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Aberrant neocortical DNA methylation has been suggested to be a pathophysiological contributor to psychotic disorders. Recently, a growth

arrest and DNA-damage-inducible, beta (GADD45b) protein-coordinated DNA demethylation pathway, utilizing cytidine deaminases and

thymidine glycosylases, has been identified in the brain. We measured expression of several members of this pathway in parietal cortical

samples from the Stanley Foundation Neuropathology Consortium (SFNC) cohort. We find an increase in GADD45b mRNA and protein in

patients with psychosis. In immunohistochemistry experiments using samples from the Harvard Brain Tissue Resource Center, we report an

increased number of GADD45b-stained cells in prefrontal cortical layers II, III, and V in psychotic patients. Brain-derived neurotrophic factor

IX (BDNF IXabcd) was selected as a readout gene to determine the effects of GADD45b expression and promoter binding. We find that

there is less GADD45b binding to the BDNF IXabcd promoter in psychotic subjects. Further, there is reduced BDNF IXabcd mRNA

expression, and an increase in 5-methylcytosine and 5-hydroxymethylcytosine at its promoter. On the basis of these results, we conclude

that GADD45b may be increased in psychosis compensatory to its inability to access gene promoter regions.
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INTRODUCTION

The ability of 50 cytosine methylation to endure an animal’s
lifespan, and even across generations, indicates its poten-
tial utility as a means for encoding information (Weaver
et al, 2004; Rakyan et al, 2003). The informational content
the methyl mark represents has been shown in animal
studies to participate in learning and memory formation
(Feng et al, 2010; Miller et al, 2008, 2010; Lubin et al,
2008; Miller and Sweatt, 2007; Gavin et al, 2011), while
investigations using clinical samples reveal an important
function in regulating gene expression in the human
brain (Grayson et al, 2005; Abdolmaleky et al, 2005, 2006;
Iwamoto et al, 2005). However, inconsistent results in
relation to the pathophysiology of mental illnesses, includ-
ing psychotic disorders, suggest an increasingly recognized
higher level of complexity between the methyl mark, gene
expression, and disease risk (Tochigi et al, 2008; Mill et al,
2008; Dempster et al, 2006).

This complexity can be in part accounted for by emerging
data that the DNA methylation status of a given gene
promoter is the consequence of a dynamic equilibrium
between DNA methylation and putative demethylation
activity (Szyf, 2010; Guidotti et al, 2011). Prior studies
indicate global abnormalities may be present in psychosis.
These include differences in expression of DNA methylating
enzymes, the methyl donor S-adenosylmethionine (SAM),
degradation of DNA methylation networks, and lack of
coordination between restrictive histone modifications and
DNA methylation (Mill et al, 2008; Guidotti et al, 2007;
Veldic et al, 2005, 2007; Huang and Akbarian, 2007). It was
our hypothesis that examining components of a DNA
demethylation pathway may begin to help unravel the
complexity of this system in psychosis.
Increasing data support a means of active DNA demethyl-

ation that avoids the difficult task of breaking the covalent
bonds between methyl groups and cytosines (Ooi and
Bestor, 2008). This DNA demethylation pathway involves
deaminating 5-methylcytosine (5MC) or 5-hydroxymethyl-
cytosine (5HMC) to form thymine or 5-hydroxymethylura-
cil (5HMU), respectively (Rai et al, 2008; Cortellino et al,
2011). The resulting TpG:methyl-CpG or 5HMUpG:CpG
mismatch is then excised using a DNA glycosylase (Figure 1).
Brooks et al (1996) reported that glycosylases repairing T:G
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mismatches that result from deamination of 5MC counter-
balance DNA methyltransferase activity in the brain. Later,
the glycoslyase MBD4 was found to preferentially repair
methyl-CpG:TpG mismatches (Hendrich et al, 1999), and
mice deficient in this enzyme are incapable of demethylat-
ing DNA in reaction to parathyroid hormone treatment
(Kim et al, 2009). Deaminases have also been shown to be
necessary for active mammalian DNA demethylation
(Bhutani et al, 2010; Popp et al, 2010). Finally, the GADD45
proteins (Figure 2) (Barreto et al, 2007; Schmitz et al, 2009)

are thought to be master coordinators of this process by
recruiting deaminases and glycosylases to promoter regions
(Rai et al, 2008; Cortellino et al, 2011).
We investigated the expression and promoter binding of

components of a DNA demethylation pathway, and their
association with the DNA methylation status at a brain-
derived neurotrophic factor (BDNF) gene promoter in
pathogenetically related disorders; bipolar disorder with
psychotic features (BP) and schizophrenia (SZ), referred to
together as ‘major psychosis’ (Mill et al, 2008; Guidotti et al,

Figure 1 Proposed mechanism of activity-dependent DNA demethylation. Following depolarization GADD45 protein binds to a methylated promoter
region proximal to an acetylated histone (a). GADD45 recruits a deaminase (DA), which converts 5-methylcytosine (5MC) to thymine leading to a T:G
mismatch (b). GADD45 recruits a DNA glycosylase (GLY), which removes thymine from the T:G mismatch. Thymine is later replaced with an unmethylated
cytosine (c) (Guidotti et al, 2011).

