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Previous studies using SAGE (the Study of Addiction: Genetics and Environment) and COGA (the Collaborative Study on the Genetics

of Alcoholism) genome-wide association study (GWAS) data sets reported several risk loci for alcohol dependence (AD), which have

not yet been well replicated independently or confirmed by functional studies. We combined these two data sets, now publicly available,

to increase the study power, in order to identify replicable, functional, and significant risk regions for AD. A total of 4116 subjects (1409

European-American (EA) cases with AD, 1518 EA controls, 681 African-American (AA) cases, and 508 AA controls) underwent

association analysis. An additional 443 subjects underwent expression quantitative trait locus (eQTL) analysis. Genome-wide association

analysis was performed in EAs to identify significant risk genes. All available markers in the genome-wide significant risk genes were tested

in AAs for associations with AD, and in six HapMap populations and two European samples for associations with gene expression levels.

We identified a unique genome-wide significant geneFKIAA0040Fthat was enriched with many replicable risk SNPs for AD, all of

which had significant cis-acting regulatory effects. The distributions of �log(p) values for SNP-disease and SNP-expression associations

for all markers in the TNN–KIAA0040 region were consistent across EAs, AAs, and five HapMap populations (0.369prp0.824;

2.8� 10�9ppp0.032). The most significant SNPs in these populations were in high LD, concentrating in KIAA0040. Finally, expression

of KIAA0040 was significantly (1.2� 10�11ppp1.5� 10�6) associated with the expression of numerous genes in the neurotransmitter

systems or metabolic pathways previously associated with AD. We concluded that KIAA0040 might harbor a causal variant for AD and

thus might directly contribute to risk for this disorder. KIAA0040 might also contribute to the risk of AD via neurotransmitter systems or

metabolic pathways that have previously been implicated in the pathophysiology of AD. Alternatively, KIAA0040 might regulate the risk

via some interactions with flanking genes TNN and TNR. TNN is involved in neurite outgrowth and cell migration in hippocampal explants,

and TNR is an extracellular matrix protein expressed primarily in the central nervous system.
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INTRODUCTION

Alcohol dependence (AD) is a complex disorder character-
ized by psychological and physiological dependence on
ethanol. The 12-month prevalence of AD in the United

States is 3.81% (Grant et al, 2004). Family, twin, and
adoption studies have demonstrated that genetic factors
constitute a significant component of the risk for AD.
Candidate gene studies have shown that a large number of
risk loci exist for AD in the dopaminergic, serotonergic,
GABAergic, cholinergic, opioidergic, and endocannabinoi-
dergic systems, as well as in the ethanol metabolic pathway.
Several genome-wide association studies (GWASs) have
reported additional risk loci for alcoholism (Treutlein et al,
2009; Bierut et al, 2010; Edenberg et al, 2010; Heath et al,
2011). The first GWAS in German males reported that
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15 top-ranked SNPs (in PECR, ADH1C, CAST, ERAP1,
PPP2R2B, ESR1, GATA4, CCDC41, and CDH13)
(5.6� 10�6ppp2.2� 10�3) in a discovery sample were
replicated in a follow-up data set; two in PECR (2q35)
reached genome-wide significance in meta-analysis
(a¼ 5� 10�8) (Treutlein et al, 2009). But the top-ranked
SNPs (po10�4) in this German discovery sample were not
replicated by a second GWAS for AD (Bierut et al, 2010),
which reported a different set of 15 top-ranked SNPs (in
PKNOX2, CC2D2B, NOMO2, COL8A1, NXPH2, E2F8,
FAM44B, SH3BP5, GRM5, ZNF285A, and TPK1) in a
combined European-American (EA) and African-American
(AA) sample from SAGE (the Study of Addiction: Genetics
and Environment), all of which were nominally associated
with alcoholism (1.9� 10�7ppp9.8� 10�6). However,
these SNPs were neither genome-wide significant nor were
they replicated in a family sample from COGA (the
Collaborative Study on the Genetics of Alcoholism) or the
German case–control sample. Furthermore, the top-ranked
SNPs (po10�6) in EAs (or AAs) were not replicated in AAs
(or EAs) (Bierut et al, 2010). The third GWAS found no SNP
with genome-wide significance in an EA COGA discovery
sample. However, 6 SNPs in TMEM132C, EPHA7, OPA3,
KCNMA1, DMRTA2, and SPTA1 for AD and 41 SNPs in
SELL, SELE, LOC91431, PPARG, CTNN2, LEPR, and PDE4B
for early-onset AD were replicated in an AA replication
sample. Ten SNPs in CARS, OSBPL5, NAP1L4, BBX, SLC9A8,
OPA3, TOX2, and CD53 for AD and 16 SNPs in SLC37A3,
KCNMA1, CDH8, ZNF608, API5, CAT, and GRIN2C for
early-onset AD were replicable between the EA case–control
discovery sample and an EA family replication sample
(Edenberg et al, 2010). Most recently, a GWAS in an
Australian twin-family sample identified TMEM108 and
ANKS1A as possible risk genes for alcohol consumption
(Heath et al, 2011). Another GWAS meta-analysis in
European populations identified AUTS2 as the risk gene
for alcohol consumption (Schumann et al, 2011). However,
these findings have not yet been replicated in independent
samples or confirmed by functional studies, and hence the
possibility of a false-positive result cannot yet be excluded.
In the present study, we combined and reanalyzed the

