2, a member of the Ras family of GTPases,
indirectly activates JNK (Figure 3), and Rap2-JNK inter-
actions traffic AMPA receptors away from the synapse
during LTD, or bidirectionally in an activity dependent
manner (Hussain et al, 2010; Thomas et al, 2008; Zhu et al,
2005). Interestingly, Rap2 function is modulated by
SynGAP, a Ras and Rap GTPase-activating-protein, by its
C2 domain (Funk et al, 2009; Pena et al, 2008). Recently
reported decreases in SynGAP (Funk et al, 2009), together
with decreased expression of Rap2, JNK1/2, and PSD-95,
suggests abnormal AMPAR localization and trafficking in
schizophrenia.

Genetic studies in schizophrenia also support a hypoth-
esis that intracellular signaling may be involved in the
pathophysiology of this illness. Genes implicated in
schizophrenia include candidates associated with neurode-
velopment (DISC-1, DTNBP1, and NOTCH4), synapse
structure and formation (NRG1, NRXN1, PDE4B, APOE,
and RELN), neurotransmitter synthesis and regulation
(COMT, DAOA, and PRODH), and receptor and intracel-
lular signaling (AKT1, DRD2, ERBB4, GABRB2, GRIN2B,
HTR2A, and RGS4) (Tiwari et al, 2010). Polymorphisms in
DLG4 (PSD-95) have recently been linked with schizo-
phrenia, further implicating synaptic structure, neurotrans-
mission, and intracellular signaling (Cheng et al, 2010).
Such genetic associations increasingly support the hypoth-
esis of dysregulated intracellular signaling pathways in
schizophrenia.

In this study, we found region-specific alterations of
proteins associated with the MAPK and cAMP intracellular
signaling pathways. Regional differences in molecular
abnormalities in schizophrenia are consistently reported
in the literature (Katsel et al, 2005a, b; Kristiansen et al,
2006, 2010; Oni-Orisan et al, 2008), and although the sets of
changes we found differed by cortical region, each set is
functionally similar, resulting in decreased signal integra-
tion in both regions. This differential expression pattern
may be inherent to the physiological circuits and inputs for
each region. For example, connectivity deficits between the
DLPFC and other neocortical structures have been well
documented, where abnormal DLPFC activation signifi-
cantly correlates with other cortical regions (Eisenberg and
Berman, 2010). Additionally, communication between the
ACC and DLPFC appears to be abnormal. ACC projections
to the supragranular layers of the DLPFC are implicated
because of their greater inhibition of the DLPFC (Eisenberg
and Berman, 2010). Thus, the inherent connectivity and
input of each region may be the mitigating factor behind the
differential findings.

The changes we found are of small to moderate effect
size, yet the consistent pattern of changes in sequential

proteins in each pathway suggests that these abnorma-
lities may be more physiologically relevant than the modest
effect sizes for each protein might otherwise suggest.
In fact, relatively small changes are perhaps not unexpec-
ted, as more substantial changes in expression of these
proteins are associated with oncogenic, apoptotic, and
excitotoxic events (Huang et al, 2009; Kim and Choi, 2010;
Soriano et al, 2008; von Engelhardt et al, 2007; Wagner and
Nebreda, 2009).

This study used well-characterized elderly subjects, and
extrapolation of these findings to younger patients should
be made with caution (Akbarian and Huang, 2006;
Davidson et al, 1995; Deep-Soboslay et al, 2011; Harvey
et al, 1992, 2010; Powchik et al, 1998). Additionally, we
could not analyze the potential impact of differential freezer
storage time among subjects in this cohort, as that data is
unavailable. Other potential limitations to this work include
the possibility that antipsychotic treatment can affect these
signaling molecules (Bjarnadottir et al, 2007; Leveque et al,
2000). Post-hoc analysis for medication status, however,
revealed no differences between subjects with schizophrenia
who had been free of antipsychotic medication for at least 6
weeks before death compared with subjects with schizo-
phrenia on medication at time of death, suggesting that
these changes are associated with the illness and not
because ofto the past treatment.

Although we have attempted to address a lifetime of
antipsychotic use, these observations do not discount the
possibility that medication may alter these signaling path-
ways. Indeed, animal studies have demonstrated that signal-
ing molecules are targets of modification with antipsychotic
treatment. Proteins downstream of cAMP- and MAPK-
associated pathways are changed after acute and chronic
antipsychotic treatment (Ahmed et al, 2008; Molteni et al,
2009). Additionally, the pharmacological activity of nicotine
has been shown to act via these same signaling pathways
(Mobascher and Winterer, 2008). As the majority of patients
with schizophrenia smoke cigarettes, nicotine may con-
tribute to changes in signaling pathways with respect to the
comparison group (Winterer, 2010).

The proteins that we have studied occupy a unique
position, linking myriad neurotransmitter systems that have
been implicated in the pathophysiology of schizophrenia.
Our data suggest convergent pathways common to the
many neurotransmitter receptors dysregulated in schizo-
phrenia are also disturbed in this illness. Convergence of
specific neurotransmitter systems onto dysregulated intra-
cellular signaling pathways may be a final common pathway
associated with the pathophysiology of schizophrenia.
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