Figure 2 Exon–intron structure and alternative transcripts of human GADD45 genes. Exons are shown as boxes and introns are shown as lines. Despite
the three GADD45 genes being located on different chromosomes there are substantial similarities in terms of gene structure and protein composition.
All three proteins are 17–18 kDa in mass and highly acidic. They share 56% protein sequence identity. In (a), are the three known splice variants of
GADD45a. Isoform 1 contains four exons, while the other two splice variants are missing the second or third exon respectively. In (b), are the three splice
variants of GADD45b. Isoform CRA_a and CRA_b differ based on their start sites. Another splice variant, referred to here as ‘GADD45b, Alt’ includes the
first intron (gray box), and translation begins at the second exon. This isoform is noted on the NCBI database (AAT38867.1) and in (Ying et al, 2005). In (c),
is the gene structure of GADD45g.
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2007; Veldic et al, 2005; Craddock et al, 2006; Connor and
Akbarian, 2008; Pope and Yurgelun-Todd, 1990; Tsuang,
1991; Reichenberg et al, 2009). We performed our initial
investigations on inferior parietal lobule (IPL) samples from
the Stanley Medical Research Institute. We selected this
cortical area for several reasons. First, early neuropatho-
logical investigations noted that the IPL is among the most
seriously damaged cortical regions in SZ (von Angyal, 1934).
Second, imaging studies have reported decreased volume
and differences in asymmetry as compared with controls
(Goldstein et al, 1999; Niznikiewicz et al, 2000; Frederikse
et al, 2000). In addition, many of the IPL functions, such as
sensory integration, body image, concept of self, visuospatial
abilities, and executive functions have been found to be
disturbed in SZ (Jimenez et al, 2010; Torrey, 2007; Naghavi
and Nyberg, 2005). Also, GADD45 proteins have been shown
to be highly regulated in this region of the cortex (Chen et al,
1998; Zhu et al, 1997). Subsequently, we sought to confirm
that gene expression abnormalities are not limited to this
region using prefrontal cortical sections from the Harvard
Brain Tissue Resource Center.

MATERIALS AND METHODS

Demographic Details

We obtained fresh-frozen parietal cortex (BA39-40) tissue
from the neuropathology consortium of the Stanley
Foundation Neuropathology Consortium (SFNC) (Bethesda,
MD). The demographics associated with each patient
population are presented in Table 1. The demographic
and clinical characteristics of the population, as well as
methods of tissue harvest, preparation, and storage, have
been described in detail elsewhere (Torrey et al, 2000). We
find no significant diagnostic differences in post-mortem
interval, pH, age, or RIN.
Prefrontal (BA9) cortical brain specimens fixed in 4%

formaldehyde were obtained from the Harvard Brain Tissue
Resource Center (HBTRC) (Belmont, MA). Each sample was
transferred into 30% sucrose in 0.1M PBS 72 h before

histological preparation. The psychiatric diagnoses were
established by two senior psychiatrists based on clinical and
family histories and according to Diagnostic and Statistical
Manual of Mental Disorders IV criteria. The demographic
data are summarized in Table 1.

Quantitative Reverse Transcriptase-Polymerase Chain
Reaction

Total RNA from the SFNC-obtained parietal cortices were
isolated using TRIZOL reagent (Life Technologies, Grand
Island, NY). DNA removal was performed using Ambion
DNase (Ambion, Austin, TX). RNA was further purified
using Qiagen RNeasy minikit (Qiagen, Valencia, CA). RNA
integrity (RIN) was assessed with an Agilent 2100 bioana-
lyzer (Agilent Technologies, Palo Alto, CA). RNA was
converted to cDNA using Applied Biosystems High
Capacity Archive Kit (ABI, Foster City, CA).
We measured transcripts of several putative DNA

demethylation genes and a potential target gene, BDNF
IXabcd (Figure 6d). The potential DNA demethylating genes
include: GADD45 genes (GADD45a, GADD45b, and
GADD45g), DNA glycosylases (MBD4 and TDG), and an
endonuclease (XPG). There are three known splice variants
for GADD45a (Figure 2a). We chose to design primers for
the full-length transcript, GADD45a, isoform 1. GADD45a,
isoform 3 is transcribed but not translated, and isoform 2
has been noted to not bind other proteins in the same
manner as isoform 1 and may be antagonistic to the actions
of isoform 1 (Zhang et al, 2009). GADD45b primers were
designed to include both CRA_a and CRA_b transcripts
(Figure 2b). The third transcript, which we have designated
‘Alt’ is missing much of the known protein binding sites,
which extend from the middle portion of the protein to the
N-terminus. The function of this isoform is unknown (Ying
et al, 2005).
For qRT-PCR, cDNA samples were analyzed using a

Stratagene Mx3005P QPCR System (Stratagene, La Jolla, CA)
and Brilliant SYBR Green QPCR Master Mix (Stratagene).