SAGE and COGA data sets, and used a new analytic strategy
to identify additional risk loci for AD. First, we combined
both data sets, hoping to increase the sample sizes and, in
turn, the study’s statistical power (site effects and sample
overlapping were taken into account), thereby enhancing
our ability to detect novel risk loci that were missed in
previous studies. Second, we differentiated more fully the
EAs and AAs in the analysis to increase population
homogeneity, and controlled for admixture effects in the
association tests. Third, we used the EAs as a discovery
sample and the AAs as a replication sample, and different
samples with distinct ethnicity to detect expression
quantitative trait locus (eQTL) signals, as a confirmation
of the variants’ functional effects. Although using distinct
samples in one study might increase the false-negative rates
due to sample heterogeneity, replication in distinct samples
makes the false-positive findings less likely. Replicable
findings in distinct populations might be more general-
izable to other populations, and would be more likely to be
causal in nature. Fourth, allele frequencies could be
different in distinct populations, or even exist in opposite

phases; that is, a common allele in one population may be a
rare allele in another population. Thus, distinct populations
do not necessarily have the same risk markers associated
with disease; alternatively, they could have the same risk
markers, but have different phases of alleles in these
markers associated with disease. That is, the effect sizes and
effect directions of marker–disease associations may be not
consistent, or could even be opposite across populations for
each individual risk marker, such that meta-analysis may
show weaker effects. Such markers are usually treated as
nonreplicable and thus are discarded. However, to our
hypothesis, when two distinct populations have common
causal variants, there could be a risk region in LD with this
putative causal variant in both populations, even though
there are no individual risk alleles replicable between them.
This is because in one population, a set of risk markers are
in LD with the causal variant; but in another population, a
different set of risk markers adjacent to the first set could be
in LD with the causal variant. The risk marker sets in a
causal region are different between populations, because
they are not causal variants per se. Such a risk region may
have a significant correlation between the distributions of
�log(p) values of all markers across the entire region in
different populations. Such regions have usually been
missed in previous studies. Additionally, in the present
study, the data sets for association studies and for eQTL
analysis were different in many absolute statistics of genetic
marker numbers, sample sizes, and study power. To study
the consistency between them, we can only compare their
relative statistics, that is, the distributions of relative
significance strengths across whole regions, not individual
markers. In a word, the present study aimed to identify
replicable, functional, and significant risk regions for AD by
increasing the study power and the sample homogeneity.

MATERIALS AND METHODS

Subjects

A total of 4316 SAGE (dbGaP study accession phs000092.
v1.p1) subjects and 1957 COGA (dbGaP study accession
phs000125.v1.p1) subjects were merged into a single data
set; 1477 subjects in COGA who overlapped with SAGE were
excluded. The demographic data of SAGE and COGA
subjects have been presented previously (Bierut et al,
2010; Edenberg et al, 2010). After data cleaning (see below),
1409 EA cases (37.3% females; 38.3±10.2 years), 1518 EA
controls (70.7% females; 39.4±10.4 years), 681 AA cases
(37.2% females; 40.3±7.8 years), and 508 AA controls
(66.7% females; 39.6±8.6 years) underwent analysis.
Affected subjects met lifetime DSM-IV criteria (American
Psychiatric Association, 1994) for AD. Controls were
defined as individuals who had been exposed to alcohol
(and possibly to other drugs) in sufficient amounts for a
sufficient time, but had never become addicted to alcohol or
other illicit substances (lifetime diagnoses). Additionally,
controls were also screened to exclude individuals with
major axis I disorders, including schizophrenia, mood
disorders, and anxiety disorders. More demographic data
are provided in Supplementary Materials and Methods. All
subjects were de-identified in this study. All subjects were
genotyped on the Illumina Human 1M beadchip.

GWAS for alcohol dependence
L Zuo et al

558

Neuropsychopharmacology



Data Cleaning

Subjects with poor genotypic data and questionable
diagnostic information, subjects with allele discordance,
duplicated IDs, potential sample misidentification, sample
relatedness, sample misspecification, gender anomalies,
chromosome anomalies (such as aneuploidy and mosaic
cell populations), missing race, non-EA and non-AA
ethnicity, population group outliers, subjects with a
mismatch between self-identified and genetically inferred
ethnicity, and subjects with a missing genotype call rate
X2% across all SNPs were excluded step by step (Supple-
mentary Table S1). Furthermore, SNPs with allele frequency
difference in controls42% between SAGE and COGA, SNPs
with missing rate difference 42% between SAGE and
COGA, and SNPs with allele discordance, chromosomal
anomalies, or batch effect were excluded. We then filtered
out the SNPs on all chromosomes with an overall missing
genotype call rate X2%, the monomorphic SNPs, and the
SNPs with minor allele frequencies (MAFs) o0.01 in either
EAs or AAs. The SNPs that deviated from Hardy–Weinberg
equilibrium (HWE; po10�4) within EA or AA controls were
also excluded. This selection process yielded 805 814 SNPs in
EAs and 895 714 SNPs in AAs. Details are provided in
Supplementary Materials and Methods.