Table 1 Demographic Characteristics of Brain Samples

N Sex Age PMI pH RINa Suicide AD MS AP

Fresh frozen samples

Stanley foundation neuropathology consortium

Parietal cortex (BA39-40)

Nonpsychotic subjects 15 6F/9M 48±10.6 23.7±9.9 6.3±0.24 4.9±0.97 0 0 0 0

Psychotic subjects 26 11F/15M 44±12.4 30.4±14.0 6.2±0.23 5.5±0.90 11 11 10 20

Formaldehyde fixed samples

Harvard tissue resource center

Prefrontal cortex (BA9)

Nonpsychotic subjects 25 7F/18M 58.4±17.9 20.2±6.1 6.5±0.32 0 0 0 0

Psychotic subjects 30 9F/21M 58.8±18.7 19.9±7.9 6.4±0.23 6 13 14 21

Abbreviations: AD, antidepressants; AP, antipsychotics; MS, mood stabilizers; RIN, RNA integrity.
aSubjects with RIN values below three were excluded for mRNA analyses. For mRNA analyses, 19 psychotic and 13 nonpsychotic subjects were included.
We found no significant differences in age, post-mortem interval (PMI), pH, or RIN whether subjects were separated based on the absence or presence of psychosis or
based on diagnosis. Numbers represent mean±SD.
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To confirm amplification specificity, the PCR products were
subject to a melting curve analysis, in which only one peak
was observed. Crossing point values were measured with the
Stratagene MxPro QPCR analysis software. Each gene per
individual analyzed was performed in duplicate and
performed twice on two separate days. Primers were
designed to span at least one intron–exon boundary. We
evaluated four housekeeping genes (GAPDH, NSE, b-actin,
and transferrin receptor (p90, CD71) (TFRC)) that represent
accurate controls for mRNA expression analysis of post-
mortem brain samples (Barrachina et al, 2006; Silberberg
et al, 2009). For each housekeeping gene, we measured the
gene stability and ranked it using the geNorm algorithm
(Vandesompele et al, 2002). Stepwise exclusion of the gene
with the highest gene stability value allowed ranking of the
tested genes according to their expression stability. On the
basis of this analysis, we normalized using geometric
averaging of multiple housekeeping genes, TFRC and b-
actin (Vandesompele et al, 2002). The following cycling
conditions were used: 10min 95 1C then 40 cycles at 95 1C
for 30 s, 60 1C for 1min, and 72 1C for 30 s. See Table 2 for
primers.
We correlated RIN scores with DCT values of each of the

genes studied normalized to either b-actin or TFRC. We
find no significant correlation between RIN and DCT for
RIN scores 43. We have eliminated all mRNA expression
data from samples with RIN scores o3. Further, prior
studies indicate that expression data are independent of
RIN values for amplicons o250 bp (Fleige and Pfaffl, 2006).
In this study, no amplicon exceeds this length.

GADD45b Immunoblotting

Protein was extracted from samples using TRIZOL reagent
protocol (Life Technologies). Proteins were separated on
10–20% gradient Tris-Glycine gels (Invitrogen) with con-
stant voltage (125 V) for 1.5 h and transferred overnight to
PVDF membranes (Bio-Rad #162–0181). Membranes were
incubated with either an anti-GADD45b polyclonal anti-
body (Santa Cruz, SC-133606) for 48 h at 4 1C or a b-actin
monoclonal antibody (Sigma; #A5316) for 1 h, in blotto
buffer. Enhanced chemiluminescence (ECL, Amersham)
was detected using a STORM fluorescent imager (Molecular
Dynamics) and quantified with IMAGEQUANT 5.0 software
(Figure 3c). For immunoblotting, each subject was analyzed
across a linear range of GADD45b normalized to b-actin 1.2,
0.6, and 0.3 mg total protein. One band at the correct
molecular weight was detected for the antibody used. All
further mention of GADD45b protein reflects the normal-
ized levels to b-actin.

GADD45b Chromatin Immunoprecipitation (ChIP) and
Methylated DNA Immunoprecipitation (MeDIP)

ChIP and MeDIP experiments were conducted using a
previously published protocol (Gavin et al, 2009a; Dong
et al, 2008). We used rabbit anti-GADD45b polyclonal
antibody (Aviva, ARP48346_P050). Antibody specificity was
tested in a western blot of human tissue that revealed one
band, and in a western blot using wild-type (WT) mouse and
GADD45b knockout (KO) mouse brain tissue (Figures 6a–c).

Table 2 Primer Sequences Used in this Study

Genes 50 primer 30 primer

mRNA expression primers

GADD45a AGAGCAGAAGACCGAAAGGATGGA GCAGGATGTTGATGTCGTTCTCGC

GADD45b ATTGCAACATGACGCTGGAAGAGC GGATGAGCGTGAAGTGGATT

GADD45g GACACAGTTCCGGAAAGCAC TCAAGACTTTGGCTGACTCG

MBD4 AAAACGTGGCTCTGAAATGG TCTGTGTTCGTGGGATGGTA

TDG AACATGGTGGAAAGGACCAC ACACTGCTATTCGTGGCTGA

XPG CTTTGTTTCATCGGCTCTGC CGTTTTCCTGGAGTCACTGG

BDNF IXabcd AACCTTGACCCTGCAGAATG TGGTCATCACTCTTCTCACCTG

NSE TGTCTCTGGCCGTGTGTAAG GCATGAGAGCCACCATTGAT

GAPDH CGAGATCCCTCCAAAATCAA TTCACACCCATGACGAACAT

ACTB TCCCTGGAGAAGAGCTACGA TGAAGGTAGTTTCGTGGATGC

TFRC AAAATCCGGTGTAGGCACAG CACCAACCGATCCAAAGTCT

Chromatin immunoprecipitation primers

BDNFIXabcd �60 to +50 CCTCTGGCAAACAGGAAGAG CGCGCTCTGAGTTTATCCTA

BDNFIXabcd +1185 to +1305 AAACATCCGAGGACAAGGTG TTCGAAAGTGTCAGCCAATG

Genes Probe

In situ mRNA probes

BDNFIXabcd +514 to +537 AGCAGTTGGGGAACTATAAGGAG

BDNFIXabcd +761 to +784 AATGATCTCTGCTCATGCTGTC

BDNFIXabcd +714 to +740 GTTCTCCTTCTTCCCACTTTAGC
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Mouse monoclonal anti-5MC (Diagenode) and rabbit poly-
clonal 5HMC (Active Motif) antibodies were used in MeDIP,
which had no detectable cross-reactivity based on a dot
blot (Figure 7a). We decided to use the MeDIP procedure
because bisulfite and most enzyme-dependent methods
are incapable of distinguishing 5MC from the approximately
14% of methylcytosines in the brain that are 5HMC
(Globisch et al, 2010). Recent studies demonstrate that these
two cytosine modifications may have very different func-
tions and genomic locations (Valinluck et al, 2004; Jin et al,
2011; Guo et al, 2011). Results are expressed as percent input
minus negative control (adapted from MagMeDIP kit
instruction manual; Diagenode).

Light Microscopy Immunohistochemistry

Twenty-five micron slices were obtained from sucrose
immersed samples using a cryostat (Microm HM 550; Thermo
Scientific). Sections were first incubated in 0.25% Tween in
PBS for 30min at room temperature. For immunohistochem-
istry experiments, they were then incubated with 5% NGS, 2%
BSA in PBS for 30min, then 48 h at 4 1C and 1h at room
temperature with rabbit anti-GADD45b polyclonal antibody
(Santa Cruz, #SC-133606) in 1% NGS and 0.4% BSA in PBS.
After addition of the secondary antibody, sections were

stained following a previously described protocol (Rodriguez
et al, 2002), and sections were reacted with 3,3-diamino-
benzidine (DAB) with nickel-ammonium sulfate to obtain
a dark-brown reaction product (Rodriguez et al, 2002).
For each brain, five to six sections were taken (one every
fourth slice), and cells were counted using a bi-dimensional
cell counting method (Veldic et al, 2007). The counts were
performed blindly in three randomly selected squares in
each of five to six sections; thus, a total of 15–18 squares per
sample were counted. All analyses were carried out in
comparable areas (100� 100mm) under the same optical and
illumination conditions (for example, light intensity was set
to 8 on a scale of 1–10, and exposure time was set to 1.5ms)
in a Zeiss MicroImager. Black and white images were
digitized and viewed on a computer by using AxioVision
software. To count strongly stained cells and exclude weakly
stained or nonspecifically labeled cells from the analysis, the
threshold intensity of staining was established at 3� the
background (measured by Zeiss Software).

Confocal Fluorescence Microscopy

Immunofluorescence labeling was performed following a
modification of the procedure described by Veldic et al.
(2007) and Agis-Balboa et al. (2006). For colocalization
experiments, 25 mm sections were incubated for 48 h at 4 1C
and 1 h at room temperature with rabbit anti-GADD45b
polyclonal antibody (Santa Cruz, #SC-133606) and either a
GABAergic cell marker, mouse anti-GAD65/67 monoclonal
antibody (Millipore, AB1511), pyramidal cell marker,
mouse anti-VGLUT2 monoclonal antibody (Abcam,
ab79157), or glial cell marker, mouse anti-S100b mono-
clonal antibody (Sigma, S2532). After labeling with the
primary antibodies, slices were incubated with Cy5-labeled
goat anti-mouse or anti-rabbit IgG (diluted 1 : 1000;
Amersham Biosciences, Piscataway, NJ) to produce red
fluorescent staining or Cy2-labeled streptavidin (diluted
1 : 1000; Amersham Biosciences) to produce green fluor-
escent staining, as indicated in the Figure legends. The
reactions were carried out in 1% normal goat serum and
0.4% BSA in PBS for 1 h.
The numbers of cells in which green and red fluorescence

colocalize compared with the numbers of cells that express
only green or only red fluorescence was quantified using
confocal microscopy (Leica, Bannockburn, IL) at a magni-
fication of � 40 in a counting box of 100� 100� 20 mm. To
test the specificity of the immunological detection, the
primary antibody was omitted and no fluorescent staining
was detected.
The choice of VGLUT2 was made based on our

experience with this protein in prior studies in which we
demonstrate its abundance in cortical pyramidal cells (Agis-
Balboa et al, 2006, 2007). We have documented its presence
in layer V of the cortex (Agis-Balboa et al, 2007). Others
indicate that it is also present in layer II, III, and IV
pyramidal neurons (Uezato et al, 2009; McCullumsmith and
Meador-Woodruff, 2003; Fremeau et al, 2001; Nakamura
et al, 2005).