Association Analysis

(a) Genome-wide association tests in the EA discovery
sample: The allele frequencies were compared between
cases and controls in EAs using genome-wide logistic
regression analysis implemented in the program PLINK
(Purcell et al, 2007). Diagnosis served as the dependent
variable, alleles served as the independent variables, and
ancestry proportions, sex, and age served as covariates.
The p-values derived from these analyses are illustrated
in Supplementary Figure S1 and the top-ranked risk
SNPs (po10�5) are listed in Table 1.

(b) Association tests in the AA replication sample: Associa-
tions between the top-ranked risk SNPs in EAs were
tested using logistic regression analysis in AAs. Addi-
tionally, associations for all available SNPs in the genome-
wide significant risk genes identified in EAs were also
tested in AAs (Figure 1). Meta-analysis was performed to
derive the combined p-values for EAs and AAs.

(c) Controlling for admixture effects: The ancestry propor-
tions for each individual were estimated by integrating
the ancestry information content of 3172 completely
independent ancestry-informative markers (AIMs)
using STRUCTURE (Pritchard et al, 2000). These AIMs
were extracted from 1 million of markers by LD pruning
(Purcell et al, 2007) (see details in Supplementary
Materials and Methods). To control for the admixture
effects on association analysis, ancestry proportions
were included as covariates in the association analysis.

Functional Analysis (Cis-Acting Genetic Regulation of
Expression Analysis)

(a) Cis-acting expression of QTL (Cis-eQTL) analysis on the
risk SNPs in lymphoblastoid cell lines: To examine
relationships between all risk SNPs (Table 2) and local

mRNA expression levels, we used expression data of
14 925 transcripts (14 072 genes) in 270 unrelated
HapMap individuals from six populations (CEU-Chil-
dren, CEU-Parent, CHB, JPT, YRI-Children, and YRI-
Parent) (Stranger et al, 2005). Differences in the
distribution of mRNA expression levels between SNP
genotypes were compared using a Wilcoxon-type trend
test. The p-values of o0.05 are listed in Table 2. Effects
of SNPs 1Mb around the association peak SNP
(rs1057239) are illustrated in Figure 1d–i.

(b) Cis-eQTL analysis on the risk SNPs in other two primary
human cells: To examine whether the risk SNPs
influence the local exon- or transcript-level expression
changes, we also tested the associations between the
genotypes of these risk SNPs and the expression levels
of exons and transcripts of local genes in the other two
European samples (Table 2 and Figure 1j and k).

Table 1 Top-Ranked SNPs in EAs with Po10�5 for Associations

Band SNP Genes P-value FDR OR

1q24–q25 rs1057239a KIAA0040 2.8� 10�7 0.038 1.32

1q24–q25 rs1894709a KIAA0040 3.9� 10�7 0.039 1.31

1q23–q24 rs6701037a KIAA0040 1.3� 10�6 0.043 1.30

1q24–q25 rs6425323a KIAA0040 1.9� 10�6 0.043 1.29

1q24–q25 rs1057302a KIAA0040 2.5� 10�6 0.044 1.29

1p35.1 rs4949400a SERINC2 2.3� 10�7 0.043 1.32

1p35.1 rs4949402a SERINC2 2.6� 10�7 0.043 1.32

1p35.1 rs1039630a SERINC2 2.6� 10�7 0.043 1.32

1p35.1 rs2275435a SERINC2 3.0� 10�7 0.044 1.31

1p35.1 rs4478858a SERINC2 4.4� 10�7 0.044 1.31

1p35.1 rs10914386 SERINC2 9.0� 10�6 40.05 1.30

5q12.1 rs7445832a HTR1A 2.8� 10�7 0.041 1.38

1p34.3 rs11583322 STK40 4.0� 10�7 40.05 0.76

5q23.3 rs257906 SLC27A6 5.0� 10�7 40.05 1.43

5q23.3 rs10478829 SLC27A6 5.3� 10�7 40.05 1.43

10q25.3 rs4751971 PNLIPRP3 2.4� 10�6 40.05 3.60

13q11 rs1867248 TUBA3C 2.6� 10�6 40.05 1.33

12q21.3 rs882968 ATP2B1 3.6� 10�6 40.05 1.29

5q11.2–q13 rs4700575 HTR1A 3.8� 10�6 40.05 1.35

5q11.2–q13 rs2169520 HTR1A 4.0� 10�6 40.05 1.35

13q12 rs7983722 ATP8A2 4.1� 10�6 40.05 6.48

12q24.1 rs4964684 CMKLR1 5.1� 10�6 40.05 4.18

12q23.3 rs1896086 KIAA0789 5.4� 10�6 40.05 4.37

12q23.3 rs7971309 KIAA0789 5.4� 10�6 40.05 4.37

3p13 rs6802792 RYBP 5.5� 10�6 40.05 9.80

7q31 rs17142876 KCND2 5.6� 10�6 40.05 1.51

7q31 rs728115 KCND2 5.6� 10�6 40.05 1.49

8q11–q12 rs9298318 SNTG1 6.9� 10�6 40.05 6.27

8q13.3 rs12549296 EYA1 8.8� 10�6 40.05 1.81

11q24.2 rs750338 PKNOX2 9.5� 10�6 40.05 1.32

2q22.1 rs1869324 THSD7B 9.8� 10�6 40.05 1.44

5q14 rs6888626 COX7C 9.9� 10�6 40.05 6.66

12q24.33 rs2218917 TMEM132D 1.0� 10�5 40.05 9.04

Abbreviations: FDR, genome-wide false discovery rate; OR, odds ratio.
aIndicates FDRo0.05.
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Figure 1 Regional association and eQTL plots around TNN–KIAA0040 region. Left y-axis corresponds to �log(p) value; right y-axis corresponds to
recombination rates; quantitative color gradient corresponds to r2; red squares represent peak SNPs. (a) Regional association plot in EAs for a 10Mb region
around the peak association SNP (rs1057239); (b, c) regional association plots in EAs and AAs for a 1Mb region around the peak association SNPs; (d–k)
regional eQTL plots in HapMap and European populations for a 1MB region around the peak functional SNPs; and (l) LD map for TNN–KIAA0040 region.
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Table 2 P-Values for Associations and Cis-Acting Regulatory Effects of the SNPs in TNN–KIAA0040 Region