In situ Hybridization

Three oligoprobes complementary to the human BDNF
IXabcd transcript were used for in situ hybridization
experiments conducted based on a previously published
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protocol (Rodriguez et al, 2002; Veldic et al, 2004). A BLAT
search of each probe sequence against the UCSC Genome
Bioinformatics group (http://genome.ucsc.edu/) detected
no sequence identity with other genomic sequences. The
oligonucleotide 30 terminals were labeled with a digoxi-
genin kit (Roche Diagnostics). Twenty micron sections
were incubated for 48 h with 50 pmol/ml of antisense oligo-
nucleotides using three separate probes complementary to
the BDNF IXabcd transcript with similar results for all three
(see Table 2 for probe sequences). After the hybridization
reactions, tissue sections were incubated with sheep anti-
digoxigenin antibody (Roche Diagnostics) at 4 1C in 1%
normal goat serum and 0.4% BSA in PBS for 24 h. Samples
were then processed and visualized identically to light
microscopy immunohistochemistry samples as above.

Digital Photomicrography

DAB (Sigma) staining images were captured AxioVision 3.1.
(Zeiss) and confocal immunofluorescence by using a Leica
Confocal Microscope (Leica Microsystems). The final com-
posites were processed using Photoshop (Adobe Systems)
and PowerPoint (Microsoft).

Statistical Analysis

We used SPSS version 15.0 for Windows (SPSS) for all
statistical analyses. For post-mortem experiments, we com-
pared mRNA expression, protein expression, ChIP, and
MeDIP data between groups using multiple linear regres-
sion analysis. Spearman’s correlations were also calculated.
All significance levels are two-tailed.

RESULTS

Post-Mortem Expression Studies

In the SFNC cohort, psychotic patients include: 11 samples
from patients with BP and 15 from patients with SZ.
Nonpsychotic subjects include: 15 nonpsychiatric subjects
(NPS) (Table 1). We included only samples with RIN scores
43 for mRNA analyses. For mRNA experiments, this left
19 psychotic subjects (8 BP and 11 SZ) and 13 NPS. We
performed a multiple linear regression with each gene as the
dependent variable and sex, age, psychosis, pH, and RIN as
explanatory variables. We find that psychosis is a significant
predictor for GADD45b mRNA expression (b¼�0.409,
F(1, 31)¼ 5.020, p¼ 0.034) with psychotic patients having
significantly higher levels compared with controls (mean±
SEM, 13.8±3.3 vs 4.5±1.3) (Figure 3a). We do not find
age, sex, pH, or RIN to be significant predictors. A lack
of significant correlation between GADD45b mRNA and
these potential confounds verified this result. To establish
whether there exist differences in GADD45b among
psychotic patients taking antipsychotics (n¼ 14) and those
who were not (n¼ 5), we performed a second multiple
linear regression analysis, this time limiting the analysis to
patients with psychosis. Use of antipsychotic medications is
not a significant predictor of GADD45b mRNA expression
in these patients. We found no differences in expression in
the other GADD45 genes or the thymidine glycosylases
(Figure 3).

As shown in Figure 3a, we find that psychosis is a
significant predictor also for decreased BDNF IXabcd
mRNA expression (b¼ 0.459, F(1, 31)¼ 6.661, p¼ 0.016;
mean±SEM, 6.5±1.1 vs 12.1±2.1) (Figure 3a). We do not
find age, sex, pH, RIN, or antipsychotics to be significant
predictors, nor significant correlations between this tran-
script and these variables.
To establish whether the increase in GADD45b mRNA

expression in psychosis translates into an increase in
the corresponding protein, we performed immunoblotting
experiments on these same subjects from the SFNC
cohort. We performed similar multiple linear regression
analyses as in the mRNA experiments except excluding RIN
as a potential explanatory variable and with GADD45b
protein as the dependent variable. We find that psychosis
is a significant predictor for GADD45b protein increase
(b¼�0.320, F(1, 40)¼ 4.447, p¼ 0.041; mean±SEM,
0.82±0.16 vs 0.36±0.08) (Figures 3b and c). We do not
find age, sex, pH, or antipsychotic use to be significant
predictors, nor significant correlations between GADD45b
protein and these variables.
Using a different cohort (HBTRC), brain region

(prefrontal cortex (BA9)), and assay (immunohisto-
chemistry) from the one used for the mRNA and
immunoblotting experiments (SFNC) we sought to confirm
the increase in GADD45b protein among psychotic subjects.
In this cohort, patients with psychosis include, 16 BP
subjects and 14 SZ subjects. We performed a multiple linear
regression with each layer as the dependent variable
and sex, age, psychosis, pH as explanatory variables. We
find that psychosis is a significant predictor for layers II
(b¼�0.361, F(1,53)¼ 7.790, p¼ 0.007; mean±SEM,
66.0±6.5 vs 94.7±7.4), III (b¼�0.337, F(1,53)¼ 6.647,
p¼ 0.013; mean±SEM, 94.3±6.4 vs 124.2±8.7), and V
(b¼�0.307, F(1,53)¼ 5.422, p¼ 0.024; mean±SEM,
128.2±10.1 vs 165.0±11.4) with psychotic patients having
significantly higher levels compared with NPS (Figures 4a
and b). We do not find age, sex, or pH to be significant
predictors in these layers nor significant correlations
between GADD45b stained cells and these variables. To
establish whether there exist differences in GADD45b
among psychotic patients taking antipsychotics (n¼ 21)
and those who were not (n¼ 8), we performed a second
multiple linear regression analysis, this time limiting the
analysis to patients with psychosis. Use of antipsychotic
medications is not a significant predictor of GADD45b
staining in these layers.

GADD45b is Highly Expressed in Pyramidal Neurons

Confocal colocalization experiments were conducted to
determine which cell types primarily express GADD45b in
the human brain (Figure 5). We find that about 60% of the
GABAergic cells, approximately 80% of pyramidal cells, and
a minority of glial cells expresses GADD45b.

GADD45b Protein is Less Bound to BDNF IXabcd in
Psychosis

We chose to study the BDNF IXabcd promoter because
Ma et al. (2009) documented that BDNF IXa is demethylated
by GADD45b in mice. Although there are regulatory
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differences between human BDNF IXabcd and mouse BDNF
IXa (Pruunsild et al, 2011), there also exist several
similarities. In vivo and in vitro human BDNF IXabcd
and mouse BDNF IXa are similarly induced by neuronal
activity (Pruunsild et al, 2011; Koppel et al, 2009). In
addition, both human and mouse transcripts are well-
expressed widely throughout the body and the brain (Aid
et al, 2007; Pruunsild et al, 2007). Finally, our in situ
hybridization results indicate that BDNF IXabcd is well
expressed in cortical pyramidal neurons, similar to
GADD45b (Figure 4c).
We find significantly less GADD45b bound to the BDNF

IXabcd gene at �60 to + 50 (b¼ 0.404, F(1,40)¼ 6.833,
p¼ 0.013; mean±SEM, 0.06±0.03 vs 0.27±0.09) (Figure 6e)
associated with an increase in 5MC (b¼�0.370, F(1,40)¼
4.449, p¼ 0.044; mean±SEM, 9.4±2.3 vs 1.99±0.68) and
5HMC (b¼�0.349, F(1,40)¼ 4.568, p¼ 0.040; mean±SEM,
9.9±2.5 vs 2.3±0.81) in psychotic subjects (Figure 7). We do
not find age, sex, pH, or antipsychotic use to be significant
predictors, nor significant correlations between GADD45b
binding, 5MC, 5HMC, and these variables. These differences
in GADD45b binding (mean±SEM, 0.07±0.02 vs
0.07±0.02) (Figure 6e), 5MC (mean±SEM, 10.8±2.5 vs
8.8±2.6), or 5HMC (mean±SEM, 12.9±2.6 vs 11.1±2.6)
(Figure 7) are not present at a position within the BDNF IXd
exon (+ 1185 to + 1305).

DISCUSSION

Our most significant and novel finding is the increased
expression (Figure 3) and decreased promoter binding of
GADD45b (Figure 6) in psychotic subjects. This increase in
expression was confirmed using two separate cohorts
(SFNC and HBTRC), in two different brain regions (IPL
(BA39-40) and prefrontal cortex (BA9)), and using methods
including qRT-PCR, immunoblotting, and immuno-
histochemistry. The publicly accessible Stanley Medical
Research Institute (SMRI) online database, which includes
32 separate microarray studies also indicates an increase
in GADD45b mRNA expression in BP (p¼ 0.0004) with a
trend for an increase in SZ (po0.08) relative to controls
(https://www.stanleygenomics.org/). We also find a decrease
in BDNF IXabcd mRNA expression. We find no differences
in other components of the demethylation pathway
measured, such as GADD45a, GADD45g, MBD4, TDG, and
XPG (Figures 3a). We also did not find a correlation
between GADD45b and other immediate early genes such as
FOS and JUN (unpublished data), indicating perhaps
differences in their regulation.
To examine whether GADD45b induction may confer an

epigenetic modulation in the expression of genes we
focused on BDNF IXabcd. The presence of GADD45b in
chromatin associated with a regulatory region of BDNF