SNP A1 EA AA P-values for eQTL in six HapMap populations P-values for eQTL in Europeansa

OR P-value OR P-value CEU_children CEU_parent CHB JPT YRI_children YRI_parent Transcript (B) Exon 1 (P) Exon 4 (P)

rs12094153 A 1.210 3.9� 10�4 F F F F F F F F F 2.8� 10�3 F

rs4651322 T 0.889 0.034 F F F F F 6.0� 10�3 F F F F F

rs2157588 A 1.219 1.9� 10�4 F F F F F F F F F F F

rs12563833 A 0.893 0.047 F F F F F 0.023 F F F F F

rs1018829 T 0.839 6.8� 10�3 F F F F F 0.035 F F F F F

rs10489328 A 0.848 0.017 F F F F F F F F 0.023 F F

rs2018318 T 0.836 9.9� 10�3 F F F F F F F F F F F

rs6701037 C 1.295 1.3� 10�6 F F F F F 0.025 0.037 6.0� 10�4 F 9.4� 10�4 F

rs10912899 A 0.871 9.4� 10�3 F F F F F F F 0.014 F F 3.2� 10�4

rs4650707 A 0.741 0.024 F F F F F F F F F F F

rs6425323 T 1.291 1.9� 10�6 F F 0.010 8.9� 10�3 F 0.025 0.038 5.0� 10�4 F F F

rs1057302 C 1.286 2.5� 10�6 F F 0.013 4.8� 10�3 F 0.025 F 2.0� 10�4 F F F

rs3737933 C 0.850 0.023 1.757 0.040 4.0� 10�3 4.0� 10�3 0.024 0.035 F F F F F

rs1057285 G F F 1.412 5.1� 10�4 1.4� 10�3 0.014 F F F F F F F

rs4650716 C 1.249 2.2� 10�5 F F F F F F 0.025 F F F F

rs2269650 A 0.842 1.4� 10�3 F F F F F F F F F F 8.6� 10�5

rs2072035 A 0.841 1.3� 10�3 F F F F F F F F F F F

rs1057239 T 1.318 2.8� 10�7 F F F 0.028 F F 0.011 F F F F

rs1894709 A 1.313 3.9� 10�7 F F F 8.0� 10�3 F F 0.016 F F F F

rs10489326 T 1.242 3.4� 10�5 F F F F F F 0.021 F F F F

rs2269655 T F F 1.875 0.026 0.020 0.039 0.031 F F F 6.9� 10�3 F F

rs2861158 A 0.863 0.011 F F F F F F F F F F F

rs16847872 G F F 1.872 0.026 0.020 0.039 0.031 F F F F F F

rs12136973 C 0.865 0.012 F F F F F 0.040 F F F F 2.5� 10�3

rs1008459 G 0.881 0.029 F F F F 0.018 0.028 F F F F 1.1� 10�3

rs2272785 A 0.879 0.025 F F F F 0.018 0.044 F F F F F

rs2272784 C 0.823 2.8� 10�4 F F F F F F F F F F 7.7� 10�6

rs3753555 C 0.823 2.8� 10�4 F F F F F F F F F F 7.7� 10�6

Abbreviations: eQTL, expression quantitative trait locus analysis.
aExon-level expression changes in brain (B) and PBMC (P) tissues were corrected for 4 exons and 2 tissues (a¼ 0.0063).
‘F’, p40.05 or not available.
All markers are in HWE.
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Expression data in 93 autopsy-collected frontal cortical
brain tissue samples with no defined neuropsychiatric
condition and 80 peripheral blood mononuclear cell
(PBMC) samples collected from living healthy donors
obtained from a study (Heinzen et al, 2008) at Duke
University (Duke samples) were evaluated. Each of these
associations was analyzed using a linear regression
model by correcting for age, sex, source of tissues, and
principle component scores.

Correction for Multiple Testing on Association and
Cis-eQTL Analysis

To mitigate false-positive rates, genome-wide associations in
the discovery stage need to be corrected for multiple testing.
Apparently, Bonferroni correction (a¼ 5� 10�8) was overly
conservative because it treated all 1 million markers in the
genome as independent ones (which is impossible). Alter-
natively, a WTCCC-defined a (¼ 5� 10�7) might be more
appropriate to the present study (The Wellcome Trust Case
Control Consortium, 2007). As complements to this correc-
tion, we also corrected the discovery findings by genome-
wide false discovery rate (FDR; Benjamini and Hochberg,
1995) and replicated and confirmed the discovery findings
by replication and confirmation designs. Only when an
association survived WTCCC-defined genome-wide correc-
tion (po5� 10�7) together with FDRo0.05, and was
replicated in an independent sample and confirmed by
functional studies, should it be taken as ‘significant’. In the
present study, we used multiple samples to replicate and
confirm the discovery findings, which significantly reduced
the chance of false-positive findings (ie, FDR). First, we used
AAs, the population most genetically distinct from EAs in
the United States, to replicate the association analysis and
make the replicable findings more generalizable to other
populations. Second, we aimed to detect replicable regions,
not individual markers, to avoid missing risk regions
because of the population specificity of allele frequencies
introduced above. Many risk markers, rather than a single
marker, were detected in the risk regions, which reduced the
chance of false-positive association findings. Third, func-
tional analysis as confirmation of association analysis
further reduced the chance of false-positive findings.
Additionally, functional analysis in multiple different
populations, which differed from the populations for
association analysis, made the findings more generalizable
too. Fourth, �log(P) value distributions across the discovery
sample and the replication and confirmation samples were
compared for the similarity using Pearson correlation
analysis. The consistency between them would significantly
reduce the chance of false-positive findings. Therefore, a
could be set at 0.05 for the findings in replication and
confirmation samples if they replicated or confirmed the
discovery findings (except for exon-level cis-eQTL findings
that were corrected for the number of exons and the types of
tissues; ie, a was set at 0.0063 for KIAA0040; see Table 2).

Functional Analysis (Trans-Acting Genetic Regulation
of Expression Analysis)

(a) Transcriptome-wide trans-eQTL analysis on the risk
SNPs: To examine whether the risk SNPs regulated other

transcript expression, we tested the associations between
the genotypes of these risk SNPs and the transcript
expression levels across the transcriptome. The tran-
scriptome-wide expression levels in two human primary
cells (brain and PBMC) in the Duke samples (Heinzen
et al, 2008) were assessed using Affymetrix Human ST
1.0 exon arrays. Associations between genotypes and
transcriptome-wide expression levels were analyzed
using linear regression implemented in PLINK (Purcell
et al, 2007) by incorporating all covariates. A total of
2 047 023 transcript expression data records in the brain
set, 1 760 880 transcript expression data records in the
PBMC set, and 28 risk SNPs were tested, and hence a was
set at 8.7� 10�10 for the brain set and 1.0� 10�9 for the
PBMC set, respectively.

(b) Genome-wide trans-eQTL analysis of KIAA0040 tran-
script expression: To examine what polymorphisms
across genome regulated the transcript expression of
KIAA0040, we scanned the whole genome and tested the
associations between the transcript expression level of
KIAA0040 and the genotypes across whole genome. The
same Duke samples including both tissues as described
above were tested (Heinzen et al, 2008). Genome-wide
genotyping was performed using Illumina Human
Hap550K chip. Strict data cleaning was performed
before association analysis using previously published
methods (Fellay et al, 2007). Associations between
KIAA0040 transcript expression level and genotypes
across genome were analyzed using linear regression
implemented in PLINK, by incorporating all covariates.
A total of 571 738 SNPs and 2 tissues were tested, and
hence a was set at 4.4� 10�8.

(c) Transcriptome-wide expression correlation analysis:
The expression of 14 925 transcripts was examined in
Duke samples (Heinzen et al, 2008). Correlations
between expression of KIAA0040 transcript and expres-
sion of other genes across transcriptome were tested in
the brain and PBMC, respectively. The a was set at
1.7� 10�6 (¼ 0.05/(14 925� 2) in which ‘2’ is the types
of tissues tested).

Functional Analysis (RNA Secondary Structure
Analysis)

Each unique DNA sequence across a gene, whether
common, rare, or with a unique mutation, could have a
different consequent RNA secondary structure. Alteration
of RNA secondary structure could influence the efficiency of
splicing, translation, and/or binding of regulatory factors.
These influences could affect disease susceptibility. Because
a test of this hypothesis is beyond the scope of the present
report, we used the program MFOLD (Zuker, 2003) to
predict an alteration in RNA secondary structures. The
upstream and downstream sequences (800 bp) around a
variant were retrieved from NCBI dbSNP based on the SNP
accession number. The RNA secondary structures of the
retrieved sequences with either the common or variant
allele were constructed by MFOLD. All parameters were set
in default for the most stable secondary structure folding
prediction. A DG value for each structure corresponding to
each allele was derived (Supplementary Figure S2). The
DG is a metric of stickiness when constructing the
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RNA secondary structure, where stickiness represents how
thermodynamically stable a structure may be. The larger the
absolute value of a negative DG is, the more stable a
structure may be; conversely, the larger the absolute value
of a positive DG is, the less stable a structure may be.
Alterations in the most stable secondary structures of the
sequences were visualized by comparing these structures
with either common or rare alleles in parallel (Supplemen-
tary Figure S2).
In view of the fact that the length (800 bp) of sequence that

the program can accept is shorter than the mature mRNA,
the program does not account for the multiple mRNA-
binding proteins that influence the conformation of the
mature mRNA. Thus, this functional analysis is exploratory.