Figure 4 Immunohistochemistry and in situ hybridization results. In (a), is a representative immunohistochemistry with specific GADD45b antibodies using
samples from the Harvard Brain Tissue Resource Center cohort, prefrontal cortex (BA9). Note more stained cells in cortical layers II, III, and V in psychotic
patients (PP) compared with nonpsychotic subjects (NPS) (scale bar: 100 mm). In (b), we find significant increases in GADD45b positive neurons among PP
(n¼ 30) vs NPS (n¼ 25) in layers II (p¼ 0.007), III. (p¼ 0.01), and V (p¼ 0.02) (b). In (c), is a representative in situ hybridization experiment showing
presence of BDNF IXabcd transcript in layer III and V cortical pyramidal neurons. Inset is a magnified cortical pyramidal neuron. (Scale bar: 100 mm; inset scale
bar 10mm). Error bars represent SEMs. *po0.05; **po0.01.
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IXabcd points to a direct role of this protein in this gene’s
regulation and potentially in a demethylation process. An
increase in BDNF IXabcd promoter 5MC and 5HMC
connected with a decreased binding of GADD45b and
reduced transcription in psychotic patients suggests this
association (Figure 7).
Reconciling prior post-mortem studies of DNA methyla-

tion pathways is difficult as published reports indicate
seemingly or occasionally genuinely contradictory results.
While several studies from our group have pointed to a
hypermethylating milieu in the brains of psychotic subjects
(Grayson et al, 2005; Guidotti et al, 2011, 2007; Veldic et al,
2005, 2007; Zhubi et al, 2009; Ruzicka et al, 2007), others
found decreased DNA methylation at particular genes
(Abdolmaleky et al, 2006) or overall dysfunctional methyla-
tion networks comprised of both increases and decreases in
methylation (Mill et al, 2008). Further, several studies have
failed to replicate DNA methylation changes at particular
genes (Tochigi et al, 2008; Mill et al, 2008; Dempster et al,
2006). These disparate results bespeak the increasingly
recognized complexity of the DNA methyl mark.
Although CpG methylation was originally thought of as

an on–off switch within promoter regions, the location of
this mark has been shown to be integral to gene expression
(Deaton et al, 2011; Irizarry et al, 2009). Further, the
relationship between CpG methylation and transcription is

not linear with transcription beginning at times before it is
demethylated (Buschhausen et al, 1985; Sharma et al, 2010).
Finally, recent studies indicate that 5HMC accounts for 14%
of the methylcytosines in the brain (Globisch et al, 2010;
Munzel et al, 2010). Most previous DNA methylation
studies of clinical populations used methods incapable of
distinguishing 5MC from 5HMC.
A limitation of the MeDIP method employed is that it is

incapable of providing base-specific information regarding
methylation status. It is possible that this is important as
prior studies indicate that the methylation status of even a
single CpG can determine whether a gene is transcribed
(Sharma et al, 2010).
The increased expression of GADD45b in psychosis is

somewhat surprising. This is because the majority of
previous studies have reported increases in factors associ-
ated with a restrictive chromatin state, such as increased
DNMT expression (Veldic et al, 2004, 2005, 2007; Zhubi
et al, 2009; Ruzicka et al, 2007), DNA promoter methylation
(Grayson et al, 2005; Abdolmaleky et al, 2005), and
repressive histone modifications (Gavin et al, 2009a, b;
Benes et al, 2007; Huang et al, 2007) in psychotic patients.
These abnormalities are hypothesized to cause the much-
replicated reductions in GABAergic gene expression in
psychosis (Benes et al, 2007; Akbarian et al, 1995; Fatemi
et al, 2005; Hashimoto et al, 2008; Costa et al, 2004; Guidotti
et al, 2000). Therefore, we expected GADD45b, which
facilitates DNA demethylation, to be reduced in psychotic
patients. One explanation for this discrepancy is suggested
by our ChIP experiments. In these experiments, psychotic
subjects, despite high levels of GADD45b, show reduced
GADD45b binding to the BDNF IXabcd promoter compared
with nonpsychotic subjects (Figure 6). This reduced binding
is not found at a site well downstream of the transcription
start site (TSS) of BDNF IXabcd (Figure 6), suggesting that
this difference may be specific to gene promoter regions. In
regards to the ChIP experiments, because GADD45b
binding was examined at only certain genomic loci it is
possible that this lack of binding is not generalizable to the
genome as a whole. Additional genome-wide studies would
be necessary to determine whether this is in fact the case.
This may contribute to the understanding of the dyscoor-
dination of promoter methylation processes reported in
psychotic patients (Mill et al, 2008).
Previous studies demonstrate that GADD45 proteins

associate with markers of an ‘open’ chromatin state such
as acetylated histones (Carrier et al, 1999). It has been
suggested that subjects with psychosis have histone marks
characteristic of a restrictive chromatin state (Huang et al,
2007), such as reduced acetylated histone 3 (Gavin et al,
2008), increased dimethylated lysine 9 of histone 3 (Gavin
et al, 2009b), reduced methylated lysine 4 of histone 3 in
female schizophrenics (Huang et al, 2007), and increased
HDAC1 expression (Benes et al, 2007; Sharma et al, 2008).
Although, Akbarian et al. (2005) reported increases in an
‘open’ histone mark associated with reduced metabolic gene
expression in SZ (Akbarian et al, 2005). A restrictive
chromatin state in psychosis could obstruct or fail to recruit
GADD45b binding to specific promoters, and lead to a
compensatory increase in its expression. Future cellular
studies are necessary to determine if a restrictive chromatin
state prevents GADD45b binding and DNA demethylation.