RESULTS

Population stratification effects on associations were con-
trolled after separating EAs and AAs in the analysis. The
admixture degrees of our cleaned EA and AA samples were
very low. They were 1.4% in EAs and 6.2% in AAs,
respectively, and did not affect our association findings
significantly (data not shown). As a result, in the present
study, we only showed the p-values after these effects had
been controlled.
The p-values (o10�5) for the associations between the

top-ranked SNPs and AD in the EA discovery sample are
listed in Table 1, which includes 33 SNPs in 21 genes. All
these SNPs in controls were in HWE in both EAs and AAs.
Associations for five SNPs in KIAA0040, five SNPs in
SERINC2, and one SNP in HTR1A in EAs had a genome-
wide FDRo0.05; eight of which were genome-wide sig-
nificant (po5� 10�7) (Table 1). No associations for these
SNPs (but other markers) were significant in AAs. The
region surrounding KIAA0040 in AAs overlapped exten-
sively with that in EAs (Figure 1c). This region was enriched
with risk or functional signals across EAs, AAs, six HapMap
populations, and two primary tissues in Europeans.
This risk region spanned three LD blocks, including the

first block from rs12094153 to rs1018829 in TNN, the second
block from rs10489328 in TNN to rs1008459 in KIAA0040
(38 kb), and the third block from rs2272785 to rs3753555 in
KIAA0040 (Figure 1l). The broader region (within 1Mb;
Figure 1b) outside this TNN–KIAA0040 region yielded no
association signal with po0.01 in EAs. In all, 25 and 4 SNPs
in this region were nominally associated with AD in EAs
(2.8� 10�7ppp0.047) and AAs (5.1� 10�4ppp0.040),
respectively. All association signals in this risk region with
po10�5 in EAs were located in the second LD block in
KIAA0040 (Figure 1l). All risk SNPs were in HWE (p40.05)
in both cases and controls in both EAs and AAs (Table 2).
Meta-analysis of EAs and AAs did not change the p-values
for these risk SNPs significantly (data not shown). The allele
frequencies of all SNPs in EA and AA controls were similar
to those in CEU and YRI, respectively, in the HapMap
database (see Supplementary Table S2).
eQTL analysis showed that all risk SNPs in this region had

cis-acting regulatory effects on KIAA0040 mRNA expression
in at least one population; all of those with po10�5 in EAs
had cis-acting effects in at least two populations; and five
risk SNPs had significant effects in at least four populations
(Table 2).

In EAs, throughout the Chromosome 1q, this region was
the only one that had association signals at po10�5. Within
17.7Mb around TNN–KIAA0040, this region was also the
only one with association signals at po0.001. Similarly, in
AAs, within 10Mb around TNN–KIAA0040, this region was
the only one that had association signals at po0.001.
Furthermore, within 775 Kb around TNN–KIAA0040, this
region was the only one with association signals at po0.01.
Additionally, within the 1Mb range, the most significant
functional SNPs in the HapMap CEU-Child (rs1057285;
p¼ 0.0014; Figure 1d), CEU-Parent (rs3737933; p¼ 0.004;
Figure 1e), YRI-Parent (rs1057302; p¼ 0.0002; Figure 1f),
and Europeans (brain tissue) (rs2269655; p¼ 0.0069;
Figure 1j) were all located in the second LD block, that is,
KIAA0040, in this risk region (Figure 1l). The only
exception was JPT, in which the most significant functional
SNP in this risk region (rs4651322; p¼ 0.006; Figure 1i) was
located in the first LD block, that is, TNN; and this peak SNP
was the second most significant SNP within the 1Mb range.
The �log(p) values for all available SNPs (n¼ 40) within

TNN–KIAA0040 region are plotted in Figure 1. The
distributions of �log(p) values were highly consistent
across EAs, AAs, CEU-Child, CEU-Parent, YRI-Child, YRI-
Parent, and CHB (0.369prp0.824; 2.8� 10�9ppp0.032;
Table 3). The peak SNPs among each of these populations
were in high LD. This was especially the case for the SNP
showing the most significant expression differences in the
CEU-Child population (rs1057285, p¼ 0.0014), which was
also the peak SNP associated with AD in AAs (rs1057285;
p¼ 5.1� 10�4) (Figure 1c vs d). And the SNP showing the
most significant expression differences in the YRI-Child
population (rs1057239, p¼ 0.0108) was the peak SNP
associated with AD in EAs (rs1057239; p¼ 2.8� 10�7)
(Figure 1b vs g). The peak SNPs in AAs (rs1057285),
CEU-Child (rs1057285), CEU-Parent (rs3737933), and YRI-
Parent (rs1057302) were closely located together (Figure 1l).
The more closely the peak SNPs were located (Figure 1l), the
more significant the correlations were between the �log(p)
value distributions across the whole region (Table 2), which
suggested that the peak SNP captured most of the
information across that region. The more significant those
correlations were, the more consistent (replicable) between
two populations the risk regions were. Thus, the distance
between peak SNPs reflected the strength of replicability of
association or function signals between populations.
Transcriptome-wide trans-acting eQTL analysis showed

that 10 SNPs in this region nominally regulated transcript
expression of multiple genes across the transcriptome
(Supplementary Table S3). Genome-wide trans-acting eQTL
analysis showed that transcript expression of KIAA0040 was
marginally regulated by multiple genes across the genome
(Supplementary Table S4). However, after Bonferroni
correction, none of them remained significant.
Transcriptome-wide expression correlation analysis