Figure 5 GADD45b is expressed in pyramidal and GABAergic cells, and
not highly expressed in glial cells, in the post-mortem prefrontal cortex. In
(a), is immunofluorescence showing colocalization of GADD45b (red) with
a marker for GABAergic cells, GAD65/67 (Millipore, AB1511) (green). In
(b), is immunofluorescence showing colocalization of GADD45b (red) with
a marker for pyramidal cells, VGLUT2 (Abcam, ab79157) (green). In (c), is
immunofluorescence showing colocalization of GADD45b (red) with a
marker for glial cells, S100b (Sigma, S2532) (green).
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In this study, we cannot exclude the possibility that
medications contributed to our findings. In our analyses, we
find no significant differences in GADD45b expression
based on the use of antipsychotic medications. However,

few subjects were not taking antipsychotic medications at
the time of death, which makes any assertions that detected
abnormalities in psychosis are not the result of medications
impossible from the data presented here. It should also be

Figure 6 GADD45b differentially binds to the BDNF IXabcd promoter in psychotic patients (PP) vs nonpsychotic subjects (NPS) in parietal cortical
samples from the Stanley Foundation Neuropathology Consortium. In (a), is a representative gel from human brain chromatin immunoprecipitation (ChIP).
Left gel lane reveals BDNF IXabcd PCR product in GADD45b (Aviva Systems Biology, ARP48346_P050) immunoprecipitated sample, center lane is
negative control (NTC) (normal rabbit IgG; Santa Cruz, sc-2027) and right lane is input. In (b), is a western blot demonstrating that the antibody (Aviva
Systems Biology, ARP48346_P050) used in ChIP experiments produces a band using protein from a wild-type (WT) mouse brain, but not from a
GADD45b knockout (KO). In (c), is a western blot of human parietal tissue with 1.2, 0.6, and 0.3 mg of total protein indicating one major band for the
GADD45b antibody. In (d), are the locations of human BDNF regions studied (Pruunsild et al, 2007). In ChIP experiments, we measured GADD45b binding
and performed methylated DNA immunoprecipitation (MeDIP) experiments in the region surrounding the BDNF IXabcd transcription start site and within
the exon BDNF IXd (blue lettering and blue lines below figure). Underlined is a transcribed portion of BDNF IXabcd. In red are the CpG sites in the ChIP
areas studied. In italicized orange lettering is the location of the BDNF IXabcd transcript measured in RT-PCR experiments. The downward arrow represents
the start of the shared 30 exon used by other mRNA transcripts. Primer locations are in larger font size. In ChIP assays, GADD45b (Aviva, ARP48346_P050)
is significantly more bound to a region of the BDNF IXabcd (p¼ 0.013) promoter in NPS (n¼ 15) compared with PP (n¼ 26) (e). By contrast there is no
difference in binding in a region of the BDNF IXd exon well downstream of the transcription start site ( + 1185 to + 1305). Numbers represent pull down
(ChIP) minus negative control as percent input. Error bars represent SEMs. *po0.05.
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Figure 7 Increased 5-methylcytosine (5MC) and 5-hydroxymethylcytosine (5HMC) at the BDNF IXabcd promoter in parietal cortical samples from
psychotic patients (PP) from the Stanley Foundation Neuropathology Consortium. In (a), is a dot blot indicating specificity of 5MC and 5HMC antibodies.
75 ng of either unmethylated, 5MC, or 5HMC standards (Active Motif, 55 008) were spotted onto two membranes. The membrane on the left was
incubated with 5MC antibody (Ab) (Diagenode, MAb-081-100), while the right membrane was incubated with 5HMC Ab (Active Motif, 39769). In (b),
methylated DNA immunoprecipitation (MeDIP) assays reveal significantly more 5MC (Diagenode, MAb-081-100) at the BDNF IXabcd (p¼ 0.044)
promoter in PP (n¼ 26) compared with nonpsychotic subjects (NPS) (n¼ 15). In (c), MeDIP experiments using anti-5HMC antibody reveal increased
5HMC at the BDNF IXabcd (p¼ 0.040) promoter in psychotic patients. Numbers represent pull down (ChIP) minus negative control as percent input. Error
bars represent SEMs. *po0.05.

GADD45b and psychosis
DP Gavin et al

539

Neuropsychopharmacology



noted that mice treated with clozapine or valproic acid, but
not haloperidol have increased GADD45b expression
(Guidotti et al, 2011; Matrisciano et al, 2011).
As epigenetic mechanisms are amenable to pharmacolo-

gical intervention the potential for developing agents, which
target chromatin remodeling and DNA methylation is
profound. A better understanding of these effects could
lead to novel therapeutics that efficiently target hyper-
methylated candidate genes, and potentially reverse the
abnormalities in coordinating histone modifications and
DNA methylation (Huang and Akbarian, 2007). It remains
to be determined whether the increase in GADD45b in
psychosis is compensatory to a restrictive chromatin state
or a hypermethylating cellular milieu, a contributor to
psychosis, or a result of environmental factors caused by
living with a psychotic illness. If the former hypothesis is
correct then bolstering an individual’s DNA demethylating
capacity using chromatin ‘opening’ drugs would be
expected to increase GADD45b access to gene promoters
and potentially result in favorable gene expression changes.
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