showed that the expression of KIAA0040 was significantly
correlated with the expression of many genes (a¼ 1.7�
10�6; data not shown). These genes included some
alcoholism-related genes (see Discussion), such as SOD2
(p¼ 8.8� 10�11) and ADH1C (p¼ 1.2� 10�6) in brain, and
FAM44B (po2� 10�16), IPO11 (p¼ 1.9� 10�14), ERAP1
(p¼ 1.2� 10�11), GRIN2C (p¼ 2.2� 10�11), PECR (p¼ 5.9�
10�11), BBX (p¼ 7.8� 10�11), NRD1 (p¼ 9.7� 10�10),
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API5 (p¼ 1.1� 10�9), DRD2 (p¼ 1.9� 10�9), LEPR
(p¼ 2.9� 10�9), ADH5 (p¼ 4.1� 10�9), GRM5 (p¼ 7.2�
10�9), TH (p¼ 1.2� 10�8), MTHFR (p¼ 1.6� 10�8), CARS
(p¼ 4.1� 10�8), TTC12 (p¼ 4.5� 10�8), NXPH2 (p¼ 2.2�
10�8), CAST (p¼ 7.7� 10�8), HNMT (p¼ 1.2� 10�7),
HTR1B (p¼ 1.7� 10�7), OLFM3 (p¼ 3.6� 10�7), PPP1R1B
(p¼ 7.1� 10�7), OPRD1 (p¼ 7.2� 10�7), DRD3 (p¼ 7.7�
10�7), CRHR1 (p¼ 1.3� 10�6), and PPP2R2B (p¼ 1.5�
10�6) in PBMC.
Several risk SNPs were predicted to significantly alter the

RNA secondary structure, including rs2157588 in TNN, and
rs4650707, rs3737933, rs4650716, rs1894709, rs2861158,
and rs16847872 in KIAA0040 (Supplementary Figure S2
and Table S2). Eight KIAA0040 markers were located in a
transcription factor binding site (TFBS); two KIAA0040
markers, that is, rs2861158 and rs2272784, were located in
an exonic splicing silencer or enhancer (Supplementary
Table S2).

DISCUSSION

In the present study, after merging 480 COGA subjects into
the SAGE sample, the results were highly similar to those in
a previous study that used the SAGE sample alone (Bierut
et al, 2010). The top-ranked risk SNPs (po10�5) in EAs,
AAs, and combined EAs and AAs in that previous study
(Bierut et al, 2010) were confirmed by our analysis (see
Supplementary Table S5). In the present study, we found
genome-wide significant association signals (po5� 10�7

together with FDRo0.05) for AD for three genes
(KIAA0040, SERINC2 and HTR1A) in EAs. Two of these
genes, that is, KIAA0040 and HTR1A, were also among the
top-ranked genes in EAs in the prior study (Bierut et al,
2010); in addition, KIAA0040 as a risk gene for AD was
confirmed by another GWAS meta-analysis for SAGE,
COGA, and an Australian family sample (Wang et al,
2011). However, this was not previously replicated in AAs
and not confirmed by functional studies.
In the present study, using a new analytic strategy and

integrating evidence from the functional analysis, we
were able to present additional important information that

was not obtained previously. We found that, among
the three significantly associated genes, only the region
around KIAA0040 overlapped extensively between EAs and
AAs, which would be expected mostly for functional regions
that harbor the same causal variant in both populations.
This was consistent with the eQTL findings; that is, all
risk SNPs in this region had expression effects. We
thus concluded that KIAA0040 might harbor a causal
variant for AD.
Multiple pieces of evidence support our conclusion. First,

KIAA0040 contained two genome-wide significant markers
and several other marginally significant markers in EAs.
Second, KIAA0040 was the only gene that had association
signals with po10�5 throughout Chromosome 1q in EAs.
Similarly, in AAs, within 10Mb around this region,
KIAA0040 was the only gene with association signals at
po0.001. Furthermore, within the 1Mb range, the most
significant functional SNPs in four HapMap populations
(Stranger et al, 2005) and one Duke sample (Heinzen et al,
2008) were all located in KIAA0040. It is thus likely that the
putative causal variant for AD was located within
KIAA0040. Third, eQTL analysis showed that all risk SNPs
in this TNN–KIAA0040 region had cis-acting regulatory
effects, and such effects in KIAA0040 appeared in two to five
different populations, which is highly unlikely to have
occurred by chance. These effects suggest that KIAA0040
per se might play a direct functional role in AD. Fourth,
many KIAA0040 SNPs had significant potential to alter the
RNA secondary structures; many KIAA0040 markers were
located in a TFBS and two KIAA0040 markers were located
in an exonic splicing silencer or enhancer. Fifth, the overall
–log(P) value distributions for gene–disease associations
and for gene expression were correlated across at least seven
populations, suggesting that the majority of the functions of
TNN–KIAA0040 might contribute to the risk for AD, and
that the regulatory pathway through which these SNPs
cause AD might be related to the TNN and KIAA0040
proteins per se.
In summary, (1) TNN–KIAA0040 was enriched with

many risk SNPs, (2) association signal distributions
were consistent between EAs and AAs, (3) functional

Table 3 Correlation of Distributions of –Log(P) Values for Associations and Cis-Acting Effects in TNN–KIAA0040 Region Between
Different Populations

Populations Pearson correlation coefficients (r)

EA AA CEU-child CEU-parent CHB JPT YRI-child YRI-parent Europeansa

P-values

EA 0.385 0.091 0.405 �0.245 �0.198 0.824 0.402 �0.141

AA 0.025 0.814 0.608 0.244 0.139 0.202 0.124 0.229

CEU-child 0.604 2.8� 10�9 0.769 0.369 0.251 0.215 0.450 0.306

CEU-parent 0.014 8.3� 10�5 7.0� 10�8 0.105 0.158 0.422 0.510 0.148

CHB 0.162 0.164 0.032 0.556 0.215 �0.190 �0.036 0.090

JPT 0.270 0.440 0.158 0.380 0.229 �0.286 0.318 �0.162

YRI-child 1.2� 10�8 0.268 0.244 0.018 0.306 0.125 0.207 0.119

YRI-parent 0.028 0.507 0.013 0.004 0.848 0.093 0.264 �0.094

Europeans 0.552 0.331 0.190 0.532 0.707 0.509 0.627 0.710

aTranscript expression in brain tissue.
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signal distributions were consistent across multiple popula-
tions, (4) association and functional signal distributions
were consistent, and, especially, (5) many peak association
and functional SNPs were concentrated in one LD block,
suggesting that chance alone was unlikely to account for the
findings. Taken together, these findings strongly support
the hypothesis that TNN–KIAA0040, especially KIAA0040,
might harbor a causal variant for AD.
KIAA0040 encodes an HLA-DR11-restricted T-cell epi-

tope. It is expressed in multiple tissues and organs
including brain. It was worth noting that expression of
KIAA0040 was significantly associated with the expression
of many genes that have previously been associated with AD
(although some of these associations were reported by a
candidate gene approach and were not yet well replicated).
These genes are in the dopaminergic (DRD2-TTC12, DRD3,
TH, and PPP1R1B), serotonergic (HTR1B), glutamatergic
(GRM5 and GRIN2C), histaminergic (HNMT), and opioi-
dergic (OPRD1) systems, as well as in the ethanol metabolic
pathway (ADH1C and ADH5) (Bierut et al, 2010; Edenberg
et al, 2010; Connor et al, 2002; Yang et al, 2008; Dick and
Foroud, 2003; Dahmen et al, 2005; Tabakoff et al, 2009; Sun
et al, 2002; Oroszi et al, 2005; Zhang et al, 2008; Cichoz-
Lach et al, 2007; Luo et al, 2006). These findings suggest that
KIAA0040 might also be implicated in AD via these
neurotransmitter systems or metabolic pathways.
The causal variant is more likely to be located in

KIAA0040 than TNN, because (1) there were more risk
SNPs in KIAA0040 than TNN; (2) all risk SNPs with po10�5

in EAs were located in KIAA0040; (3) all functional markers
that had significant cis-acting regulatory effects in at least
two populations were located in KIAA0040; (4) all risk
markers in AAs were located in KIAA0040; and (5) most
peak association and functional SNPs were located in
KIAA0040. However, most of these risk SNPs were common
variants and were predicted to lack any phenotypic effect
(by Polyphen-2; Adzhubei et al, 2010; Supplementary Table
S2), so that the causal variant might not be any one of these
risk markers per se. Future studies should aim to identify
the causal variants by sequencing the entire TNN–KIAA0040
region, especially KIAA0040.
TNN and TNR flank KIAA0040. They are closely linked,

8.9 and 129.7 kb distant from KIAA0040, respectively. TNN,
which encodes tenascin-N, is involved in neurite outgrowth
and cell migration in hippocampal explants. TNR, which
encodes tenascin-R, is an extracellular matrix protein
expressed primarily in the central nervous system and has
been related to multiple brain diseases. Recent GWASs
reported that (1) two SNPs in KIAA0040 (rs1008459 and
rs12136973) were significantly associated with amyotrophic
lateral sclerosis (Schymick et al, 2007) and two other SNPs
in KIAA0040 (rs760486 and rs3766685) were marginally
associated with Alzheimer’s disease (Li et al, 2008); (2)
several SNPs in TNN (rs1009418, rs12065394, rs6672099,
rs6681984, and rs16847787) were marginally associated with
narcolepsy, a neurological sleep disorder (Miyagawa et al,
2008); and (3) one inter-KIAA0040–TNR SNP (rs875326)
was marginally associated with treatment response of
schizophrenia to an antipsychotic medication (iloperidone)
(Lavedan et al, 2009). These findings support a role for the
TNN–KIAA0040–TNR compound locus in the risk for
medical disorders, particularly those involving the central

nervous system. In addition to the two aforementioned
interpretations for our association findings in the present
study (ie, KIAA0040 might harbor a causal variant and
directly contribute to the risk for AD, or it might be
implicated in AD via neurotransmitter systems or metabolic
pathways), these GWAS findings suggest to us an alternative
interpretation that KIAA0040 might regulate the risk for AD
via flanking genes TNN or TNR.
The present study has limitations. First, the correction for

multiple testing remains controversial. If corrected by
Bonferroni correction (a¼ 5� 10�8), which is conservative,
our findings were only marginally significant. They warrant
more validation independently in the future. Second,
although l¼ 1.07 in EAs and l¼ 1.04 in AAs in QQ plots
indicated that the inflation of p-values was not significant,
we do not exclude the possibility that a small proportion of
inflation might still exist, which might result from the
heterogeneity of some unknown factors.
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